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Supplementary Material

A Proofs

We will conduct our analysis in terms of general noise covariance Σ for the added noise, n ∼ N (0, Σ). The results will
depend on various norms of Σ, as well as ∥Σ1/2a∥, where a = µϕ(D) − µϕ(D̃) is the difference between empirical
mean embeddings µϕ(D) = 1

|D|
∑

x∈D ϕ(x). (Recall that MMD(D, D̃) = ∥a∥.)

When we use only normalized first-moment features, the quantities appearing in the bounds are
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When we use first- and second-moment features with respective scales C1 and C2 (both 1 in our experiments here), we
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Note that if C1 = C2 = C, then√
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A.1 Mean absolute error of loss function

Proposition A.1. Given datasets D = {xi}m
i=1 and D̃ = {x̃j}n

j=1 and a kernel kϕ with a D-dimensional embedding ϕ,

let a = µϕ(D) − µϕ(D̃). Define M̃MD
2
kΦ

(D, D̃) = ∥a + n∥2 for a noise vector n ∼ N (0, Σ). Introducing the noise
n affects the expected absolute error as
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Proof. We have that
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The first term is standard:

En⊤n = ETr(n⊤n) = ETr(nn⊤) = Tr(Enn⊤) = Tr(Σ).

For the second, note that
a⊤n ∼ N (0, a⊤Σa),

and so its absolute value is
√

a⊤Σa times a χ(1) random variable. Since the mean of a χ(1) distribution is
√

2 Γ(1)
Γ(1/2) =√

2
π , we obtain the desired bound.
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A.2 High-probability bound on the error

Proposition A.2. Given datasets D = {xi}m
i=1 and D̃ = {x̃j}n

j=1, let a = µϕ(D) − µϕ(D̃), and define
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Proof. Introduce z ∼ N (0, I) such that n = Σ 1
2 z into Equation 11:
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For the first term, denoting the eigendecomposition of Σ as QΛQ⊤, we can write

z⊤Σz = (Q⊤z)⊤Λ(Q⊤z),

in which Q⊤z ∼ N (0, I) and Λ is diagonal. Thus, applying Lemma 1 of Laurent & Massart (2000), we obtain that
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In the second term,
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The first statement in the theorem follows by a union bound. The OP form follows by Lemma A.1 and the fact that
Tr(A) ≥ ∥A∥F ≥ ∥A∥op for positive semi-definite matrices A.

The following lemma shows how to convert high-probability bounds with both sub-exponential and sub-Gaussian tails
into a OP statement.

Lemma A.1. If a sequence of random variables Xn satisfies
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√
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ρ
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ρ
with probability at least 1 − ρ,

then the sequence of variables Xn is
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.

Proof. The definition of a sequence of random variables Xn being OP (Qn), where Qn is a sequence of scalars, means
that the sequence Xn

Qn
is stochastically bounded: for each ρ, there is some constant Rρ such that Pr(Xn/Qn ≥ Rρ) ≤ ρ.
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Here, we have for all n with probability at least 1 − ρ that
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Thus the desired bound holds with Rρ = 3 +
√

log 1
ρ + log 1

ρ .

A.3 Quality of the private minimizer: worst-case analysis

We first show uniform convergence of the privatized MMD to the non-private MMD.

Proposition A.3. Suppose that Φ : X → RD is such that supx∥Φ(x)∥ ≤ B, and let M̃MDkΦ(D, D̃) = ∥µΦ(D) −
µΦ(D̃) + n∥ for n ∼ N (0, Σ). Then, with probability at least 1 − ρ over the choice of n,

sup
D,D̃

∣∣ M̃MD
2
kΦ

(D, D̃) − MMD2
kΦ

(D, D̃)
∣∣

≤ Tr(Σ) + 4B
√

Tr(Σ) + 2
(

∥Σ∥F + 2B∥Σ∥
1
2op

)√
log( 2

ρ ) + 2∥Σ∥op log( 2
ρ )

= OP

(
Tr(Σ) + B

√
Tr(Σ)

)
,

where the supremum is taken over all probability distributions, including the empirical distribution of datasets D, D̃ of
any size.

Proof. Introducing z ∼ N (0, ID) such that n = Σ1/2z, we have that
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To apply Gaussian Lipschitz concentration, we also need to know that
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Again combining with the bound of Equation 14, we get the stated bound.
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This bound is looser than in Proposition A.2, since the term depending on a is now “looking at” z in many directions
rather than just one: we end up with a χ(dim(Σ) random variable instead of χ(1).

We can use this uniform convergence bound to show that the minimizer of the private loss approximately minimizes the
non-private loss:

Proposition A.4. Fix a target dataset D. For each θ in some set Θ, fix a corresponding D̃θ; in particular, Θ = Rp

could be the set of all generator parameters, and D̃θ either the outcome of running a generator gθ on a fixed
set of “seeds,” D̃θ = {gθ(zi)}n

i=1, or the full output distribution of the generator Qgθ
. Suppose that Φ : X →

RD is such that supx∥Φ(x)∥ ≤ B, and let M̃MDkΦ(D, D̃) = ∥µΦ(D) − µΦ(D̃) + n∥ for n ∼ N (0, Σ). Let
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Proof. Let α represent the uniform error bound of Proposition A.2. Applying Proposition A.2, the definition of θ̃, then
Proposition A.2 again:
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A.4 Quality of the private minimizer: “optimistic” analysis

The preceding analysis is quite “worst-case,” since we upper-bounded the MMD by the maximum possible value
everywhere. Noticing that the approximation in Proposition A.2 is tighter when ∥Σ1/2a∥ is smaller, we can instead
show an “optimistic” rate which takes advantage of this fact to show tighter approximation for the minimizer of the
noised loss. In the “interpolating” case where the generator can achieve zero empirical MMD, the convergence rate
substantially improves (generally improving the squared MMD from OP (1/m) to OP (1/m2)).

Proposition A.5. In the setup of Proposition A.4, we have with probability at least 1 − ρ over n that
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Proof. Let’s use M̂MD(θ) to denote MMDkΦ(D, D̃θ), and M̃MD(θ) for M̃MDkΦ(D, D̃θ).

For all θ, we have that ∣∣ M̃MD
2
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Thus, applying this inequality in both the first and third lines,
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in the second line we used that M̃MD(θ̃) ≤ M̃MD(θ̂). Rearranging, we get that

M̂MD
2
(θ̃) − β M̂MD(θ̃) − γ ≤ 0, (15)

where

β = 2∥Σ1/2z∥ ≥ 0
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2
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The left-hand side of Equation 15 is a quadratic in M̂MD(θ̃) with positive curvature; it has two roots, at
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)2
+ γ.

Thus the inequality Equation 15 can only hold in between the roots; the root with a minus sign is negative, and so does
not concern us since we know that M̂MD(θ) ≥ 0. Thus, for Equation 15 to hold, we must have
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Thus, substituting in for β and γ then simplifying, we have that

M̂MD
2
(θ̃) ≤ M̂MD

2
(θ̂) + (6 + 2

√
2)z⊤Σz + 4∥Σ1/2z∥ M̂MD(θ̂).

Using the same bounds on z⊤Σz and ∥Σ1/2z∥ as in Proposition A.3, and 6
√

2 < 9, gives the claimed bound.

B Extended Implementation details

Repository. Our anonymized code is available at https://anonymous.4open.science/r/dp-gfmn; the
readme files contain further instructions on how to run the code.

B.1 Hyperparameter settings

For each dataset, we tune the generator learning rate (LRgen) and moving average learning rate (LRmavg) from choices
10−k and 3 · 10−k with k ∈ {3, 4, 5} once for the non-private setting and once at ϵ = 2. The latter is used in all private
experiments for that dataset, as shown in 7. After some initial unstructured experimentation, hyperparameters are
chosen with identical values across dataset shown in 8

For the Cifar10 DP-MERF baseline we tested random tuned random features dimension d ∈ {10000, 50000}, random
features sampling distribution σ ∈ {100, 300, 1000}, learning rate decay by 10% every e ∈ {1000, 10000} iterations
and learning rate 10−k with k ∈ {2, 3, 4, 5, 6}. Results presented use d = 500000, σ = 1000, e = 10000, k = 3.

The DP-GAN baseline for Cifar10 and CelebA uses the same generator as DP-MEPF with 3 residual blocks and a total
of 8 convolutional layers and is paired with a ResNet9 discriminator which uses Groupnorm instead of Batchnorm to
allow for per-sample gradient computation. We pre-train the model non-privately to convergence on downsampled
imagenet in order to maintain the same resolution of 32 × 32 and then fine-tune the model for a smaller number of
epochs. In case of the CelebA 64 × 64 data we add another residual block to discriminator and generator to account
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for the doubling in resolution. The base multiplier for number of feature maps is reduced from 64 to 50 to lessen the
increase in number of weights. Results are the best scores of a grid-search over the following parameters at ϵ = 2,
which is then used in all settings: number of epochs {1, 10, 30, 50} generator and discriminator learning rate separately
for 10−k and 3 · 10−k with k ∈ {3, 4, 5}, clip-norm {10−3, 10−4, 10−5, 10−6}, batch size {128, 256, 512} and, as
advised in Anonymous (2023), number of discriminator updates per generator {1, 10, 30, 50}. The chosen values are
given in table 9.

Table 7: Learning rate hyperparameters across datasets

LRgen LRmavg

MNIST-nonDP 10−5 10−3

MNIST-DP 10−5 10−4

FashionMNIST-nonDP 10−5 10−3

FashionMNIST-DP 10−4 10−3

CelebA32-nonDP 10−3 ·10−4

CelebA32-DP 10−3 ·10−4

CelebA64-nonDP 10−4 3 · 10−4

CelebA64-DP 10−4 3 · 10−4

Cifar10-nonDP labeled 10−3 10−2

Cifar10-DP labeled 10−3 10−2

Cifar10-nonDP unlabeled 10−3 3 · 10−4

Cifar10-DP unlabeled 10−3 3 · 10−4

Table 8: Hyperparameters fixed across datasets

Parameter Value
(ϕ1)-bound 1
(ϕ2)-bound 1
iterations (MNIST & FashionMNIST) 100,000
batch size (MNIST and FashionMNIST) 100
iterations (Cifar10 & CelebA) 200,000
batch size (Cifar10 and CelebA) 128
seeds 1,2,3,4,5

Table 9: Hyperparameters of DP-GAN for Cifar10 and CelebA

Cifar10 CelebA 32 × 32 CelebA 64 × 64
ϵ ∈ {0.2, 0.5} ϵ = 1 ϵ = 2 ϵ ∈ {5, 10}

LRgen 10−4 3 · 10−4 3 · 10−4 3 · 10−4 3 · 10−4 3 · 10−4

LRdis 10−3 3 · 10−4 10−3 3 · 10−4 10−3 10−3

batch size 512 512 512 512 512 512
epochs 10 10 10 10 10 10
discriminator frequency 10 10 30 30 10 10
clip norm 10−5 10−4 10−5 10−5 10−4 10−5

C Detailed Tables

Below we present the results from the main paper with added a ± b notation, where a is the mean and b is the standard
deviation of the score distribution across three independent runs for MNIST and FashionMNIST and 5 independent
runs for Cifar10 and CelebA.

Table 10: Downstream accuracies of our method for MNIST at varying values of ϵ

ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.2

MLP DP-MEPF (ϕ1, ϕ2) 91.4 ± 0.3 89.8 ± 0.5 89.9 ± 0.2 89.3 ± 0.3 89.3 ± 0.6 79.9 ± 1.3
DP-MEPF (ϕ1) 88.2 ± 0.6 88.8 ± 0.1 88.4 ± 0.5 88.0 ± 0.2 87.5 ± 0.6 77.1 ± 0.4

LogReg DP-MEPF (ϕ1, ϕ2) 84.6 ± 0.5 83.4 ± 0.6 83.3 ± 0.7 82.9 ± 0.7 82.5 ± 0.5 75.8 ± 1.1
DP-MEPF (ϕ1) 81.4 ± 0.4 80.8 ± 0.9 80.8 ± 0.8 80.5 ± 0.6 79.0 ± 0.6 72.1 ± 1.4
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Table 11: Downstream accuracies of our method for FashionMNIST at varying values of ϵ

ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.2

MLP DP-MEPF (ϕ1, ϕ2) 74.4 ± 0.3 76.0 ± 0.4 75.8 ± 0.6 75.1 ± 0.3 74.7 ± 1.1 70.4 ± 1.9
DP-MEPF (ϕ1) 73.8 ± 0.5 75.5 ± 0.6 75.1 ± 0.8 75.8 ± 0.7 75.0 ± 1.8 69.0 ± 1.5

LogReg DP-MEPF (ϕ1, ϕ2) 74.3 ± 0.1 75.7 ± 1.0 75.2 ± 0.4 75.8 ± 0.4 75.4 ± 1.1 72.5 ± 1.2
DP-MEPF (ϕ1) 72.8 ± 0.5 75.5 ± 0.1 75.5 ± 0.8 76.4 ± 0.8 76.2 ± 0.8 71.7 ± 0.4

Table 12: CelebA FID scores 32 × 32 (lower is better)

ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2
DP-MEPF (ϕ1, ϕ2) 13.9 ± 1.6 15.1 ± 4.7 14.3 ± 2.3 13.9 ± 1.1 14.9 ± 2.5 14.4 ± 1.7 19.3 ± 3.0
DP-MEPF (ϕ1) 12.8 ± 11.7 ± 0.6 12.1 ± 1.1 12.6 ± 1.0 13.2 ± 1.6 14.4 ± 1.1 18.1 ± 2.3

Table 13: CelebA FID scores 64 × 64 (lower is better)

ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2
DP-MEPF (ϕ1, ϕ2) 12.8 ± 0.6 13.0 ± 0.7 13.1 ± 0.9 13.2 ± 0.3 13.5 ± 1.1 15.5 ± 1.0 24.8 ± 1.6
DP-MEPF (ϕ1) 11.2 ± 0.5 11.7 ± 0.7 11.7 ± 0.6 11.6 ± 0.4 13.0 ± 0.7 16.2 ± 0.7 27.3 ± 2.3

Table 14: FID scores for synthetic labelled CIFAR-10 data (generating both labels and input images)
ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2

DP-MEPF (ϕ1, ϕ2) 27.3 ± 1.5 26.6 ± 2.2 27.6 ± 2.4 27.6 ± 0.3 38.6 ± 1.9 64.4 ± 5.6 325.0 ± 15.9
DP-MEPF (ϕ1) 25.8 ± 2.3 27.1 ± 1.0 27.7 ± 2.2 28.7 ± 1.1 39.0 ± 0.5 78.4 ± 8.1 469.3 ± 8.8
DP-MERF 127.4 ± 1.8 124.4 ± 2.3 124.0 ± 0.8 126.5 ± 2.8 122.7 ± 1.1 412.8 ± 0.8

Table 15: Test accuracies (higher better) of ResNet9 trained on CIFAR-10 synthetic data with varying privacy guarantees.
When trained on real data, test accuracy is 88.3%

ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2
DP-MEPF (ϕ1, ϕ2) 47.2 ± 1.3 48.9 ± 3.5 47.9 ± 1.4 38.7 ± 2.3 28.9 ± 1.5 19.7 ± 3.6 12.4 ± 1.9
DP-MEPF (ϕ1) 50.8 ± 1.7 51.0 ± 2.1 48.5 ± 2.6 42.5 ± 0.8 29.4 ± 2.9 19.4 ± 2.9 13.8 ± 1.9
DP-MERF 13.2 ± 0.4 13.4 ± 0.4 13.5 ± 0.5 13.8 ± 1.4 13.1 ± 0.7 10.4 ± 0.5

D Encoder architecture comparison

We are testing a large collection of classifiers of different sizes from the torchvision library including VGG, ResNet,
ConvNext and EfficientNet. For each we look at unlabelled Cifar10 generation quality in the non-DP setting and at
ϵ = 0.2. In each architecture, we use all activations from convolutional layers with a kernel size greater than 1x1. We
list the number of extracted features along with the achieved FID score in table 17, where each result is the best result
obtained by tuning learning rates. As already observed in dos Santos et al. (2019), we find that VGG architectures
appear to learn particularly useful features for feature matching. We hypothesized that in the private setting other
architectures with fewer features might outperform the VGG model, but have found this to not be the case.

E Public dataset comparison

We pretrained a ResNet18 using ImageNet, CIFAR10, and SVHN as our public data, respectively. We then used the
perceptual features to train a generator using CelebA dataset as our private data at a privacy budget of ϵ = 0.2 and
obtained the scores shown in 18. These numbers reflect our intuition that as long as the public data is sufficiently similar
and contains more complex patterns than private data, e.g., transferring the knowledge learned from ImageNet as public
data to generate CelebA images as private data, the learned features from public data are useful enough to generate
good synthetic data. In addition, as the public data become more simplistic (from CIFAR10 to SVHN), the usefulness
of such features reduces in producing good CelebA synthetic samples.
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Table 16: FID scores for synthetic unlabelled CIFAR-10 data
ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2

DP-MEPF (ϕ1, ϕ2) 24.3 ± 1.2 27.1 ± 2.7 24.9 ± 1.0 26.0 ± 0.7 27.2 ± 3.0 34.8 ± 2.5 56.6 ± 7.9
DP-MEPF (ϕ1) 26.6 ± 1.6 26.8 ± 1.6 25.9 ± 0.9 28.9 ± 2.8 32.0 ± 1.7 38.6 ± 4.7 53.9 ± 2.1

Table 17: Unlabeled Cifar10 FID scores achieved with different feature extractors. VGG models yield the best results
both in non-DP and high DP settings.

Encoder model #features ϵ = ∞ ϵ = 0.2
(ϕ1, ϕ2) (ϕ1) (ϕ1, ϕ2) (ϕ1)

VGG19 303104 24.7 25.5 46.5 52.5
VGG16 276480 25.4 27.3 52.1 56.5
VGG13 249856 24.4 25.7 45.7 58.0
VGG11 151552 25.0 25.1 53.9 48.9
ResNet152 429568 46.6 67.7 77.7 80.0
ResNet101 300544 59.3 104.7 64.7 73.8
ResNet50 196096 58.8 65.8 80.0 91.2
ResNet34 72704 59.8 70.3 65.8 66.8
ResNet18 47104 71.9 82.1 90.4 83.8
ConvNext large 161280 110.4 242.4 130.3 236.9
ConvNext base 107520 119.9 241.5 128.9 240.3
ConvNext small 80640 103.0 227.5 151.4 216.4
ConvNext tiny 52992 94.2 227.9 124.5 223.5
EfficientNet L 119168 126.1 126.1 210.1 216.2
EfficientNet M 68704 109.8 121.6 196.1 174.3
EfficientNet S 47488 99.6 120.3 155.9 154.8

Table 18: FID scores achieved for CelebA 32 × 32 using a ResNet encoder with different public training sets

ImageNet Cifar10 SVHN
FID 37 135 172
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F Training DP-MEPF without auxiliary data

While DP-MEPF is explicitly designed to take advantage of available public data, one might wonder how the method
performs if no such data is available. The following experiment on CIFAR10 explores this scenario. We assume that a
privacy budget of ϵ = 10 is given. We use some part of the budget for feature extractor (i.e. the classifier) training and
the rest of the budget for the generator training.

For a feature extractor, we have trained ResNet-20 classifiers with DP-SGD at three different levels of ϵ ∈ {2, 5, 8} for
classifying the CIFAR10 dataset. We set the clipping norm to 0.01 and trained the classifiers for 7, 49 and 98 epochs,
respectively. Their test accuracies are 38.4%, 49.5% and 54.0% respectively. We also include scores for DP-MEPF
applied to the untrained Classifier, denoted as ϵ = 0.

Then, we train the generator using these four sets of features to generate CIFAR10 images, where each generator
training uses the rest of the budget, i.e., ϵ ∈ {8, 5, 2} and ϵ = 10 for the untrained classifier. We tune the learning rate
in each of the four settings and keep other hyperparameters at default values.

Table 19: DP-MEPF results in CIFAR10 when using a DP feature extractor (ϵ = 0 is an untrained extractor)

ϵ for feature extractor training for generator training FID
0 10 97.6
2 8 124.1
5 5 82.0
8 2 99.1

As expected, in Table 19 we see a considerable increase in the FID score, compared to DP-MEPF with public data.
A balanced allocation of privacy budget with ϵ = 5 each for classifier and generator training yields the best result at
an FID score of 82 and performs significantly better than just using a randomly initialized feature extractor, which
only achieves a score of 97.6. For comparison: with public data DP-MEPF achieves an FID score of 24.9 at ε = 5,
highlighting the importance of such data to our method.

G Additional Plots

Below we show samples from our generated MNIST and FashionMNIST data in Figure 8 and Figure 9 respectively.

Real Data ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.2

Figure 8: MNIST samples produced with DP-MEPF (ϕ1, ϕ2) at various levels of privacy
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Real Data ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.2

Figure 9: Fashion-MNIST samples produced with DP-MEPF (ϕ1, ϕ2) at various levels of privacy
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