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Abstract

We tackle the problems of latent variables identification and “out-of-support” im-
age generation in representation learning. We show that both are possible for a
class of decoders that we call additive, which are reminiscent of decoders used for
object-centric representation learning (OCRL) and well suited for images that can
be decomposed as a sum of object-specific images. We provide conditions under
which exactly solving the reconstruction problem using an additive decoder is guar-
anteed to identify the blocks of latent variables up to permutation and block-wise
invertible transformations. This guarantee relies only on very weak assumptions
about the distribution of the latent factors, which might present statistical depen-
dencies and have an almost arbitrarily shaped support. Our result provides a new
setting where nonlinear independent component analysis (ICA) is possible and
adds to our theoretical understanding of OCRL methods. We also show theoreti-
cally that additive decoders can generate novel images by recombining observed
factors of variations in novel ways, an ability we refer to as Cartesian-product
extrapolation. We show empirically that additivity is crucial for both identifiability
and extrapolation on simulated data.

1 Introduction

The integration of connectionist and symbolic approaches to artificial intelligence has been proposed
as a solution to the lack of robustness, transferability, systematic generalization and interpretability of
current deep learning algorithms [53, 4, 13, 25, 21] with justifications rooted in cognitive sciences
[20, 28, 43] and causality [57, 63]. However, the problem of extracting meaningful symbols grounded
in low-level observations, e.g. images, is still open. This problem is sometime referred to as
disentanglement [4, 48] or causal representation learning [63]. The question of identifiability in
representation learning, which originated in works on nonlinear independent component analysis
(ICA) [65, 31, 33, 36], has been the focus of many recent efforts [49, 66, 26, 47, 3, 9, 41]. The
mathematical results of these works provide rigorous explanations for when and why symbolic
representations can be extracted from low-level observations. In a similar spirit, Object-centric
representation learning (OCRL) aims to learn a representation in which the information about
different objects are encoded separately [19, 22, 11, 24, 18, 51, 14]. These approaches have shown
impressive results empirically, but the exact reason why they can perform this form of segmentation
without any supervision is poorly understood.
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Figure 1: Left: Additive decoders model the additive structure of scenes composed of multiple
objects. Right: Additive decoders allow to generate novel images never seen during training via
Cartesian-product extrapolation (Corollary 3). Purple regions correspond to latents/observations seen
during training. The blue regions correspond to the Cartesian-product extension. The middle set is
the manifold of images of balls. In this example, the learner never saw both balls high, but these can
be generated nevertheless thanks to the additive nature of the scene. Details in Section 3.2.

1.1 Contributions

Our first contribution is an analysis of the identifiability of a class of decoders we call additive
(Definition 1). Essentially, a decoder F(z) acting on a lateﬁ; vector Z 2 R?% to produce an observation

X is said to be additive if it can be written as F(z2) = 5 g T(B)(zp) where B is a partition of

z. This class of decoder is particularly well suited for images X that can be expressed as a sum of
images corresponding to different objects (left of Figure 1). Unsurprisingly, this class of decoder
bears similarity with the decoding architectures used in OCRL (Section 2), which already showed
important successes at disentangling objects without any supervision. Our identifiability results
provide conditions under which exactly solving the reconstruction problem with an additive decoder
identifies the latent blocks Z g up to permutation and block-wise transformations (Theorems 1 & 2).
We believe these results will be of interest to both the OCRL community, as they partly explain the
empirical success of these approaches, and to the nonlinear ICA and disentanglement community, as it
provides an important special case where identifiability holds. This result relies on the block-specific
decoders being “sufficiently nonlinear” (Assumption 2) and requires only very weak assumptions
on the distribution of the ground-truth latent factors of variations. In particular, these factors can be
statistically dependent and their support can be (almost) arbitrary.

Our second contribution is to show theoretically that additive decoders can generate images never seen
during training by recombining observed factors of variations in novel ways (Corollary 3). To describe
this ability, we coin the term “Cartesian-product extrapolation” (right of Figure 1). We believe the
type of identifiability analysis laid out in this work to understand “out-of-support” generation is novel
and could be applied to other function classes or learning algorithms such as DALLE-2 [59] and
Stable Diffusion [61] to understand their apparent creativity and hopefully improve it.

Both latent variables identification and Cartesian-product extrapolation are validated experimentally
on simulated data (Section 4). More specifically, we observe that additivity is crucial for both by
comparing against a non-additive decoder which fails to disentangle and extrapolate.

Notation. Scalars are denoted in lower-case and vectors in lower-case bold, e.g. X 2 R and X 2 R™.
We maintain an analogous notation for scalar-valued and vector-valued functions, e.g. T and F. The
ith coordinate of the vector X is denoted by X;. The set containing the first n integers excluding 0 is
denoted by [n]. Given a subset of indices S [n], Xs denotes the subvector consisting of entries
X; for i 2 S. Given a function F(Xg) 2 R™ with input Xg, the derivative of ¥ w.r.t. X; is denoted
by D;f(Xs) 2 R™ and the second derivative w.r.t. X; and X0 is D%,iof(XS) 2 R™. See Table 2 in
appendix for more.

Code: Our code repository can be found at this link.

2 Background & Literature review

Identifiability of latent variable models. The problem of latent variables identification can be best
explained with a simple example. Suppose observations X 2 R% are generated i.i.d. by first sampling
a latent vector z 2 R% from a distribution P, and feeding it into a decoder function F : Rdz ¥ Rdx,


https://github.com/divyat09/additive_decoder_extrapolation/

i.e.x = f (z). By choosing an alternative model de nedfas= f v and? := v 1(z) where

v :R% I RY% js some bijective transformation, it is easy to see that the distributioﬁ\;of’\(i)

andx are the same sind’é(Z‘) =f v(v 1(2)) = f (z). The problem of identi ability is that, given

only the distribution ovex , it is impossible to distinguish between the two modélsz) and(f™; 2).

This is problematic when one wants to discover interpretable factors of variationzsamci? could

be drastically different. There are essentially two strategies to go around this problem: (i) restricting
the hypothesis class of decod&r$65, 26, 44, 54,9, 73], and/or (ii) restricting/adding structure to the
distribution of2 [33, 50, 42, 47]. By doing so, the hope is that the only bijective mappindseeping

f* and2 into their respective hypothesis classes will be trivial indeterminacies such as permutations
and element-wise rescalings. Our contribution, which is to restrict the decoder fufictohe
additive (De nition 1), falls into the rst category. Other restricted function classe$ fproposed

in the literature include post-nonlinear mixtur&s]| local isometries 16, 15, 29|, conformal and
orthogonal maps6, 60, 9] as well as various restrictions on the sparsity 464, 73, 7, 71]. Methods

that do not restrict the decoder must instead restrict/structure the distribution of the latent factors
by assuming, e.g., sparse temporal dependentie88, 42, 40], conditionally independent latent
variables given an observed auxiliary varial88,[36], that interventions targeting the latent factors

are observed2, 47, 46, 8, 2, 3, 64, 10, 67, 72, 34], or that the support of the latents is a Cartesian-
product B8, 62]. In contrast, our result makes very mild assumptions about the distribution of the
latent factors, which can present statistical dependencies, have an almost arbitrarily shaped support
and does not require any interventions. Additionally, none of these works provide extrapolation
guarantees as we do in Section 3.2.

Relation to nonlinear ICA. Hyvarinen and Pajun€32] showed that the standard nonlinear ICA
problem where the decodgris nonlinear and the latent factars arestatistically independeris
unidenti able. This motivated various extensions of nonlinear ICA where more structure on the
factors is assume@®(, 31, 33, 36, 37, 27]. Our approach departs from the standard nonlinear ICA
problem along three axes: (i) we restrict the mixing function to be additive, (ii) the factors do not
have to be necessarily independent, and (iii) we can identify only the bigcles opposed to each

z; individually up to element-wise transformations, unlBss ff 1g;:::;fd,gg(see Section 3.1).

Object-centric representation learning (OCRL). Lin et al. [45] classi ed OCRL methods in

two categoriesscene mixture mode]@2, 23, 24, 51] & spatial-attention modelfl9, 12, 11, 18].

Additive decoders can be seen as an approximation to the decoding architectures used in the former
category, which typically consist of an object-speci ¢ decotl&?) acting on object-speci ¢ latent
blockszg and “mixed” together via a masking mechanismi®)(z) which selects which pixel
belongs to which object. More precisely,

X
f2)= m®(z) fO(zg) wherem®)(z)= P SP@(Ze) . )
B 2B B 92B exp(ak(ZBO))
and whereB is a partition of[d,] made of equal-size blocl® anda : RIBI I RY% outputs a score
that is normalized via a softmax operation to obtain the mask®)(z). Many of these works
also present some mechanism to select dynamically how many objects are present in the scene and
thus have a variable-size representatioran important technical aspect we omit in our analysis.
Empirically, training these decoders based on some form of reconstruction objective, probabilistic
or not, yields latent blockgg that represent the information of individual objects separately. We
believe our work constitutes a step towards providing a mathematically grounded explanation for
why these approaches can perform this form of disentanglement without supervision (Theorems 1 &
2). Many architectural innovations in scene mixture models concern the encoder, but our analysis
focuses solely on the structure of the decddéz), which is a shared aspect across multiple methods.
Generalization capabilities of object-centric representations were studied empirically by Dittadi et al.
[14] but did not cover Cartesian-product extrapolation (Corollary 3) on which we focus here.

Diagonal Hessian penalty $8]. Additive decoders are also closely related to the penalty introduced

by Peebles et a]58] which consists in regularizing the Hessian of the decoder to be diagonal. In
Appendix A.2, we show that “additivity” and “diagonal Hessian” are equivalent properties. They
showed empirically that this penalty can induce disentanglement on datasets such as GBEVR [
which is a standard benchmark for OCRL, but did not provide any formal justi cation. Our work
provides a rigorous explanation for these successes and highlights the link between the diagonal
Hessian penalty and OCRL.



Compositional decoders 7]. Compositional decoders were recently introduced by Brady Eflehs

a model for OCRL methods with identi ability guarantees. A decddés said to becompositional

when its Jacobiab®f satis es the following property everywhere: For al [d;] andB 2 B,
Dgfi(z) 8 0 =) Dg:fi(z) = 0, whereB° :=[d;]nB. In other words, eack; canlocally
depend solely on one blodg (this block can change for differen). In Appendix A.3, we show that
compositionalC? decoders are additive. Furthermore, Example 3 shows a decoder that is additive
but not compositional, which means that addit®# decoders are strictly more expressive than
compositionalC? decoders. Another important distinction with our work is that we consider more
general supports far and provide a novel extrapolation analysis. That being said, our identi ability
result does not supersede theirs since they assumeCdrdgcoders while our theory assun@s.

Extrapolation. Du and MordatcH17] studied empirically how one can combine energy-based
models for what they cattompositional generalizatignwvhich is similar to our notion of Cartesian-
product extrapolation, but suppose access to datasets in which only one latent factor varies and do
not provide any theory. Webb et §¥0] studied extrapolation empirically and proposed a novel
benchmark which does not have an additive structure. Besserve[gl pfoposed a theoretical
framework in which out-of-distribution samples are obtained by applying a transformation to a single
hidden layer inside the decoder network. Krueger ef38l] introduced a domain generalization
method which is trained to be robust to tasks falling outside the convex hull of training distributions.
Extrapolation in text-conditioned image generation was recently discussed by Wang et al. [69].

3 Additive decoders for disentanglement & extrapolation

Our theoretical results assume the existence of some data-generating process describing how the
observationx are generated and, importantly, what are the “natural” factors of variations.

Assumption 1 (Data-generating processJhe set of possible observations is given by a lower
dimensional manifold (Z **) embedded ilR% whereZ *stis an open set dR% andf : Z st

R% is a C2-diffeomorphism onto its image. We will referftoas theground-truth decoderAt
training time, the observations are i.i.d. samples givex by f (z) wherez is distributed according

to the probability measurBfa" with supportz ¥an z st Throughout, we assume that@" is
regularly closed (De nition 6).

Intuitively, the ground-truth decodéris effectively relating the “natural factors of variatiors’to

the observations in a one-to-one fashion. The méapis aC2-diffeomorphism onto its image, which
means that it i€? (has continuous second derivative) and that its inverse (restricted to the image
of f ) is alsoC?. Analogous assumptions are very common in the literature on nonlinear ICA and
disentanglemenB, 36, 42, 1]. Mansouri et al[52] pointed out that the injectivity df is violated

when images show two objects that are indistinguishable, an important practical case that is not
covered by our theory.

We emphasize the distinction betwe2f*", which corresponds to the observations seen during
training, andZ s, which corresponds to the set of all possible images. The case &f&fes Z st

will be of particular interest when discussing extrapolation in Section 3.2. The “regularly closed”
condition onZ @M js mild, as it is satis ed as soon as the distributiorzdfias a density w.r.t. the
Lebesgue measure &f- . It is violated, for example, when is a discrete random vector. Figure 2
illustrates this assumption with simple examples.

Objective. Our analysis is based on the simple objective of reconstructing the observatipns

learning an encodey : R% | R% and a decoddf : R% | RY% . Note that we assumed implicitly
that the dimensionality of the learned representation matches the dimensionality of the ground-truth.
We de ne the set of latent codes the encoder can output when evaluated on the training distribution:

Z\train = g(f (Z train)) . (2)

When the images of the ground-truth and learned decoders matdh(Z&3") = (2@ which
happens when the reconstruction task is solved exactly, one can de ne the nfif" | z train a5

" (3)

vi=f 1t

This function is going to be crucial throughout the work, especially to dBrgisentanglement
(De nition 3), as it relates the learned representation to the ground-truth representation.



Before introducing our formal de nition of additive decoders, we introduce the following notation:
GivenaseZ RY and a subset of indicé® [d,], let us de neZg to be the projection of
onto dimensions labelled by the index BetMore formally,

Zg =fzgjz22Zg RBI: (4)

Intuitively, we will say that a decoder edditivewhen its output is the summation of the outputs of
“object-speci c” decoders that depend only on each latent binckThis captures the idea that an
image can be seen as the juxatoposition of multiple images which individually correspond to objects
in the scene or natural factors of variations (left of Figure 1).

De nition 1 (Additive functions) LetB be a partition of[d,]*. A functionf : Z! R% is said to
beadditiveif there exist function (B) : Zg | R% forall B 2 B such that

82227;f(z)= f B)(zg): (5)
B 2B
This additivity property will be central to our analysis as it will be the driving force of identi ability
(Theorem 1 & 2) and Cartesian-praduct extrapolation (Corollary 3).

Remark 1. Suppose we have= ( g, f (B)(zg)) where is a known bijective function. For
example, if (y) := exp(y) (component-wise), the decoder can be thought of as being multiplicative.
Our results still apply since we can simply transform the data daing  *(x) to recover the
additive formx = = 5,5 f (®)(zg).

Differences with OCRL in practice. We point out that, although the additive decoders make intuitive
sense for OCRL, they are not expressive enough to represent the “masked decoders” typically used in
practice (Equationfl)). The lack of additivity stems from the normalization in the mask$) (z).

We hypothesize that studying the simpler additive decoders might still reveal interesting phenomena
present in modern OCRL approaches due to their resemblance. Another difference is that, in practice,
the same object-speci ¢ decodif®® is applied to every latent blocks . Our theory allows for

these functions to be different, but also applies when functions are the same. Additionally, this
parameter sharing acros$2) enables modern methods to have a variable number of objects across
samples, an important practical point our theory does not cover.

3.1 Identi ability analysis

We now study the identi ability of additive decoders and show how they can yield disentanglement.
Our de nition of disentanglement will rely opartition-respecting permutations

De nition 2 (Partition-respecting permutationd)et B be a partition off 1; ::;; d,g. A permutation
overfl;::;d,grespectdB if, forall B 2B; (B) 2B.

Essentially, a permutation that respeBts one which can permute blocksBfand permute elements
within a block, but cannot “mix” blocks together. We now introdiB&lisentanglement.

De nition 3 (B-disentanglement)A learned decodef’ : R% | R% is said to beB-disentangled
w.rt. the ground-truth decoddr whenf (Z '@ = {*(Z't@" and the mapping := f ! f'isa
diffeomorphism fronZ 2 to Z "ain satisfying the following property: there exists a permutation
respectingd such that, for alB 2 B, there exists a function (g) : Z§an 1 Z "?,‘3") such that, for

all z 2 Zrain ®)(2) = Vv (gy(zg). In other wordsy (g)(z) depends only omg .

Thus,B-disentanglement means that the blocks of latent dimengigrege disentangled from one
another, but that variables within a given block might remain entangled. Note that, unless the partition

seeked in nonlinear ICA, i.e. recovering each variable individually.

Example 1. To illustrate B-disentanglement, imagine a scene consisting of two balls moving around
in 2D where the “ground-truth” representation is given by= ( x1;y*;x2;y?) wherezg, = (x1;y?!)
andzg, = (x?;y?) are the coordinates of each ball (hei,:= ff 1;2g;f3;4gg). In that case, a
learned representation B-disentangled when the balls are disentangled from one another. However,
the basis in which the position of each ball is represented might differ in both representations.

lwithout loss of generality, we assume that the partifiis contiguous, i.e. eadd 2 B can be written as



Our rstresult (Theorem 1) shows a weaker form of disentanglement wéocall B-disentanglement.
This means the Jacobian matrixwafD v, has a “block-permutation” structure everywhere.

De nition 4 (Local B-disentanglement)A learned decodef’ : R% | R% is said to bdocally

B-disentangledw.rt. the ground-truth decoddr whenf (z'@" = {'(Z'@" and the mapping
v:=f ! f'isa diffeomorphism frorf"@" to Z " with a mappingv : 2 1 Z 1ain satisfying
the following property: for alz 2 7@ there exists a permutationrespectingd such that, for all
B 2 B, the columns oDV (g)(z) 2 R'B} 9 outside blockB are zero.

In Appendix A.4, we provide three examples where local disentanglement holds but not global disen-
tanglement. The rst one illustrates how having a disconnected support can allow for a permutation
(from De nition 4) that changes between disconnected regions of the support. The last two examples
show how, even if the permutation stays the same throughout the support, we can still violate global
disentanglement, even with a connected support.

We now state the main identi ability result of this work which provides conditions to guardoteé
disentanglement. We will then see how to go from locajltibal disentanglement in the subsequent
Theorem 2. For pedagogical reasons, we delay the formalization of the suf cient nonlinearity
Assumption 2 on which the result crucially relies.

Theorem 1(Local disentanglement via additive decoderSuppose that the data-generating process
satis es Assumption 1, that the learned decoflerR® | R% is a C2-diffeomorphism, that the
encoderg : R% | RY% js continuous, that both andf” are additive (De nition 1) and that

is suf ciently nonlinear as formalized by Assumption 2. Thefi, dindg solve the reconstruction

problem on the training distribution, i.eE'@Mjjx  f(§(x))jj2 = 0, we have that" is locally
B-disentangled w.r.tf (De nition 4) .

The proof of Theorem 1, which can be found in Appendix A.5, is inspired fromdripen et al[33].

The essential differences are that (i) they leverage the additivity of the conditional log-dersity of
given an auxiliary variable (i.e. conditional independence) instead of the additivity of the decoder
functionf , (ii) we extend their proof techniques to allow for “block” disentanglement, i.e. vl en

p(z j u) of Hyvarinen et al[33] is replaced by an analogous assumption of “suf cient nonlinearity”
of the decodef (Assumption 2), and (iv) we consider much more general supgdit8 which
makes the jump from local to global disentanglement less direct in our case.

The identi ability-expressivity trade-off. The level of granularity of the partitioB controls the
trade-off between identi ability and expressivity: the ner the partition, the tighter the identi ability
guarantee but the less expressive is the function class. The optimal level of granularity is going to
dependent on the application at hand. Whefepuld be learned from data is left for future work.

Suf cient nonlinearity. The following assumption is key in proving Theorem 2, as it requires that
the ground-truth decoder is “suf ciently nonlinear”. This is reminiscent of the “suf cient variability”
assumptions found in the nonlinear ICA litterature, which usually concerns the distribution of the
latent variablez as opposed to the decode30, 31, 33, 36, 37, 42, 73]. We clarify this link in
Appendix A.6 and provide intuitions why suf cient nonlinearity can be satis ed whgn d,.

P o .
Assumption 2(Suf cient nonlinearity off ). Letq:= d, + g, DU Forall z 2 Z van, f
is such that the following matrix has linearly independent columns (i.e. full column-rank):

h i h i
— £ (B) 2 £ (B) dx q.
W= Bt o DR . 2R (6)

whereB? := B2\f (i;i9ji® ig. Note thisimpliesly, .

The following example shows that Theorem 1 does not apply if the ground-truth ddcazlinear. If

that was the case, it would contradict the well known fact that linear ICA with independent Gaussian
factors is unidenti able.

Example 2 (Importance of Assumption 2)Suppose = f (z) = Az whereA 2 R% % s full

rank. Takef'(z) := AVz and@(x) := V AYx whereV 2 R% % js invertible andAY is

the left pseudo inverse &f. By construction, we have thifx f'\(g(x))] =0 andf andf"are



P P
B-additive becausk(z) = 5,5 A 82g andf(z) = 5,5 (AV ) g zg. However, we still have
thatv(z) := f 1 fY(z)= Vz whereV does not necessarily have a block-permutation structure,
i.e. no disentanglement. The reason we cannot apply Theorem 1 here is because Assumption 2 is
not satis ed. Indeed, the second derivatives 81)(zg) := A g zg are all zero and henc@/ (z)
cannot have full column-rank.

Example 3(A suf ciently nonlinearf ). In Appendix A.7 we show numerically that the function
f(z):=[z1;:2:28: 21 +[(22+1) (22 + 1) %5 (22 + 1) % (22 + 1) T @)
is a diffeomorphism from the squdrel; 0] [0; 1]to its image that satis es Assumption 2.

Example 4 (Smooth balls dataset is suf ciently nonlineatp Appendix A.7 we present a simple
synthetic dataset consisting of images of two colored balls moving up and down. We also verify
numerically that its underlying ground-truth decodeiis suf ciently nonlinear.

3.1.1 From local to global disentanglement

The following result provides additional assumptions to guaragitgeal disentanglement (De ni-
tion 3) as opposed to only local disentanglement (De nition 4). See Appendix A.8 for its proof.

Theorem 2(From local to global disentanglementpuppose that all the assumptions of Theorem 1
hold. Additionally, assumz "@" js path-connected (De nition 8) and that the block-speci ¢ decoders
f (8) and f{®) are injective for all blocks8 2 B. Then, iff* and § solve the reconstruction
problem on the training distribution, i.€E""jx  '(4(x))jj2 = 0, we have thaf" is (globally)
B-disentangled w.r.tf (De nition 3) and, for allB 2 B,

B (zg) = f BV (v gy(zs)) + c®), forall zg 2 Z§a"; (8)

}ghere the functiong (g, are from De ntion 3 and the vectors®) 2 R are constants such that
52s C®) = 0. We also have that the functions(g) : Z§@" 1 Z "2 are C2-diffeomorphisms
and have the following form:

v e)(ze)=(f ®) Y(FB)(zg) c®)); forall zg 2 ZFaM: (9)

Equation(8) in the above result shows that each block-speci ¢ learned ded¢d@eris “imitating”
a block-speci ¢ ground-truth decodér (). Indeed, the “object-speci ¢” image outputted by the
decoder(B) evaluated at somes 2 Z 12" is the same as the image outputtedf 8§ evaluated at

v(zg) 2 Z &an, up to an additive constant vectot®). These constants cancel each other out when
taking the sum of the block-speci c decoders.

Equation(9) provides an explicit form for the function

Vv (), wWhich is essentially the learned block-speci c de-
coder composed with the inverse of the ground-truth block-
speci ¢ decoder.

Additional assumptions to go from local to global.As-
suming that the support g/an, z an is path-connected
(see De nition 8 in appendix) is useful since it prevents
the permutation of De nition 4 from changing between
two disconnected regions @". See Figure 2 for an
illustration. In Appendix A.9, we discuss the additional
assumption that eadh(®) must be injective and show,

. o . . igure 2: lllustrating regularly closed
glat, in g(%r;e_rgl, .|t |s.n0t equivalent to the assumption tﬁséeﬂs (De nition 6) and path-connected
gog | is injective.

sets (De nition 8). Theorem 2 requires

_ . Z "an to satisfy both properties.
3.2 Cartesian-product extrapolation

In this section, we show how a learned additive decoder can be used to generatexirttagjese

“out of support” in the sense that 62f (Za"), but that are still on the manifold of “reasonable”
images, i.ex 2 f (Z2*®%). To characterize the set of images the learned decoder can generate, we
will rely on the notion of “cartesian-product extension”, which we de ne next.



De nition 5 (Cartesian-product extensioniven a
setZ RY and partition B of [d,], we de ne the
Cartesian-product extension @f as

Y
CPR(2) = Zg ;whereZg = fzg jz 2 Zg.
B 2B

o , . Q
It is indeed an extension & sinceZ BoB ZB- Figure 3: lllustration of De nition 5.

Let us de nev : CPEs(Z"@M | CPE;(Z ") to be the natural extension of the functien:
Zwainy 7 wain More explicitly,v is the “concatenation” of the functiong given in De nition 3:

v(z)” =[ve.(z 1sy)” VB (Z @)D (10)
where" is the number of blocks iB. This map is a diffeomorphism because eacls) is a
diffeomorphism from fan to Z "% by Theorem 2.

We already know thaff'(z) = f v(z) for all z 2 2" The following result shows that this

equality holds in fact on the larger $8PE; (Z2@"), the Cartesian-product extensionfén. See
right of Figure 1 for an illustration of the following corollary.

Corollary 3 (Cartesian-product extrapolationpuppose the assumptions of Theorem 2 holds. Then,

for all z 2 CPEs (2", B (zg) = fCEN (v gy(zs)): (11)
B 2B B 2B

Furthermore, ifCPEs (Z ") Z et thenf (CPEs (ZaM)  f (Z1eS).

Equation(11)tells us that the learned decodétimitates” the ground-trutti not just overZ "an,
but also over its Cartesian-product extension. This is important since it guarantees that we can
generate observations never seen during training as follows: Choose a latenz{®¢tbat is in
the Cartesian-product extensiondf2", but not inZ'"a" jtself, i.e. z"W 2 CPE;(Z"@n) n Zrain,

Then, evaluate the learned decoderz8f to getx " := {"(z"®%). By Corollary 3, we know that
x"W=1f v(z"®"),i.e. itis the observation one would have obtain by evaluating the ground-truth
decoderf on the pointv(z"®) 2 CPE(Z"M). In addition, thisx"®" has never been seen during

training sincev(z"%) 62v(Zn) = zain The experiment of Figure 4 illustrates this procedure.

About the extra assumption “CPE; (Z "M Z 'es*  Recall that, in Assumption 1, we interpreted

f (29 to be the set of “reasonable” observatien®f which we only observe a subdefz 'a").
Under this interpretatior **'is the set of reasonable values for the veet@nd the additional
assumption thaEPE; (2" Z 'stin Corollary 3 requires that the Cartesian-product extension
of Z'"" consists only of reasonable valueszofFrom this assumption, we can easily conclude that
f(CPEs(Z@)  f (Z'Y), which can be interpreted as: “The novel observatiolf¥ obtained

via Cartesian-product extrapolation aeasonablé. Appendix A.11 describes an example where the
assumption is violated, i.€€PEB (Z"@") 6 Z'®St The practical implication of this is that the new
observationx "¢ obtained via Cartesian-product extrapolation might not always be reasonable.

Disentanglement is not enough for extrapolationTo the best of our knowledge, Corollary 3 is the

rst result that formalizes how disentanglement can induce extrapolation. We believe it illustrates the
fact that disentanglement alone is not suf cient to enable extrapolation and that one needs to restrict
the hypothesis class of decoders in some way. Indeed, given a learned dé¢baeis disentangled

w.r.t. f on the training suppoi "@", one cannot guarantee both decoders will “agree” outside the
training domain without further restrictirf@ andf . This work has focused on “additivity”, but we
believe other types of restriction could correspond to other types of extrapolation.

4 Experiments

We now present empirical validations of the theoretical results presented earlier. To achieve this,
we compare the ability of additive and non-additive decoders to both identify ground-truth latent
factors (Theorems 1 & 2) and extrapolate (Corollary 3) when trained to solve the reconstruction task
on simple imagesé4 64 3) consisting of two balls moving in spacg]] See Appendix B.1



(independent) (dependent)
Decoders RMSE  LM§ear RMSE®®® LMSZ, || RMSE  LMStee | RMSE  LMSree

Non-add. .06 002 70.6 521 .18 .012 73.7 464 || .02 o001 53.9 758 || .02 o001 78.1 292
Additive .06 o002 915357 .11 .18 89.5 502 || .03 012 92.2 4901 || .01 002 99.9 0.02

ScalarLatents H BlockLatents H BlockLatents

Table 1: Reporting reconstruction mean squared error (R¥)SHd the Latent Matching Score
(LMS ") for the three datasets consider&talarLatentsandBlockLatents with independent and
dependent latents. Runs were repeated with 10 random initializaRMSE~°® andLMSSSS are

the same metric but evaluated out of support (see Appendix B.3 for details). While the standard error

is high, the differences are still clear as can be seen in their box plot version in Appendix B.4.

for training details. We consider two datasets: one where the two ball positions can only vary
along they-axis (ScalarLatents) and one where the positions can vary along bottxthedy axes
(BlockLatents).

ScalarLatents: The ground-truth latent vecta 2 R? is such thatz; andz, corresponds to

the height (y-coordinate) of the rst and second ball, respectively. Thus the partition is simply
B = ff 1g;f 2gg (each object has only one latent factor). This simple setting is interesting to study
since the low dimensionality of the latent spade € 2) allows for exhaustive visualizations like
Figure 4. To study Cartesian-product extrapolation (Corollary 3), we saaripten a distribution

with a L-shaped support given B2 :=[0;1] [0;1]n[0:5;1] [0:5; 1], so that the training set

does not contain images where both balls appear in the upper half of the image (see Appendix B.2).

BlockLatents: The ground-truth latent vectar2 R* is such that; 1;2g @Ndz; 3.4 correspond to the

X;y position of the rst and second ball, respectively (the partition is sinfiply ff 1; 2g; f 3; 4gg,

i.e. each object has two latent factors). Thus, this more challenging setting illustrates “block-
disentanglement”. The lateatis sampled uniformly from the hyperculpe 1}* but the images
presenting occlusion (when a ball is behind another) are rejected from the dataset. We discuss how
additive decoders cannot model images presenting occlusion in Appendix A.12. We also present an
additional version of this dataset where we sample from the hypefoubg with dependencies. See
Appendix B.2 for more details about data generation.

Evaluation metrics: To evaluate disentanglement, we compute a matrix of s¢eggso) 2 R
where’ is the number of blocks iB andsg s o is a score measuring how well we can predict the
ground-truth blockg from the learned latent blocks o = §go(x) outputted by the encoder. The
nal Latent Matching Score (LMS) is computed as LMSarg max , s, 1 828 SB: (B): Where

score used is the absolute value of the correlation, LMS is simplgngren correlation coef cient
(MCC), which is widely used in the nonlinear ICA literatu®0[ 31, 33, 36, 42]. Because our theory
guarantees recovery of the latents only up to invertible and potentially nonlinear transformations,
we use the Spearman correlation, which can capture nonlinear relationships unlike the Pearson
correlation. We denote this score bi1Sspearand will use it in the datas&calarLatents. For
theBlockLatents dataset, we cannot use Spearman correlation (beezgauaee two dimensional).
Instead, we take the scosg;s o to be theR? score of a regression tree. We denote this score by
LMS;ee. There are subtleties to take care of when one wants to evallitgg.. on a non-additive

model due to the fact that the learned representation does not have a natural frtitiermust thus

search over partitions. We discuss this and provide further details on the metrics in Appendix B.3.

4.1 Results

Additivity is important for disentanglement. Table 1 shows that the additive decoder obtains a much
higherLMSspear& LMSree than its non-additive counterpart on all three datasets considered, even if
both decoders have very small reconstruction errors. This is corroborated by the visualizations of
Figures 4 & 5. Appendix B.5 additionally shows object-speci ¢ reconstructions foBtbekLatents

dataset. We emphasize that disentanglement is possible even when the latent factors are dependent
(or causally related), as shown on tBealarLatentsdataset (L-shaped support implies dependencies)

and on theBlockLatents dataset with dependencies (Table 1). Note that prior works have relied on
interventions [3, 2, 8] or Cartesian-product supports [68, 62] to deal with dependencies.



(a) Additive decoder (b) Non-additive decoder

Figure 4: Figure (a) shows latent representation outputted by the enfodeover thetraining

dataset, and the corresponding reconstructed images of the additive decoder withlriveskgs,

among runs performed on tt&calarLatents dataset. Figure (b) shows the same thing for the
non-additive decoder. The color gradient corresponds to the value of one of the ground-truth factor,
the red dots correspond to factors used to generate the images and the yellow dashed square highlights
extrapolated images.

(a) Additive Decoder (b) Non-Additive Decoder

Figure 5: Latent responses for the case of independent latentsihatid_atent dataset. In each

plot, we report the latent factors predicted from multiple images where one ball moves along only
one axis at a time. For the additive case, at most two latents change, as it should, while more than
two latents change for the non-additive case. See Appendix B.5 for details.

Additivity is important for Cartesian-product extrapolation. Figure 4 illustrates that the additive
decoder can generate images that are outside the training domain (both balls in upper half of the
image) while its non-additive counterpart cannot. Furthermore, Table 1 also corroborates this showing
that the “out-of-support” (OOS) reconstruction MSE arMSs;eo(evaluated only on the samples
never seen during training) are signi cantly better for the additive than for the non-additive decoder.

Importance of connected support.Theorem 2 required that the support of the latent fac®Fé™,
was path-connected. Appendix B.6 shows experiments where this assumption is violated, which
yields lower LMSspearfor the additive decoder, thus highlighting the importance of this assumption.

5 Conclusion

We provided an in-depth identi ability analysis efdditive decoderswhich bears resemblance

to standard decoders used in OCRL, and introduced a novel theoretical framework showing how
this architecture can generate reasonable images never seen during training via “Cartesian-product
extrapolation”. We validated empirically both of these results and con rmed that additivity was
indeed crucial. By studying rigorously how disentanglement can induce extrapolation, our work
highlighted the necessity of restricting the decoder to extrapolate and set the stage for future works to
explore disentanglement and extrapolation in other function classes such as masked decoders typically
used in OCRL. We postulate that the type of identi ability analysis introduced in this work has the
potential of expanding our understanding of creativity in generative models, ultimately resulting in
representations that generalize better.
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Table 2: Table of Notation.

Calligraphic & indexing conventions

[Nl = f1,2:::;ng
X Scalar (random or not, depending on context)
X Vector (random or not, depending on context)
X Matrix
X Set/Support
f Scalar-valued function
f Vector-valued function
fa Restriction off to the setA
Df , Df Jacobian of andf
D2f Hessian of
B [n] Subset of indices
iBj Cardinality of the seB
XB Vector formed with theth coordinates ok, foralli 2 B
X g o Matrix formed with the entrie¢i;j ) 2 B B%of X .
GivenX R",Xg := fxg jx 2Xg (projection ofX)
Recurrent notation
x 2 R% Observation
z 2 R% Vector of latent factors of variations
Z R%* Support ofz
f Ground-truth decoder function
f’\ Learned decoder function
B A partition of [d;] (assumed contiguous w.l.0.g.)
B2B A block of the partitionB
B(i)2B The unique block oB that containg
SMdz]! [dg] A permutation
Sg = B %B B2
S§ = [d°nSg
RE % = fM 2R% %j(i;j)62s =) My =0g
General topology
X Closure of the subse¢  R" in the standard topology &"
X Interior of the subseX  R" in the standard topology &"

A Identi ability and Extrapolation Analysis

A.1 Useful de nitions and lemmas

We start by recalling some notions of general topology that are going to be used later on. For a proper
introduction to these concepts, see for example Munkres [56].

De nition 6 (Regularly closed sets)A setZ R is regularly closed iZ = Z , i.e. ifitis equal
to the closure of its interior (in the standard topologyRiT).

De nition 7 (Connected sets)A setZ  R% is connected if it cannot be written as a union of
non-empty and disjoint open sets (in the subspace topology).

De nition 8 (Path-connected setsp setZ RY is path-connected if for all pair of points
2%,z 2 7, there exists a continuous map: [0;1]! Z suchthat (0) = z®and (1) = z%.
Such a map is called a path betweghandz?®.



De nition 9 (Homeomorphism)LetA andB be subsets dR" equipped with the subspace topology.
Afunctionf : Al B isan homeomorphism if it is bijective, continuous and its inverse is continuous.

The following technical lemma will be useful in the proof of Theorem 1. For it, we will need
additional notation: Le8 A R". We already saw the8 refers to the closur§ in the R"
topology. We will denote byl (S) the closure ofs in the subspace topology éf induced byR",
which is not necessarily the same&sin fact, both can be related vidn, = S\ A (see Munkres
[56, Theorem 17.4, p.95]).

Lemma 4. LetA;B R" and suppose there exists an homeomorplismA ! B. If A'is
regularly closed irR", we havethaB B .

Proof. Note thatf , is a continuous injective function from the open getto f (A ). By the

“invariance of domain” theorenbp, p.381], we have thdt(A ) must be open ifR". Of course,
we havethat (A ) B,andthud (A ) B (theinterior ofB is the largest open set contained

in B). Analogouslyf ! g IS acontinuous injective function from the open Betto f 1B ).

Again, by “invariance of domain’f, (B ) must be open iR" andthus (B ) A .We can
conclude thaf (A )= B .

We can conclude as follow:
B=fA)=f(A)=Ff(A \ A)=f(cla(A)) clg(f(A)=clg(B)=B \B B ;
where the rstinclusion holds by continuity ¢f [56, Thm.18.1 p.104]. O

This lemma is taken from [42].

Lemma 5 (Sparsity pattern of an invertible matrix contains a permutatitetL. 2 R™ ™ be an
invertible matrix. Then, there exists a permutatiosuch that_;. (;y 6 0 for all i.

Proof. Since the matrixt is invertible, its determinant is non-zero, i.e.
X y
2SS i=1

whereS , is the set oim-permutations. This equation implies that at least one term of the sum is
non-zero, meaning there exist2 S, such that forall 2 [m],L;. (6 0. O

De nition 10 (Aligned subspaces &™ "). Givenasubses f 1;::;;mg f 1;::;ng, we de ne

R ":=fM 2R™ "j(i;j)62S =) Mj; =0g: (13)
De nition 11 (Useful sets) Given a partitionB of [d], we de ne
[
Sg = B? S§:=f1:::;d,0°nSg (14)
B 2B

De nition 12 (C*-diffeomorphism) LetA R" andB R™.Amapf :A! Bissaidtobea
CX-diffeomorphism if it is bijectiveC? and has aC? inverse.

Remark 2. Differentiability is typically de ned for functions that have an open domairRih
However, in the de nition above, the sktmight not be open iR" andB might not be open iR™.
In the case of an arbitrary domai, it is customary to say that a functiébn: A R" ! R™ isCX
if there exists &C¥ functiong de ned on an open séd  R" that containsA such thatg A= f
(i.e. g extends ). With this de nition, we have that a composition®f functions isC¥, as usual.
See for example p.199 of Munkres [55].

The following lemma allows us to unambiguously de ne therst derivatives of aC* function
f :A!l R™ontheseA .

Lemma6. LetA R"andf :A! R™ beaCk function. Then, itk rst derivatives is uniquely
de ned onA in the sense that they do not depend on the speci ¢ choi€X @xtension.
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Proof. Letg:U! R"andh:V ! R" betwoCK extensionsof toU R" andV R" both
open inR". By de nition,

g(x)=f (x)= h(x); 8x 2 A: (15)
The usual derivative is uniquely de ned on the interior of the domain, so that
Dg(x)= Df (x)= Dh(x); 8 2 A : (16)

Consider a poinko 2 A . By de nition of closure, there exists a sequerfog g;_; A st
limgin Xk = Xo. We thus have that

kI|ilm Dg(xk) = Li'rln Dh(x) a7
Dg(xo) = Dh(xo); (18)

where we used the fact that the derivativeg @indh are continuous to go to the second line. Thus,
all theCX extensions of must have equal derivatives @n. This means we can unambiguously
de ne the derivative of everywhere oA to be equal to the derivative of one of & extensions.

Sincef is CK, its derivativeDf isC* 1, we can thus apply the same argument to get that the second

derivative off is uniquely de ned omA . It can be shownthak = A . One can thus apply the
same argument recursively to show that the ksterivatives off are uniquely de ned o . [

De nition 13 (Ck-diffeomorphism onto its image)LetA R". Amapf : A! R™ is said
to be aCX-diffeomorphism onto its image if the restrictibnto its imagef~: A ! f (A) is a
CK-diffeomorphism.

Remark 3. IfS A R" andf : A! R™ is aCX-diffeomorphism on its image, then the
restriction off to S, i.e.f g, isalso aCX diffeomorphism on its image. That is becafisg is

clearly bijective, isSCK (simply take theCk extension of ) and so is its inverse (simply take t&&
extension of 1).

A.2 Relationship between additive decoders and the diagonal Hessian penalty

Proposition 7 (Equivalence between additivity and diagonal Hessidamtf : R% | R% be aC?
function. Then,

p
822 R%; f(z)= 4.5 f(®)(zp) 8k 2 [dy]; z 2 RY%; D2f(z)is

wheref (B) : RIBi 1 R jsC2, 0 block diagonal with blocks iB: (19)

Proof. We start by showing the £) ” direction. LetB andB °be two distinct blocks oB. Let
i 2 B andi®2 B% We can compute the derivative bf w.r.t. z;:
X
Dif(z)=  Dif (*)(zg) = Dif P (z8); (20)
B 2B

where the last equality holds becalisz B and not in any other blocR . Furthermore,
D2 of k(z) = DZof B)(z5) =0 ; (21)
where the last equality holds becau$62B . This shows thab f « (z) is block diagonal.

We now show the ‘( = " direction. Fixk 2 [d], B 2 B. We know thatDé;B fk(z) =0 for

allz 2 R%. Fixz 2 R%. Consider a continuously differentiable path: [0;1]! RIB‘I such
that (0) =0 and (1) = zge. As Dé;B .fk(z) is a continuous function of, we can use the
fundamental theorem of calculus for line integrals to get that

z 1

Daf(zeizas) Dafu(zaiO)= lDé;Bcfk{(zzB; (t)} qt)ydt=0; (22)

=0
(whereDE,;Es fr(zg; (1) At) denotes a matrix-vector product) which implies that
Dgfk(z) = Def«(zs;0): (23)
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And the above equality holds for @l 2 B and allz 2 R%.

Choose an arbitrary 2 R% . Consider a continously differentiable path: [0;1]! RY such that
(0)=0 and (1) = z. By applying the fundamental theorem of calculus for line integrals once
more, we have that

Zl
fi(z) fe@=  Df( (1) Atdt (24)
2«
= Defi( (1) 3 (t)dt (25)
0 BoB
X 1
= Defi( (1) g(t)dt (26)
B2 O
x Z1
= Defw( s(t);0) 8(t)dt; @27)
B2 O

where the last equality hpgds 1§23). We can further apply the fundamental theorem of calculus for
line integrals to each terrq)1 Defw( g(t);0) 3(t)dttoget

X
fx(z) fx(©0)= (fk(zs;0) fk(0;0) (28)
B 2B
=) fw(z)= fk(0)+ (fk(ze:;0) fx(0) (29)
B 2B
jBj 1
= f(zg;0) —f(0) (30)
s | k(Zs {ZJBJ k }
8 (zg )=

and sincez was arbitrary, the above holds for all2 RY . Note that the functionfslﬁB)(zB) must be
C? becausé  is C2. This concludes the proof. O

A.3 Additive decoders form a superset of compositional decoders [7]

Compositional decoders were introduced by Brady d7dlas a suitable class of functions to perform
object-centric representation learning with identi ability guarantees. They are also interested in
block-disentanglement, but, contrarily to our work, they assume that the latent zeistdully
supported, i.eZ = R% . We now rewrite the de nition of compositional decoders in the notation
used in this work:

De nition 14 (Compositional decoders, adapted froff) [ Given a partitionB, a differentiable
decoderf :R% | RY% is said to be compositional w.rB whenever the Jacobiabf (z) is such
that for alli 2 [d,];B 2 B;z 2 R%, we have

Dgfi(z)6 0 =) Dgfi(z)= 0;
whereB ¢ is the complement & 2 B.
In other words, each line of the Jacobian can have nonzero values only in onéBbbBk Note
that this nonzero block can change with different values.of

The next result shows that additive decoders form a super€ obmpositional decoders (Brady

et al.[7] assumed onl\C1). Note that additive decoders astrictly more expressive tha@?
compositional decoders because some additive functions are not compositional, like Example 3 for
instance.

Proposition 8 (Compositional implies additive)Given a partitionB, if f : R% | R% is composi-
tional (De nition 14) andC?, then it is also additive (De nition 1).

Proof. Choose any 2 [dy]. Our strategy will be to show th&?f ; is block diagonal everywhere on
RY% and use Proposition 7 to conclude thais additive.
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Choose an arbitrargy 2 RY%. By compositionality, there exists a blo&k 2 B such that
Dg:fi(zp) = 0. We consider two cases separately:

Case 1AssumeDg fi(zp) 6 0. By continuity ofDg f ;, there exists an open neighborhoodzgf U,
s.t. forallz 2 U; Dgfi(z) 6 0. By compositionality, this means that, foral2 U,Dgf(z) = 0.
When a function is zero on an open set, its derivative must also be zero, Denes j(zp) = 0.
Becausd is C2, the Hessian is symmetric so that we also hye Df ; (z¢) = 0. We can thus
conclude that the Hessid@f ; (zo) is such that all entries are zero except possibhCXéf ; (zo)sp -
Hence,D ?f i (zo) is block diagonal with blocks iB.

Case 2:AssumeDg f {(zp) = 0. This means the whole row of the Jacobian is zeroD.E;(zp) = 0.
By continuity of Df ;, we have that the s&t := (Df;) *(f0g) is closed. Thus this set decomposes
asV =V [ @VwhereV and@ Vare the interior and boundary ¥f, respectively.

Case 2.1:Suppose&, 2 V . Then we can take a derivative so tieetf ; (zo) = 0, which of course
means thab f ; (z,) is diagonal.

Case 2.2:Supposey 2 @V By the de nition of boundary, for all open sé&t containingzg, U
intersects with the complement ¥f, i.e. (Df;) (R% nf0g). This means we can construct a
sequencézygi-, V°which converges tao. By Case 1 we have that for ak 1, D2f(z) is
block diagonal. This means thian,, D ?f;(zx) is block diagonal. Moreover, by continuity of
D?2f;, we have thaimy; D?f(zx) = D?f;(z0). HenceD?f (zo) is block diagonal.

We showed that for altg 2 R%, D?f ;(zo) is block diagonal. Hencé, is additive by Proposition 7.
O

A.4 Examples of local but non-global disentanglement

In this section, we provide examples of mappingZ™@n 1 7  tain that satisfy thdocal disentangle-
ment property of De nition 4, but not thglobal disentanglement property of De nition 3. Note that
these notions are de ned for pairs of decoderandf”, but here we construct directly the function
which is usually de ned aé ! f". However, giverv we can always de né andf” to be such

thatf 1 "= v: Simply takef (z) := [z1;:::; z4,;0;:::;0F 2 R% andf" := f v. This
construction however yields a decodethat is not suf ciently nonlinear (Assumption 2). Clearly the
mappingss that we provide in the following examples cannot be written as compositions of decoders
f 1 f'wheref andf” satisfy all assumptions of Theorem 2, as this would contradict the theorem.
In Examples 5 & 6, the path-connected assumption of Theorem 2 is violated. In Example 7, it is less
obvious to see which assumptions would be violated.

Example 5(Disconnected support with changing permutationgtv : 2! R2s.t.Z = 20 [

2@ R2whereZ® = fz2 R?jz; Oandz, OgandZ® =fz2R2jz; 1landz,

1g. Assume

(z1,22); fz2Z70®

V(@)= (z2,21); fz272@ °

(1)

Step 1:v is a diffeomorphism.Note thatv is its own inverse. Indeed,

V(z1;22) = (21;22); 2220
V(Z2;21) = (21;20); ifz2272@ °

v(v(2)) =

Thus,V is bijective on its image. Clearly is C?, thusv ! = v is alsoC?. Hence,v is a
C2-diffeomorphism.

Step 2:v is locally disentangledThe Jacobian of is given by

8
5;?_ if z2 20
Dv(z) = ; 32
@ 20 1. 4 020 2
1 0’
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Figure 6: lllustration o = Z'® [ 2(9) in Example 7 wher& (® is the blue region an#'(? is the
orange region. The two black dots correspon{l td=2; 1=2) and(1=2; 1=2), where the function
Vo(z1;22) is evaluated to show that it is not constantin

which is everywhere a permutation matrix, hencis locally disentangled.

Step 3:v is not globally disentangled.That is becaus&,(z1;z,) depends on both; and z,.
Indeed, ifz, = 0, we have thav;( 1;0) = 16 0= v(0;0). Also, ifz; = 1, we have that
vi(1;1) =162 = v.(1;2).

Example 6 (Disconnected support with xed permutationjetv : 2! R2st 72 = ZO [
7@  RZwhereZ® = fz 2 R2jz, OgandZ® = fz 2 R?jz, 1g. Assume
v(z) = z+ 1(z 2 2@).

Step 1:v is a diffeomorphism. The image of is the union of the following two setZ @ :=
v(ZW)= ZW andz®@ := v(Z@)= fz2 R2jz, 2g. Considerthe map :Z®W [z @ |

Z denedasw(z):= z 1(z 2Z®). We now show that is the inverse of:

w(v(z)) = v(z) 1(v(z)22@) (33)
=z+1z272@) 1z+1(z272@)229@): (34)

If z 2 2@ we have
wv(z)=z+1 1(z+122®) (35)
=z+1 1(z272@)= z: (36)

If z 2 20 we have
wv(z)=z 1(z22@)= z: (37)

A similar argument can be made to show thié&tv(z)) = z. Thusw is the inverse of. Bothv and
its inversew are C?, thusv is a C2-diffeomorphism on its image.

Step 2:v is locally disentangledThis is clear sinc®v(z) = | everywhere.

Step 3:v is not globally disentangledindeed, the function(z1;z,) = z1 + 1(z 2 2@) is not
constantinz,.

Example 7(Connected supportlLetv : 2’1 R2s.t.Z = 2O [ 2 whereZ® andZ(©) are
respectively the blue and orange regions of Figure 6. Both regions contain their boundaries. The
functionv is de ned as follows:

vi(z) = 23 (38)

7(2“12) . ifz 2 20

g2: ifz2 2@ ° (39)

Vo(z) =

Step 1:v is a diffeomorphism Clearly, v, is C2. To show that/, also is, we must verify that,(z)
is C2 at the frontier betwee#'(® andZ'(®  i.e. wherz 2 [1=4;1] f 0Og.
V2(z) is continuoussince

(zo+1)?%+1

5 =1= €2, (40)

z,=0

21



Vo (z) is C? since

(22+1)2+1 ° . : .
e = (224 Dy =1= 2 = (€)Y, 1 (A1)
z,=0
vo(z) is C? since
z,+1)2+1 @ . .
% =1j,,.0 =1= €2, o = (&2)%9, (42)
z2=0
We will now nd an explicit expression for the inversevofDe ne
wy(z) := 7 (43)
2z, 1 1, ifz2v(Z®)
= : 44
W2(2) log(z2); if z2 v(Z() (44)

Itis straightforward to see that (v(z)) = z forall z 2 Z'. One can also show that is C2 at the
boundary between both region$Z (?) andv(Z2(?), i.e. wherz 2 [1=4;1] f 1g.

Since bottvy and its inversav are C?, v is a C2-diffeomorphism.
Step 2:v is locally disentangledThe Jacobian of is

8
31 0 020
0 z,+1
Dv(z) := ; (45)
21 0 4,520
0 ez’

which is a permutation-scaling matrix everywhere®nThus local disentanglement holds.
Step 3:v is not globally disentangledHowevery,(z1;z7) is not constant irz;. Indeed,

1 1 (zo+1)%+1 1
vil i Q) 2

— S 1=2 _ 1
21 - 3 6 e - V2(21

): (46)

Zp= 1=2

Thus global disentanglement does not hold.

A.5 Proof of Theorem 1

Proposition 9. Suppose that the data-generating process satis es Assumption 1, that the learned
decoderf™: R% 1 R% is aC2-diffeomorphism onto its image and that the encafleiR% | R

is continuous. Then, ff\andg solve the reconstruction problem on the training distribution, i.e.
E"injx  £(8(x))ji2 = 0, we have thaf (z"") = (7" and the mapy := f 1 flisa
C2-diffeomorphism fron train to Z train,

Proof. First note that
E"fjx  £(0(x))ji? = E™Mjf (z) F(4(f (2))ji*?=0; 47)
which implies that, folPf@"-almost every 2 Z an,
f(z)= f(0(f (2))) :

But since the functions on both sides of the equations are continuous, the equality holds for all
z 2 Z "n This implies thaf (zZ@") = {* ¢ f (ztan) = f(Ztain),

By Remark 3, the restrictions : z'n | f (ztan) gnd{" ; Zwain | Y Zuwain gre C2-
diffeomorphisms and, becautgz ™" = f'(Z"a"), their compositiorv := f 1 f*: Ztan|

Z "N is a well de nedC?2-diffeomorphism (sinc€2-diffeomorphisms are closed under composi-
tion). O
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Theorem 1(Local disentanglement via additive decoderSuppose that the data-generating process
satis es Assumption 1, that the learned decofierR® | R% is a C2-diffeomorphism, that the
encoderg : R% | RY% is continuous, that both andf” are additive (De nition 1) and thaf

is suf ciently nonlinear as formalized by Assumption 2. Thefi, dihd@ solve the reconstruction

problem on the training distribution, i.eE'@Mjjx  f(§(x))jj2 = 0, we have thaf” is locally
B-disentangled w.r.tf (De nition 4) .

Proof. We can apply Proposition 9 and have that the map f * is aC2-diffeomorphism
from Z'ain o 7 ™ This allows one to write

f v(z)= f(z)8z 2 Z"n (48)

f ®)(vg(2)) = f®)(zg) 8z 2 ZVan: (49)
B 2B B 2B

SinceZ ™" js regularly closed and is diffeomorphic " by Lemma 4, we must have that
Zwain - (Zwainy  Moreover, the left and right hand side @0) areC2, which means they have

uniquely de ned rst and second derivatives ¢A@") by Lemma 6. This means the derivatives
are uniquely de ned oan,

Letz 2 7' Choose somé 2 B and somg 2 J. Differentiate both sides of the above equation
with respect te; , which yields:

Dif ®)(vg (2))D;jvi(z) = D; V) (z,): (50)

B2B i2B
Choosel°2 B nfJgandj®2 J° Differentiating the above w.r.z;o yields
X

#

X
Dif ®(ve (2))Df wvi(z)+  DFof ®)(vg(2))Djovie(z)Djvi(z) =0
B2B i2B i92B
X X h [
Dif ®)(vg (2))Dfj ovi(z) + D f ®)(va (2))Djovi(z)Djvi(2) +
B2B i2B

D2 of (®)(vg (2))(Djovio(z)DjVi(z) + Djovi(z)DjVie(z)) =0; (51)
(i 92B2

whereB2 := B2\f (i;i9 ji°<i g. For the sake of notational conciseness, we are going to refer to
Sg andSg asS andS° (De nition 11). Also, de ne
[

Sc = BZ: (52)
B 2B
Let us de ne the vectors
8i 2f 1;::d,0; &(z) = (DF oVi(2))(jj 92 (53)
8i 2f1;::d,09; B(z) ;= (Djovi(z)DjVi(2))(jj 02sc (54)

8B 2B; 8(;;i% 2 B2; g 0(z) := (Djovio(z)DjVi(z) + Djovi(z)D; Vio(2)) (jj 92sc  (55)
Thiszallows us to rewrite, forak 2 f 1;:::;dyg

] 3
X 4X h £ (B) 2 ¢ (B) ! X 2 ¢(B) . 5_0-
Dif " '(ve(z))&(z) + Dj; f " (ve (2))Bi(z) + Diiof ¢ (Ve (z))®io(2)> =0
B2B i2B (i 92B2
(56)
We de ne
w(z;K) = (( Dif *)(z8))i2e: (DA 7 (z8))i28: (D of (P (28)) (i 0282 )82 (57)
M (z) =[[&(2)]izs ;B (2)]izs; [&io(2)]i 0282 ] 28 ; (58)
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which allows us to write, for ak 2 f 1;:::;d, g
M (z2)w(v(z);k)=0: (59)

We can now recognize that the matuhk (v(z)) of Assumption 2 is given by
W (v(2))” =[w(v(z);1) ::: w(v(z); )] (60)
which allows us to write
M (z)W (v(z))” =0 (61)
W (v(z))M (z)” =0 (62)

SinceW (v(z)) has full column-rank (by Assumption 2 and the fact tht) 2 Z "a"), there exists
g rows that are linearly independent. Lietbe the index set of these rows. This me#Wigv(z))«:
is an invertible matrix. We can thus write

W (v(z))k; M (2)” =0 (63)
(W (v(2))k; ) W (V(2))k; M (2)” = (W (v(2))k; ) 'O (64)
M (z)” =0; (65)

8i 2f1;:::;d,0;8(j;j ) 2 S%D;vi(z)Djovi(z) = 0 (66)

Since thev is a diffeomorphism, its Jacobian matiixv(z) is invertible everywhere. By Lemma 5,
this means there exists a permutatiosuch that, for al , D; v (j(z) 6 0. This and(66)imply that

8(j;j 92 S Djv (10)(2)1:)]_0\/220)_(22 =0; (67)
=) 8 (] 92 S% Djv (9(2)=0: (68)

To show thaD v (z) is aB-block permutation matrix, the only thing left to show is thatespects
B. For this, we use the fact th&B 2 B;8(i;i% 2 B2, €, o(z) =0 (recallM (z) = 0). Because
€ 0(2) = §o;(z), we can write

8(;i%) 2 Ss.t.i 6 i%8(j;j 9 2 S° Djovio(z)D;jVi(z) + Djovi(z)DjVio(z) =0 : (69)

We now show that ifj;j 9 2 S° (indices belong to different blocks), thén(j); (j9) 2 S°¢
(they also belong to different blocks). Assume this is false, i.e. there éjisf$) 2 S°¢ such that
( Go); (1) 2 S. Then we can apply (69) (with:= (jo) andi®:= (j3)) and get

PJSV (J8)(ZfPJ'oV (jo>(2f+DJ8V (0)(Z)DjV (19(2)=0; (70)
60

where the left term in the sum is different of 0 because of the de nition.oFhis implies that

Djev (10)(2)Dj,V (19(2) 60 (1)
otherwise (70) cannot hold. But (71) contradicts (68). Thus, we have that,
(:i92s° =) (G) (9 2s°: (72)
The contraposed is
(G ((N2s=) @@Gi%2s (73)
Gi%2s =) ( () 'Y 2s: (74)
From the above, it is clear that ! respects which implies that respect® (Lemma 10). Thus
Dv(z) is aB-block permutation matrix. O
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1. The identity permutatioarespects.
2. The composition respectsB.

3. The inverse permutation ! respects.

Proof. The rst statement is trivial, since forall 2 B,e(B) = B 2 B.
The second statement follows since for&lR B, (B) 2 B andthus ( (B)) 2B.

We now prove the third statement. L®t2 B. Since is surjective and respecB; there exists a
B2 B suchthat (B9 = B.Thus, *B)= 1( (BY)= BY2B. O

A.6 Suf cient nonlinearity v.s. suf cient variability in nonlinear ICA with auxiliary variables

In Section 3.1, we introduced the “suf cient nonlinearity” condition (Assumption 2) and highlighted
its resemblance to the “suf cient variability” assumptions often found in the nonlinear ICA liter-
ature B0, 31, 33, 36, 37, 42, 73]. We now clarify this connection. To make the discussion more
concrete, we consider the suf cient variability assumption found in&inen et al[33]. In this
work, the latent variable is assumed to be distributed according to

3
p(zju)=  pi(ziju): (75)
i=1
In other words, the latent factors are mutually conditionally independent given an observed

auxiliary variableu. De ne
I

@?iz logpi(zi j u) 2R (76)

wzuw=  ZLiogp(zju)
I iz[dz]

i2[d;]
We now recall the assumption of suf cient variability of Hgwinen et al. [33]:
Assumption 3(Assumption of variability from Hyiirinen et al[33, Theorem }). For anyz 2 RY,

w(zu®) w(z;u@)::nw(z;u®%))  w(z;u©@) (77)
are linearly independent.

To emphasize the resemblance with our assumption of suf cient nonlinearity, we rewrite it in
}_be special case where the partitiBn:= ff 1g;:::;fd,gg. Note that, in that casey := d, +
iBi(iBj*) — 5y
B 2B 2 Zt

Assumption 4 (Suf cient nonlinearity (trivial partition)) For all z 2 Z "@" f is such that the
following matrix has independent columns (i.e. full column-rank):

h i i
W (z):= Dif O(z
@)= DifO@)

z

h i
DZf(z) gy 2 R 2dz ; (78)
1

z

One can already see the resemblance between Assumptions 3 & 4, e.g. both have something to do
with rst and second derivatives. To make the connection even more explicit, de(ze k) to be the

kth row of W (z) (do not con ate withw(z; u)). Also, recall the basic fact from linear algebra that

the column-rank is always equal to the row-rank. This meansthét) is full column-rank if and

only if there existy, ...,Kzq, 2 [dyx] such that the vectons (z;k1);:::;w(z;kag,) are linearly
independent. It is then easy to see the correspondance betweek) andw(z;u) w(z;u®)

(from Assumption 3) and between the pixel inde [dy] and the auxiliary variabla.

We now look at why Assumption 2 is likely to be satis ed whén>> d ,. Informally, one can
see that whedy is much larger thad,, the matrixW (z) has much more rows than columns and
thus it becomes more likely that we will néd, rows that are linearly independent, thus satisfying
Assumption 2.
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Figure 7: Numerical veri cation that :[ 1;0] [0;1]! R*from Example 8 is injectivel¢ft),

has a full rank Jacobiamiddle) and satis es Assumption Zi¢ht). Theleft gure shows thaf

is injective on the squate 1;0] [0; 1] since one can recoveruniquely by knowing the values

of f 1(z) andf 5(z), i.e. knowing the level sets. Thmiddle gure reports thedet(Df (z)” Df (z))
(columns of the Jacobian are normalized to have norm 1) and shows that it is nonzero in the square
[ 1,0] [0;1], which means the Jacobian is full rank. Tiight gure shows the determinant of

the matrixW (z) (from Assumption 2, but with normalized columns), we can see that it is nonzero
everywhere on the squafe1;0] [0; 1]. We normalized the columns &ff andW so that the
determinant is between 0 and 1.

A.7 Examples of suf ciently nonlinear additive decoders

Example 8 (A suf ciently nonlinearf - Example 3 continued)Consider the additive function

2,3 23,413
f(@):= 8536 + 82108 (79)
z} (z2+1)*

We will provide a numerical veri cation that this function is a diffeomorphism from the square
[ 1,0] [0;1]to itsimage that satis es Assumption 2.

The Jacobian of is given by

2 1 1 3
Df (z) = 2;;% 32((2222:11))zg ; (80)
4z3 4(z,+1)3
and the matrixW (z) from Assumption 2 is given by
2 1 0 1 0
W (2) = 2z, 2 2(zo +1) 2 (81)

322 6z, 3(zp+1)%2 6(zp+1) -
473 1222 A(zo+1)% 12(z,+1)2

Figure 7 presents a numerical veri cation thatis injective, has a full rank Jacobian and satis es
Assumption 2. Injectivke with full rank Jacobian is enough to conclude thats a diffeomorphism
onto its image.

Example 9(Smooth balls dataset is suf ciently nonlinear - Example 4 continu&# implemented

a ground-truth additive decodér : [0;5 ! R5* %4 3 which maps to 64x64 RGB images consisting
of two colored balls where, andz, control their respective heights (Figure 8a). The analytical
form off can be found in our code base. The decddes implemented iIJAX[ 6] which allows for

its automatic differentiation to compulf andD?f (Figures 8b & 8c). This allows us to verify
numerically thaff is suf ciently nonlinear (Assumption 2). Recall that this assumption requires that
W (z) (dened in Assumption 2) has independent columns everywhere. To test this, we compute
Vol(z) .= jdet(W (z)> W (z))j over a grid of values of and verify thatVol(z) > 0 everywhere
(Figure 8d). Note that/ol(z) corresponds to thdD volume of the parallelepiped embedded in
R®* 64 3 spanned by the four columns \6f (z). This volume is> 0 if and only if the columns
are linearly independent. Note that we normalize the column¥ ¢£) so that they have a norm
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of one. It follows thaiol(z) is betweerD and 1 wherel means the vectors are orthogonal, i.e.
maximally independent. The minimal value/of(z) over the domain of is  0:97, indicating that
Assumption 2 holds.

@) (b) (©

(d) (e)

Figure 8: Figure (a) shows an image the synthetic dataset of Example 9. Figure (b) shows the
derivative of the image w.r.z; (the height of the left ball) where the color intensity of each pixel
corresponds to the Euclidean norm along the RGB axis. Figure (¢) similarly shows the second
derivative of the image w.r.z;. Figure (d) is a contour plot of the functionj det(W (z)> W (2))j
whereW (z) is ge ned in Assumption 2 (here columns are normalized to have unit norm). The
smallest value of jdet(W (z)> W (z))j across domain is 0:97, indicating that Assumption 2 is

satis ed. See Example 9 and code for details. Figure 8e is a higher resolution rendering of the red
region of Figure 8d (to make sure there is no singularity there).

A.8 Proof of Theorem 2

We start with a simple de nition:

De nition 15 (B-block permutation matrices)A matrixA 2 R® 9 is aB-block permutation matrix if
it is invertible and can be written & = CP whereP is the matrix representing th-respecting
permutation (P e = e (;)) andC 2 RY_? (See De nitions 10 & 11).

The following technical lemma leverages continuity and path-connectedness to show that the block-
permutation structure must remain the same across the whole domain. It can be skipped at rst
read.

Lemma 11. LetCbe a connected topological space andV¥et: C ! RY 9 be a continuous function.
Suppose that, for att 2 C, M (¢) is an invertibleB-block permutation matrix (De nition 15). Then,
there exists aB-respecting permutation such that for allc 2 C and all distinctB;B° 2 B,
M (C) (B9):B =0.

Proof. The reason this result is not trivial, is that, eveMiif(c) is aB-block permutation for ait,
the permutation might change for differemtThe goal of this lemma is to show thatGfis connected
and the mafM () is continuous, then one can nd a single permutation that works far aiC.

First, sinceC is connected antl is continuous, its imagéyl (C), must be connected (b6,
Theorem 23.5]).
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Second, from the hypothesis of tf(])e lemma, we kngw that

[
MO A =@ RE, “P A nfsingular matrices; (82)
25 (B)

whereS (B) is the set oB-respecting permutations aiRf,_ P = fMP jM 2 Ry “g. We can
rewrite the seAA above as

A= RY, ‘P nfsingular matricey ; (83)
25 (B)

We now de ne an equivalence relationoverB-respecting permutation: Ojff forall B 2 B,

(B) = 9B). In other words, twdB-respecting permutations are equivalent if they send every
block to the same block (note that they can permute elements of a given block differently). We notice
that

=) Ry P =RZ P o (84)

LetS(B)= be the set of equivalence classes induce gnd let stand for one such equivalence
class. Thanks to (84), we can de ne, for all2 S(B)= , the following set:

V = RY %P nfsingular matriceg for some 2 ; (85)

where the speci ¢ choice of 2 s arbitrary (any °2  would yield the same de nition, by84)).
This construction allows us to write [

A= Vv (86)
2S(B)=
We now show thatV g ,s5g)= forms a partition ofA. Choose two distinct equivalence classes of
permutations and Candlet 2 and °2 Obe representatives. We note that
R ‘P \ RY P o f singular matrices; (87)
since any matrix that is both R, P andR§_“P o must have at least one row lled with zeros.
This implies that
V Vo=, (88)
which shows thatV g ,s ()= isindeed a partition oA.
EachV is closed inA (wrt the relative topology) since

V =R ‘P nfsingular matriceg= A\ Fg?;P} : (89)

closed inR? ¢
Moreover,V is openinA, since
V = An Vo: (90)

0g
| —{z—}
closed inA
Thus, forany 2 S(B)= ,thesets/ and o V oforms asepagﬂion(see b6, Section 23]).
SinceM (Q) is a connected subset Af, it must lie completely iV or o V o, by [56, Lemma

23.2]. Since this is true for all , it must follow that there exists a suchthaM (C) V ,which
completes the proof.

Theorem 2(From local to global disentanglementpuppose that all the assumptions of Theorem 1
hold. Additionally, assumg @" is path-connected (De nition 8) and that the block-speci ¢ decoders

f (8) andfX®) are injective for all blocks8 2 B. Then, iff* and § solve the reconstruction

problem on the training distribution, i.eE""jx  f(§(x))jj2 = 0, we have thaf" is (globally)
B-disentangled w.r.tf (De nition 3) and, for allB 2 B,

B (zg)= BV (v g)(zg))+ c®), forall zg 2 Z§a"; (8)
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ighere the functions (g, are from De ntion 3 and the vectors®) 2 R% are constants such that
52s C(?) =0. We also have that the functions(g) : Z§@" 1 Z "D are C?-diffeomorphisms
and have the following form:

v e)(zs)=(f ®) Y B)(zg) c®); forall zg 2 25" (9)

Proof. Step 1 - Showing the permutation does not change for differentz. Theorem 1 showed

local B-disentanglement, i.e. for atl 2 Z"" Dv(z) has aB-block permutation structure. The
rst step towards showing global disentanglement is to show that this block structure is the same for

all z 2 2" (a priori, could be different for different). Sincev is C2, its JacobiaDv(z) is
continuous. Sinc& ™" is path-connected 2" must also be since both sets are diffeomorphic. By

Lemma 11, this means thi@block permutation structure @ v (z) is the same for at 2 Z'tain
(implicitly using the fact that path-connected implies connected). In other words, there exists a

permutation respectingd such that, for alz 2 2" and all distincB;B°2 B, Dg v ®9(z)=0.

Step 2 - Linking object-speci ¢ decoders. We now show that, for alB 2 B, f\B)(zg) =
fCBN(v (gy(2))+ c®) forallz 2 2" To do this, we rewrite (50) as

X
Df' ) (z;) = Df ®)(vg (2))D;ve (2); (91)
B 2B

but becaus8 6 (J) =) Djvg(z) =0 (block-permutation structure), we get

DfW(z;) = DFC OV (v (5)(2))Dyv (5)(2): (92)
The above holds for all 2 B. We simply changéd by B in the following equation.
Df'®)(zg) = Df ( BV (v (5)(2))DeV (8)(2): (93)

Now notice that the r.h.s. of the above equation is equBi@( () v (g)). We can thus write

DfYB)(zg)= D(f ¢ BN v (g))(z);forallz 2 Ztn: (94)

Now choose distinc;z® 2 Z'an  Sincez ™" js path-connected? ™" also is since they are

diffeomorphic. Hence, there exists a continuously differentiable functioio; 1]! 2@ such
that (0)= z%and (1) = z. We can now us€94)together with the gradient theorem, a.k.a. the
fundamental theorem of calculus for line integrals, to show the following
z 1 z 1
DF®)( g(z)) s(tydt= DECE) v @) (2) (tat (95)
0 0

®(zg) ®(z8)= L) v (g(z) FCE) v (5(2° (96)
®)(zg)=fLE) v (B)(Z)+(IfA(B)(28,) f({;B” v (B)(ZO)} 97)

constant irz

which holds for aan> 2 Ztrain,
We now show that 5 ¢(®) = 0. Take some?® 2 Za" Equations (49) & (98) tell us that

fBvg(z%) = B)(zg) (99)
B 2B B X
= fCEN (v gy (2%) + c(B) (100)
B B 2B

= f ®)(vg (2%) + c®) (101)

I&ZB B 2B
=) 0= c(B) (102)

B 2B
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Step 3 - From local to global disentanglementBy assumption, the functiorfs(®) : z fain 1 Rdx
are injective. This will allow us to show that g)(z) depends only ozg. We proceed by

contradiction. Suppose there exiéts ; zg<) 2 2" andz3. such thaizg;z3.) 2 Z"" and
\Y (B)(ZB;ZBC) 6 v (B)(ZB;ch). This means

fCBY v gy(z;zge)+ ¢B) = FBl(zg) = FC B v gy(z5;23:)+ c®)

fCEN (v gy(zeize) = TN (v (5)(z8:2R))

which is a contradiction with the fact thaf (®) is injective. Hencey (g)(z) depends only ozg .
We also get an explicit form for (g):

(f B Y B)(zg) cB)y=v 5)(z)forallz 2z " (103)
e de nethe map (g(zg) = zg) c(B)) which is fromZtraintg z train  Thjs
We de ne th @)(z8) = (f ®) 1(F®)(z5) c(®) whichis fromZg§an toz "3 . Th
allows us to rewrite (98) as
Bl zg)= L ®) v 5y(zg)+ c®); forallzg 2 Z 5o (104)
Becausd'(®) is also injective, we must have thatg) : Z§" 1 Z N is injective as well.

We now show thav (g is surjective. Choose sonze gy 2 Z "?,‘3“). We can always ndz (g)c
suchthalz (g);z (s)c) 2 Z "". Because : Z"an 1 Z U g surjective (it is a diffeomorphism),
there exists @° 2 2" such thav (z°) = (z (8);Z (8)c)- By (103), we have that

Vv (8)(z8) = Vv ()(2%: (105)
which means (gy(z3) = z (s).
We thus have that (g) is bijective. Itis a diffeomorphism because

detDv (g)(zg) =det DgV (gy(z) 60 8z 2 Z'an (106)

where the rst equality holds b{103)and the second holds becawsks a diffeomorphism and has

block-permutation structure, which means it has a nonzero determinant everywt&f&and is
equal to the product of the determinants of its blocks, which implies each Blgek gy must have
nonzero determinant everywhere.

Sincev (gy : 252 1z ”?,‘3”) bijective and has invertible Jacobian everywhere, it must be a
diffeomorphism. O

A.9 Injectivity of object-speci c decoders v.s. injectivity of their sum

We want to explore the relationship bgtween the injectivity of individual object-speci c decoders
f (8) and the injectivity of their sum, i.e. 5,5 f (B).

P
We rst show the simple fact that having eatkP) injective is not suf cient to have g, f (®)

injective. Takef (8)(zg) = W (B)zg whereW (B) 2 RY<i Bi has full column-rank for alB 2 B.
We have that

X
f ®)(zg) = w®zg =[w®)  wEIz, (107)
B 2B B 2B

where it is clear that the matrjxv (B+) W (B1)]12 R 9 js not necessarily injective even if
eachw (B) js. This is the case, for instance, if &l (B) have the same image.

P
We now provide conditions such thatg ,5 f (8) injective implies eacl (B) injective. We start
with a simple lemma:

Lemma 12. If g h is injective, therh is injective.

Proof. By contradiction, assume thhtis not injective. Then, there exists distingt; x, 2 Dom(h)
such thah(x;) = h(xz). Thisimpliesg h(x1) = g h(xz), which violates injectivity oy h. O
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The following Lemma provides a condition on the domain of the funcﬁoQZB f (B), ztan so that
its injectivity implies injectivity of the function$ ().

Lemma 13. Assume that, for aB 2 B and for all d|'§tinctzB ; zg 27 gain, there existzg . such
that (zg ;zg<); (z3;2zge) 2 Z @M. Then, whenever ;.5 f (B) is injective, eactf () must be
injective.

P
Proof. Notice thatf (z) := = 5,5 f (®)(zg) can be written a := SumBlocks f (z) where
2
f (Bl)(ZBl) X
f(z):= 9 ; £ and SumBlocki (B1); 1 x By .= x (B) (108)
f (B)(zp.) B28B

Sincef is injective, by Lemma 12 must be injective.

We now show that each(®) must also be injective. Takas ;z3 2 Z §2" such thaf (B)(zg) =
f (®)(z9). By assumption, we know there existgg: S.t. (zg; zg<) and(z3;zg.) are inz"an,
By construction, we have that((zg ; zg<)) = f ((z3;zg:)). By injectivity of f , we have that
(zg;zgc) 6 (23;2zgc<), which implieszg 6 z3,i.e.f (®) isinjective. O

A.10 Proof of Corollary 3

Corollary 3 (Cartesian-product extrapolationpuppose the assumptions of Theorem 2 holds. Then,

forall z 2 CPEs (2@,  f\B)(zg) = fCE)(v g)(zs)): (11)
B 2B B 2B

Furthermore, ifCPE; (Z ") Z et thenf (CPEs (Z'1aM)  f (Z1eS).

Proof. Pickz 2 CPEZ"M. By de nition, this means that, for aB 2 B, zg 2 Z". We thus
have that, for alB 2 B,

B zg)=FC®) v 5(zg)+ cB): (109)
We can thus sum og@ to obtain X
B)(zg) = fOEY v g (zs)+ c®) ; (110)
B 2B B 2B 2B,
—{z—}
=0
Sincez 2 CPHZ'"M was arbitrary, we have
X X
for all z 2 CPEZ"aM; B)(zg) = fCEY v g)(zs) (111)
B 2B B 2B
z)=f v(z); (112)

wherev : CPE;(Z"@") | CPEs(Z ") is %e ned as

Ve, (Z 1(8y))
v(z) = 3§ : ; (113)
Ve (Z s
The mapv is a diffeomorphism since eaeh (g) is a diffeomorphism fron? 3" to Z o
By (112) we get

f(CPE(Z"™™) = f  Vv(CPE(Z"™"); (114)

and since the mayp is surjective we have(CPEs (Z@") = CPE;(Z "@" and thus
f(CPEs (Z"™™M) = f (CPEs(Z"") : (115)
Hence if CPg(Z ") Z 't thenf (CPER(Za") f (Z'9). O
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A.11 Will all extrapolated images make sense?

Here is a minimal example where the assumption £ZE@") 6 Z '©stjs violated.

Example 10(Violation of CPEz (Z "M 6 Z'®sY). Imaginez = (z1;z,) wherez; andz, are thex-
positions of two distinct balls. It does not make sense to have two balls occupying the same location in
space and thus whenever = z, we have(zq;z,) 62 2 But if (1; 2) and(2; 1) are both inZ ",

it implies that(1; 1) and(2; 2) are in CPEZ "), which is a violation ofCPEs (Z ") Z test

A.12 Additive decoders cannot model occlusion

We now explain why additive decoders cannot model occlusion. Occlusion occurs when an object
is partially hidden behind another one. Intuitively, the issue is the following: Consider two images
consisting of two objects, A and B (each image shows both objects). In both images, the position of
object A is the same and in exactly one of the images, object B partially occludes object A. Since the
position of objectA did not change, its corresponding latent blagkis also unchanged between

both images. However, the pixels occupied by object A do change between both images because of
occlusion. The issue is that, because of additizigyandzg cannot interact to make some pixels

that belonged to object A “disappear” to be replaced by pixels of object B. In practice, object-centric
representation learning methods rely a masking mechanism which allows interactions begween
andzg (See Equation 1 in Section 2). This highlights the importance of studying this class of
decoders in future work.

B Experiments

B.1 Training Details

Loss Function. We use the standard reconstruction objective of mean squared error loss between
the ground truth data and the reconstructed/generated data.

Hyperparameters. For both the ScalarLatents and the BlockLatents dataset, we used the Adam
optimizer with the hyperparameters de ned below. Note that we maintain consistent hyperparameters
across both the Additive decoder and the Non-Additive decoder method.

ScalarLatents Dataset.

 Batch Size64

+ Learning Rate1 10 3
» Weight Decay5 10 4
 Total Epochs4000

BlockLatents Dataset.

» Batch Size:1024

+ Learning Ratel 10 3
» Weight Decay5 10 4
 Total Epochs6000

Model Architecture. We use the following architectures for Encoder and Decoder across both the
datasets (ScalarLatents, BlockLatents). Note that for the ScalarLatents dataset we train with latent
dimensiond, = 2, and for the BlockLatents dataset we train with latent dimendjon 4, which
corresponds to the dimensionalities of the ground-truth data generating process for both datasets.

Encoder Architecture:

» RestNet-18 Architecture till the penultimate lay8d @ dimensional feature output)

» Stack of 5 fully-connected layer blocks, with each block consisting of Linear Layer (
dimensions512 512, Batch Normalization layer, and Leaky ReLU activation (negative
slope:0:01).
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 Final Linear Layer (dimensiorb12 d,) followed by Batch Normalization Layer to output
the latent representation.

Decoder Architecture (Non-additive):

 Fully connected layer block with input as latent representation, consisting of Linear Layer
(dimensionid, 512, Batch Normalization layer, and Leaky ReLU activation (negative
slope:0:01).

» Stack of 5 fully-connected layer blocks, with each block consisting of Linear Layer (
dimensions512 512, Batch Normalization layer, and Leaky ReLU activation (negative
slope:0:01).

* Series of DeConvolutional layers, where each DeConvolutional layer is follwed by Leaky
ReLU (negative sloped:01) activation.

— DeConvolution Layerd, : 64, Cout : 64, kernel:4; stride: 2; padding:1)
— DeConvolution Layerd, : 64, coyt : 32, kernel:4; stride: 2; padding:1)
— DeConvolution Layerd, : 32, cout : 32, kernel:4; stride: 2; padding:1)
— DeConvolution Layerd, : 32, Cout : 3, kernel:4; stride: 2; padding:1)

ecoder Architecture (Additive): Recall that an additive decoder has the fofriz) =

s.s f (B)(zg). Eachf (®) has the same architecture as the one presented above for the non-
additive case, but the input has dimensiongBy (which is 1 or 2, depending on the dataset). Note
that we do not share parameters among the funcfiéhs.

B.2 Datasets Details

We use the moving balls environment from Ahuja ef{2].with images of dimensiof4 64 3,
with latent vector £) representing the position coordinates of each balls. We consider only two balls.
The rendered images have pixels in the range [0, 255].

ScalarLatents Dataset. We x the x-coordinate of each ball 10:25and0:75. The only factors
varying are the y-coordinates of both balls. Thes2 R? andB = ff 1g;f2gg wherez; and

z, designate the y-coordinates of both balls. We sample the y-coordinate of the rst ball from a
continuous uniform distribution as followgz  Uniform(0, 1). Then we sample the y-coordinate of
the second ball as per the following scheme:

. Uniform(0; 1) ifzz 05
2 Uniform(0; 0:5) else

Hence, this leads to the L-shaped latent support 28" :=[0;1] [0;1]n[0:5;1] [0:5;1].

We useb0k samples for the test dataset, while we B8k samples for the train dataset along wath
samples25%of the train sample size) for the validation dataset.

BlockLatents Dataset. For this dataset, we allow the balls to move in both the x, y directions, so
thatz 2 R* andB = ff 1;2g;f 3;4gg. For the case dhdependent latents we sample each latent
component independently and identically distributed according to a uniform distributioGo\igr

i.,e. zi  Uniform(0, 1). We rejected the images that present occlusion, i.e. when one ball hides
another oné.

For the case oflependent latents we sample the latents corresponding to the rst ball similarly
from the same continuous uniform distribution, zg,z,  Uniform (0, 1). However, the latents of
the second ball are a function of the latents of the rst ball, as described in what follows:

, Uniform(0; 0:5) if 1:25 (z2+ z3) 1.0
®  Uniform(0:5;1) if 1:25 (z2+ z2) < 1.0

2Note that, in the independent latents case, the latents are not actually independent because of the rejection
step which prevents occlusion from happening.
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, Uniform(0:5;1) if 1:25 (z?+ z3) 1.0
4 Uniform(0; 0:5) if 1:25 (22 + z3) < 1.0
Intuitively, this means the second ball will be placed in either the top-left or the bottom-right quadrant

based on the position of the rst ball. We also exclude from the dataset the images presenting
occlusion.

Note that our dependent BlockLatent setup is same as the non-linear SCM case from Ahujg.et al. |

We use50k samples for both the train and the test dataset, alongMiftk samples Z5% of the
train sample size) for the validation dataset.

Disconnected Support Dataset. For this dataset, we have setup similar to 8wlarLatents
dataset; we x the x-coordinates of both balls®@5 and0:75 and only vary the y-coordinates so
thatz 2 R?. We sample the y-coordinate of the rst batly) from Uniform(0, 1). Then we sample

the y-coordinate of the second bathb{ from either of the following continuous uniform distribution
with equal probability; Uniform(0, 0.25) and Uniform(0.75, 1). This leads to a disconnected support
given byZ @ :=[0;1] [0;1]n[0:25,0:75] [0:25;0:75].

We useb0k samples for the test dataset, while we 88k samples for the train dataset along whih
samples25%of the train sample size) for the validation dataset.

B.3 Evaluation Metrics

Recall that, to evaluate disentanglement, we compute a matrix of §sgres) 2 R~ where’ is

the number of blocks iB andsg.g o is a score measuring how well we can predict the ground-truth
block zg from the learned latent blockz o = @go(X) outputtquby the encoder. The nal Latent
Matching Score (LMS) is computed &#1S = argmax ,g, 1 g2 SB; (B), WhereSg is the

set of permutations respectiBg(De nition 2). These scores are always computed on the test set.

Metric LMSspear:  As mentioned in the main paper, this metric is used foSbalarLatentsdataset

where each block is 1-dimensional. Hence, this metric is almost the same as the mean correlation
coef cient (MCC), which is widely used in the nonlinear ICA literatu®9] 31, 33, 36, 42], with

the only difference that we use Spearman correlation instead of Pearson correlation asg gseore

The Spearman correlation can capture nonlinear monotonous relations, unlike Pearson which can
only capture linear dependencies. We favor Spearman over Pearson because our identi ability result
(Theorem 2) guarantees we can recover the latents only up to permutation and element-wise invertible
transformations, which can be nonlinear.

Metric LMSee: This metric is used for thBlockLatents dataset. For this metric, we takgp o

to be theR? score of a Regression Tree with maximal deptii@f For this, we used the class
sklearn.tree.DecisionTreeRegressor from thesklearn library. We learn the parameters of

the Decision Tree using the train dataset and then use it to evalNEgg.. metric on the test dataset.

For the additive decoder, it is easy to compute this metric since the additive structure already gives a
natural partitiorB which matches the ground-truth. However, for the non-additive decoder, there is
no natural partition and thus we cannot compdutSy.e directly. To go around this problem, for the
non-additive decoder, we computM S, for all possible partitions odl, latent variables into blocks

of sizejBj = 2 (assuming all blocks have the same dimension), and report th&M&gte This
procedure is tractable in our experiments due to the small dimensionality of the problem we consider.

B.4 Boxplots for main experiments (Table 1)

Since the standard error in the main results (Table 1) was high, we provide boxplots in Figures

9 & 10 to have a better visibility on what is causing this. We observe that the high standard error
for the Additive approach was due to bad performance for a few bad random initializations for the
ScalarLatents dataset; while we have nearly perfect latent identi cation for the others. Figure 14e
shows the latent space learned by the worst case seed, which somehow learned a disconnected
support even if the ground-truth support was connected. Similarly, for the case of Independent
BlockLatents, there are only a couple of bad random initializations and the rest of the cases have
perfect identi cation.
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Figure 9: Reconstruction mean squared error (MEEnOd Latent Matching Score (LMS) )Y over
10 different random initializations fdcalarLatents dataset.

(a) Independent Latent Case

(b) Dependent Latent Case

Figure 10: Reconstruction mean squared error (MBEa(d Latent Matching Score (LMS) ) for
10 different initializations foBlockLatents dataset.

B.5 Additional Results: BlockLatents Dataset

To get a qualitative understanding of latent identi cation in the BlockLatents dataset, we plot the
response of each predicted latent as we change a particular ground-truth latent factor. We describe

the following cases of changing the ground-truth latents:

Ball 1 moving along x-axis: We sample 10 equally spaced points Zgrfrom [0; 1]; while
keeping other latents xed as followz, = 0:25;z3 = 0:50;z4 = 0:75. We will never
have occlusion since the balls are separated along the y-axiz, > 0.

Ball 2 moving along x-axis: We sample 10 equally spaced points Zgrfrom [O; 1]; while
keeping other latents xed as followg; = 0:50;z, = 0:25;,z, = 0:75. We will never
have occlusion since the balls are separated along the y-axiz, > 0.

Ball 1 moving along y-axis: We sample 10 equally spaced points Zgrfrom [0; 1]; while
keeping other latents xed as followg; = 0:25;z3 = 0:75;,z4, = 0:50. We will never
have occlusion since the balls are separated along the xaxiz; > 0.

Ball 2 moving along y-axis: We sample 10 equally spaced points Zqrfrom [0; 1]; while
keeping other latents xed as followg; = 0:25;z, = 0:50;z3 = 0:75. We will never
have occlusion since the balls are separated along the x-axisz; > 0.
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(a) Additive Decoder (Best) (LM : 99:9) (b) Non-Additive Decoder (Best) (LM&e : 83:9)

(c) Additive Decoder (Median) (LM : 99:8) (d) Non-Additive Decoder (Median)MSrree : 58:6)

(e) Additive Decoder (Worst) (LMgee : 54:1) () Non-Additive Decoder (Worst) (LMBee : 24:6)

Figure 11: Latent responses for the cases wittbdst/median/worstLMS+,ec among runs performed
on theBlockLatent dataset with independent latents. In each plot, we report the latent factors
predicted from multiple images where one ball moves along only one axis at a time.

Figure 5 in the main paper presents the latent responses plot for the nidisag. case among
random initializations. In Figure 11, we provide the results for the case of best and thd M8 gt
among random seeds. We nd that Additive Decoder fails for only for the worst case random seed,
while Non-Additive Decoder fails for all the cases.

Additionally, we provide the object-speci c reconstructions for the Additive Decoder in Figure 12.
This helps us better understand the failure of Additive Decoder for the worst case random seed
(Figure 12c), where the issue arises due to bad reconstruction error.
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Figure 12: Object-specific renderings with the best/median/worst LMS,.. among runs performed
on the BlockLatents dataset with independent latents. In each plot, the first row is the original image,
the second row is the reconstruction and the third and fourth rows are the output of the object-specific
decoders. In the best and median cases, each object-specific decoder corresponds to one and only one
object, e.g. the third row of the best case always corresponds to the red ball. However, in the worst
case, there are issues with reconstruction as only one of the balls is generated. Note that the visual
artefacts are due to the additive constant indeterminacy we saw in Theorem 2, which cancel each
other as is suggested by the absence of artefacts in the reconstruction.

B.6 Disconnected Support Experiments

Since path-connected latent support is an important assumption for latent identification with additive
decoders (Theorem 2), we provide results for the case where the assumption is not satisfied. We
experiment with the Disconnected Support dataset (Section B.2) and find that we obtain much worse
LMSgpear as compared to the case of training with L-shaped support in the ScalarLatents dataset.
Over 10 different random initializations, we find mean LMSg.,, performance of 69:5 with standard
error of 6:69.

For better qualitative understanding, we provide visualization of the latent support and the extrapolated
images for the median LMSge,r among 10 random seeds in Figure 13. Somewhat surprisingly, the
representation appears to be aligned in the sense that the first predicted latent corresponds to the blue
ball while the second predicted latent correspond to the red ball. Also surprisingly, extrapolation
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