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Uni-DlLoRA: Style Fine-Tuning for Fashion Image Translation
Anonymous Author(s)

Figure 1: High-quality fashion illustration generations via the proposed Uni-DlLoRA.

ABSTRACT
Image-to-image (i2i) translation has achieved notable success, yet
remains challenging in scenarios like real-to-illustrative style trans-
fer of fashion. Existing methods focus on enhancing the generative
model with diversity while lacking ID-preserved domain transla-
tion. This paper introduces a novel model named Uni-DlLoRA to
release this constraint. The proposed model combines the orig-
inal images within a pretrained diffusion-based model using the
proposed Uni-adapter extractors, while adopting the proposed Dual-
LoRAmodule to provide distinct style guidance. This approach opti-
mizes generative capabilities and reduces the number of additional
parameters required. In addition, a new multimodal dataset fea-
turing higher-quality images with captions built upon an existing
real-to-illustration dataset is proposed. Experimentation validates
the effectiveness of our proposed method.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.
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1 INTRODUCTION
The advancement of generative models has revolutionized the field
of computer vision, particularly in fashion, where the creation and
manipulation of images play a pivotal role[2, 10, 18, 42]. Fashion
synthesis [8, 19, 20, 53, 56] has emerged as a dynamic area of re-
search, encompassing a spectrum of applications from virtual try-on
to appearance and pose transfer. Despite these advancements, the
translation of fashion images between distinct domains, such as
illustration and realism, remains a challenging topic. This transla-
tion is critical for fashion creation and understanding the nuanced
interplay between style and content in fashion imagery.

Recent works have begun to explore the synthesis of fashion
images, with StylishGAN [58] introducing a dataset that bridges
the gap between real and illustrated fashion domains. However,
existing methods of fashion image synthesis, while making signifi-
cant strides, exhibit several limitations: (1) Lack of Dataset Quality:
Current fashion illustration datasets often suffer from low reso-
lutions and the presence of backgrounds in real domain images,
which hinder the training of models to focus on fashion items ex-
clusively. (2) Inadequate Style Capture: Existing generative models,
including diffusion models like SGDiff [46], struggle to accurately
capture and replicate the specific stylistic elements of fashion items,
particularly when translating between domains with distinct vi-
sual characteristics. (3) Limited Style Control: Methods that rely
solely on text prompts for style transfer lack precise control over
the stylistic nuances, as textual descriptions are insufficient to con-
vey complex visual styles, leading to inconsistent and less realistic
outputs. (4) Style Adaptation Challenges: While methods like Lora-
Rank Adaptation (LoRA) [13] prevent catastrophic forgetting by
using low-rank matrices, they face difficulties in learning specific
styles, as the alignment between the condition information and the
internal knowledge of the model is not well-established.
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To this end, we present Uni-DlLoRA, a novel approach to fash-
ion image-to-image translation that focuses on the fine-tuning of
diffusion models for image synthesis and improving style disentan-
glement. Recognizing the lack of high-quality fashion illustration
datasets, we utilized SwinIR [24] and LDSR [36]to perform super-
resolution on the StylishU dataset, resulting in a dataset with im-
proved resolution and clarity. The caption of each image is extracted
by BLIP [23] and refined by fashion experts for text-conditioning.
Our method, Uni-DlLoRA, is designed to address the limitations
of current techniques by incorporating image-conditioned infor-
mation using the proposed Uni-adapter and adapting the UNet
denoiser with the Dual-LoRA module to better capture spatial and
textural details from both real and illustrative domains. By doing
so, Uni-DlLoRA enables the seamless translation of fashion im-
ages while preserving their essential visual features and stylistic
elements. In addition, we introduce a method for disentangling
style from target images or domains and integrating it into source
images to achieve stylistic consistency and variety in the generated
images. Qualitative and quantitative comparisons with state-of-the-
art methods demonstrate the effectiveness of Uni-DlLoRA. All in
all, our contribution can be summarized as:

• This article highlights a novel method that fully applies a
Uni-adapter to extract latent features from input images and
enhances learning in fashion image translation through the
novel Dual-LoRA module.

• The article presents a new dataset in response to the existing
challenges in the fashion field, which features graphics with
better resolution and accurate textual information.

• Additionally, an innovative training method successfully
generates images full of detail while effectively disentangling
the content and style of the images. Detailed experiments
describe the effectiveness and practicality of the method.

2 RELATEDWORK
2.1 Fashion Image Synthesis
Fashion synthesis is a burgeoning research domain within the ex-
pansive realm of computer vision. With its formidable generative
capabilities, the synthesis models can effectively generate high-
quality images based on conditional information. In particular, nu-
merous approaches [4, 9, 22, 55] focus extensively on virtual try-on,
a process that involves transferring desired clothing onto a specific
person. Other studies [1, 28, 35] concentrate on appearance and
pose-guided transfer, wherein the model is capable of transforming
the target person to the desired pose based on the given appear-
ance. Recently, image editing has gained popularity, with several
methods [16, 17, 52, 56] focusing on the editing of specific elements
onto clothing. Some of these methods like SGDiff[46] have achieved
significant results through the use of diffusion models, enabling text
editing to become a reality. Nevertheless, the translation of fashion
images between illustration and real domains remains relatively
unexplored compared to other areas within the fashion industry,
despite being an important process in fashion creation. StylishGAN
[58] first introduced this task into the field of computer vision and
developed a dataset containing fashion images from both real and
illustrated domains. However, there is still room to improve the
quality of the dataset and the generative model.

2.2 Fashion Image-to-Image Translation
Image-to-image (i2i) translation is a widely studied and popular
research topic, introduced by Isola [15]. The main goal of this task
is to accurately and effectively translate an input image into an
output image while preserving important visual features and de-
tails. This can be used for various applications such as style transfer
[7] and image synthesis [54]. Several methods [3, 5, 27] apply a
content image and a style reference image to create an image that
captures the style of the reference while retaining the content of the
original during the generation process. However, the texture and
color of the style images are hard to disentangle. Though AAST [14]
proposed a model that transfers the images to the target domain
while considering the texture and aesthetic, blurred background
exists during generation. Other methods [25, 31] tried to transfer
the style images to the certain style with pre-trained networks,
but they failed to transfer uninformative images [58] to another
domain.
Afterwards, text-driven image-to-image translation has gained trac-
tion, with several methods [32, 47] achieving significant results by
leveraging powerful generation models such as the diffusion model.
However, the utilization of text-driven information is constrained
in effectively conveying styles or emotions, as objects are easily
described, while styles are challenging to articulate in words.

2.3 Fine-tuning based on Diffusion Models
The diffusion models [36, 39] have recently gained significant pop-
ularity and fine-tuning models based on them are widely used for
downstream tasks. However, the over-fitting and mode collapse
exists while training the neural network with additional training
data. Extensive research paid attention to avoiding such issues. For
instance, Dreambooth [38] and Textual Inversion [6] customize
the content in the generated image by fine-tuning the image dif-
fusion model with a small set of user-provided example images.
However, this approach has a high computational cost, as the en-
tire generating model must be fine-tuned. Lora-Rank Adaptation
(LoRA) [13] noted that over-parameterized models exist within a
low intrinsic dimension subspace, and thus this method prevents
catastrophic forgetting by obtaining information on the parameter
offset using low-rank matrices. However, learning specific styles
applying LoRA can be challenging. Based on substantial results
obtained by adapter methods adopted in pretrained model [34, 44]
in several downstream tasks, T2I-Adapter [30] and Controlnet [50]
adapt Stable Diffusion to different external conditions and learn the
alignment between condition information and internal knowledge,
achieving solid results. However, T2I-Adapter finds it challenging
to learn the style, while ControlNet struggles to strike a balance
between model capability and computational cost.

3 METHODOLOGY
3.1 Preliminaries
The Stable Diffusion (SD) is a text-to-image model known for its
strong performance in generating images from text and images. It
comes with pretrained checkpoints, making it the chosen backbone
model. The diffusion model consists of two major modules: Au-
toencoders [48] and a modified UNet [37] denoiser. In the training
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Figure 2: The proposed Uni-DlLoRA network includes (a) an overview, (b) a detailed process for obtaining mixed conditional
embedding from multi-layer features of the image and its sketch, and (c) the specifics of the style adaptation module.

process, the autoencoder within the whole network will be utilized
to encode the images into a latent space, and the latent features will
be deliberately noised in a step-by-step manner. After this stage,
the modified UNet denoiser is trained to denoise the latent features
step by step. The optimization of denoising could be written as:

L = Ex0,c,𝝐,𝑡

(
∥𝝐 − �̂�𝜃 (𝑎𝑡x0 + 𝜎𝑡𝝐, c)∥2

2

)
, (1)

where x0 denotes the input latent features and c illustrates the
optional conditional informaition. 𝝐 ∈ N (0, I) represents the added
noise and x𝑡 = 𝑎𝑡x0 + 𝜎𝑡𝝐 denotes noised input latent features
in step 𝑡 . 𝝐𝜃 represents the predicted noise from UNet denoiser
with conditional informaiton c according to the Classifier-Free
Guidance[12] in the training stage:

�̂�𝜃 (x𝑡 , c) = 𝜔𝝐𝜃 (x𝑡 , c) + (1 − 𝜔)𝝐𝜃 (x𝑡 ) , (2)

where 𝜔 is a guidance weight. After the denoising stage, the final
image is generated from the cleaned latent features x̂0 during the
decoder part of the Autoencoders. For inference, the latent features
x𝑇 , whether originating from random noise or noised input latent
features, become progressively clearer as the predicted noise �̂�𝜃 is
applied at each step 𝑡 to denoise the latent features, transforming
x𝑇 into x̂0 with equation:

x̂𝑇−1 =
1

√
𝛼𝑡

(
x𝑇 − 1 − 𝛼𝑡√

1 − 𝛼𝑡
�̂�𝜃 (x𝑇 , 𝑐)

)
+ 𝜎𝑡 z (3)

where z ∼ N(0, I) denotes the gaussian noise.
To capture the textual information during the denoising stage,

the pretrained CLIP [33] is applied to embed text prompts into a
sequence of vectors c𝑣 in the latent space. These vectors are then
utilized by the cross-attention module inside the UNet denoiser to

aid in the denoising process. The equation can be written as:

CrossAttention (q, k, v) = softmax

(
qk𝑇
√
𝑑𝑘

)
· v (4)

where q = w𝑞𝜙 (x̂𝑡 ) , k = w𝑘𝜏 (c𝑣), v = w𝑣𝜏 (c𝑣). 𝜙 (·) and 𝜏 (·)
denotes the embedding matrices inside the module and w𝑞,w𝑘 ,w𝑣

represents the weight of projection matrices.

3.2 Diffusion Model with Image Conditioned
For the basic diffusion model in the T2I task, the textual information
will be embedded firstly into a sequence of vectors in the latent
space by pretrained CLIP[33] model and then fed into the cross-
attention module inside the UNet denoiser. The generated results
are unstable when the input consists solely of text, as text struggles
to convey spatial information effectively. The lack of alignment in
the results arises from the inherent difficulty of text in offering pre-
cise external control. To effectively capture both texture and spatial
information, hidden details are extracted from the source image
using image and sketch extraction modules, as depicted in Fig-
ure 2. Specifically, a novel multi-layer module named Uni-adapter
is applied to obtain spatial and texture information, respectively.
Inspired by T2I-Adapter [30], the pixel unshuffle [41] operation
inside the extraction module is firstly applied to downsample the
input. The multi-convolutional layers including two residual blocks
are then applied to extract the unshuffled features and multi-scale
features will be obtained as: 𝑓𝑐 =

{
𝑓𝑐1 , 𝑓𝑐2 , 𝑓𝑐3 , 𝑓𝑐4

}
. Due to the align-

ment of latent features from two same-structure extract modules,
the equation for the mixed conditional embedding can be written

2024-04-10 06:15. Page 3 of 1–10.
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Figure 3: Detailed training process: The mixed conditional
embedding is sent to the modified U-Net denoiser for vari-
ous tasks. An illustration adaptation module is inserted for
the synthesis of illustrative images, while a real adaptation
module is employed to synthesize real images.

as:
𝑓𝑐𝑖 = 𝜙𝐸𝑖

𝐼
(x0, 𝜃 ) + 𝜙∗

𝐸𝑖
𝑆

(s0, 𝜃 ) , 𝑖 ∈ {1, 2, 3, 4} (5)

where 𝜙𝐸𝑖
𝐼
(·, 𝜃 ) and 𝜙∗

𝐸𝑖
𝑆

(·, 𝜃 ) represents the multi-scale image and
sketch feature extractor, respectively. It is noteworthy that the
sketch feature extractor 𝜙∗

𝐸𝑆
is fixed with pretrained model while

image feature extractor 𝜙𝐸𝑖
𝐼
is learnable. x0 denotes the input im-

ages and s0 represents the efficient sketches extracted from input
images by the fixed neural network [45], respectively. Inspired by
ControlNet [50], zero convolutional layers are adopted in the image
extraction module.

3.3 Style and Content Disentanglement
The extraction of style from target images or domains, followed by
its integration into source images, is significant within the context
of the style transfer task. Inspired by Kotovenko et al. [21], two
separate style adaption modules named Dual-LoRA were inserted
in the UNet denoiser to capture the styles in different domains.
As shown in Figure 3 (c), within the Dual-LoRA module, full-rank
dense layers that perform matrix multiplication are integrated into
the pretrained UNet denoiser to refine the style of the synthesized
image. Specifically, the inclusion of parameters in both the image
feature extractor and the fixed sketch feature extractor enhances
the model’s ability to extract spatial and textural information from
the input. Specialized style adaptation modules with learnable pa-
rameters are inserted into the UNet denoiser to aid in refining the
style of the synthesized images, as well as in content and style
disentanglement. Unlike simple LoRA [13], two separate style adap-
tion modules within Dual-LoRA are applied to assist specific noise
prediction with an equation at each step 𝑡 :

x̂𝑟𝑡−1 =
1

√
𝛼𝑡

(
x̂𝑟𝑡 −

1 − 𝛼𝑡√
1 − 𝛼𝑡

�̂�𝜃𝑟
(
x̂𝑟𝑡 , 𝑓𝑐 , 𝜃𝑟

) )
+ 𝜎𝑡 z

x̂𝑖𝑡−1 =
1

√
𝛼𝑡

(
x̂𝑖𝑡 −

1 − 𝛼𝑡√
1 − 𝛼𝑡

�̂�𝜃𝑖
(
x̂𝑖𝑡 , 𝑓𝑐 , 𝜃𝑖

) )
+ 𝜎𝑡 z

(6)

Specifically, the predicted noise in the process can be written as:

�̂�𝜃𝑟
(
x̂𝑟𝑡 , 𝑓𝑐 , 𝜃𝑟

)
= 𝜔𝝐𝜃

(
x̂𝑟𝑡 , 𝑓𝑐 , 𝜃𝑟

)
+ (1 − 𝜔)𝝐𝜃

(
x̂𝑟𝑡 , 𝜃𝑟

)
�̂�𝜃𝑖

(
x̂𝑖𝑡 , 𝑓𝑐 , 𝜃𝑖

)
= 𝜔𝝐𝜃

(
x̂𝑖𝑡 , 𝑓𝑐 , 𝜃𝑖

)
+ (1 − 𝜔)𝝐𝜃

(
x̂𝑖𝑡 , 𝜃𝑖

) (7)

where �̂�𝜃𝑟 and �̂�𝜃𝑖 denotes the predicted noise for real style and
illustration style images reconstruction, respectively. 𝝐𝜃 (·, 𝜃𝑟 ) and
𝝐𝜃 (·, 𝜃𝑖 ) represent the basic UNet denoiser adding real-style adap-
tion module and illustration-style adaption module, respectively.

3.4 Training Objectives
As discussed in Section 3.1, the diffusion algorithm progressively
adds the Gaussian noise into the original image x0 with 𝑡 times and
obtains noisy image x𝑡 . The diffusion models will implicitly learn to
reconstruct an image from the noisy image by predicting the added
noise depending on the timestep 𝑡 and task-specific conditions 𝑐𝑡 .
During the training process of our proposed method, images in the
real domain are utilized as conditions to provide spatial and texture
information, as depicted in the figure 3. Given that two separate
style adaptationmodules are implementedwithin the UNet denoiser
to aid individual noise prediction, a dual loss can be formulated
throughout the entire training process as follows:

L𝑑𝑢𝑎𝑙 = Ex𝑖0,𝑓𝑐 ,𝝐𝒊,𝑡

(
∥𝝐𝒊 − �̂�𝜃𝑖 (x𝑖𝑡 , 𝑓𝑐 , 𝜃𝑖 )∥2

2

)
+ Ex𝑟0,𝑓𝑐 ,𝝐𝒓 ,𝑡

(
∥𝝐𝒓 − �̂�𝜃𝑟 (x𝑟𝑡 , 𝑓𝑐 , 𝜃𝑟 )∥2

2

) (8)

where L𝑑𝑢𝑎𝑙 is the overall training objective of the entire diffusion
model. This objective is directly applied in finetuning diffusion
models with an image extractor and Dual-LoRA modules. 𝝐𝒊 and 𝝐𝒓
represent the added noise for images in the illustration domain and
real domain, respectively. The parameters within the pretrained
UNet denoiser are fixed during the training process.

4 EXPERIMENTS
4.1 Implementation
Network Architecture. Diffusion models denoise the image by
applying the conditions from the prompt and the given image.
However, the generated image often lacks a strong correlation with
the conditional source image owing to the prompt typically not
conveying precise semantic information and struggles to perfectly
match the spatial and textural details from the image (as shown
in Figure 4). Two adapters, namely the image feature extractor
and sketch feature extractor, are applied to carry the multi-scale
spatial and texture information from size 64× 64 to 8× 8 that match
the spatial size of the feature maps inside the UNet denoiser to
address this issue. In pursuit of style disentanglement, two distinct
style adaptation modules are employed to refine the style of image
generation. DDIM [43] is applied to accelerate the process.

Dataset. In this study, there are rarely fashion illustration paired
datasets. Zou and Wong [58] gathered a dataset StylishU that com-
prises 3567 paired images consisting of real photos and hand-sketch
illustrations. However, the resolution of the images is relatively
low, and they contain backgrounds within the real domain images.
We initially utilize SwinIR [24] in conjunction with LDSR [36] to
perform a super-resolution version StylishU-SR, thereby obtaining
images with a resolution of 512 × 512. During the training process,
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a woman in a blue 
pants and a brown top 
with a ruffled neckline 
and a brown top with a 
blue belt.

a woman in a green
dress with a brown belt 
and sandals on her feet, 
with a white 
background.
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Figure 4: The dataset includes runway images, paired illus-
trative images, and captions.

3467 high-resolution paired images are used as the training dataset,
while the remaining 100 paired images are designated as the test
dataset. The textual caption of each image is extracted by BLIP [23]
and refined by fashion experts for further research.

Training Details. The stable-diffusion v1-5 was utilized as the
backbone diffusion model. Considering the potential semantic dis-
parity between textual and image information, as shown in Figure 4,
None Prompt is provided to the UNet denoiser, while the extracted
mixed conditional embedding 𝑓𝑐 in Equation 5 serves as the sole
condition during the training process. The proposed model was
fine-tuned on the paired dataset using the AdamW optimizer with
a learning rate of 5𝑒−6. The batch size was set to 8, and the A100
was utilized to train the proposed model for 100,000 iterations. The
pretrained PIDNet [49] was employed to extract the sketch from the
input images, with the threshold set to 0.5. The parameters of the
sketch feature extractor were kept fixed with pretrained weights
obtained from training data of COCO17 [26]. Regarding the style
adaption modules, the linear encoder-decoder layers with rank=16
are set within the UNet denoiser. To ensure clean background gen-
eration, the initial noise will be combined with latent features [29]
extracted from images by pretrained Autoencoders.

Baselines. The original image is utilized as the conditional in-
formation for performing fashion image style transfer. The pro-
posed method is compared with several state-of-the-art methods,
including some GAN-based [54] and diffusion-based fine-tuning
[13, 30, 50] methods, both qualitatively and quantitatively. The per-
formance of fine-tuned original Stable diffusion (SD)[36] is also
evaluated. The test set of the StylishU-SR is applied to the perfor-
mance of the generated results from each method.

Metrics. Following the general practice, four metrics including
FID [11], LPIPS [51], CLIP-image [33], and CLIP-aesthetic [40] are
applied to evaluate the quality of the generated images for compar-
ison our method with the SOTAs. While the FID score and LPIPS
score focus on the latent feature distance between ground truth and
generated images, the FID score emphasizes the overall distribution,
while LPIPS calculates the distance between each pair of generated
images and corresponding ground truth. It is worth noting that,
due to the limited number of test datasets, the FID score reported
in this article is derived from latent features extracted by the first
block of the pretrained CNN, which is denoted as 𝐹𝐼𝐷64. Since this
score is based on low-level features, it is more concerned with the
similarity between the generated image and the ground truth’s
underlying features. For these two criteria, the lower the FID and
LPIPS scores, the higher the synthesized image quality. Conversely,
the CLIP image assesses the cosine similarity between the ground

Table 1: Qunatitative evaluation and comparison between
several SOTA methods with Ours.

Methods Metrics
𝐹𝐼𝐷64 ↓ 𝐿𝑃𝐼𝑃𝑆 ↓ CLIP-image ↑ CLIP-aes ↑

CycleGAN 0.454 0.206 86.776* 5.322
SD(add text) 2.677 0.298 74.748 5.598*

LoRA(add text) 0.605 0.233 81.530 5.638
SD-finetuned 0.586 0.586 83.122 5.448
ControlNet 2.078 0.216 85.863 5.415
T2I-Adapter 0.762 0.216 85.221 5.305
Ground Truth — — — 5.398

Ours 0.557* 0.209* 87.677 5.407
The bold text denotes the best result and the second-best results are denoted with *.

Table 2: Time and memory consumption of image synthesis
SD SD w. LoRA Adapter ControlNet Ours

Time 8.13it/s 7.70it/s 8.31it/s 5.51it/s 7.93it/s
Parameters 4067MB 4080MB 4362MB 5445MB 4668MB

truth and synthesized images, where higher scores denote better
alignment. Similar to the CLIP image, the CLIP-aesthetic predictor
applies CLIP embeddings with an MLP layer to predict the average
preference for an image. Higher scores indicate better results.
4.2 Comparison Results
Quantitative Comparison: Table 1 illustrates the quality of syn-
thesized images between our method and other state-of-the-art
methods. For diffusion-based models, our proposed method out-
performs the others in terms of the LPIPS scores. The FID score
of the images from our method also achieves the best results in
diffusion models, which means the generated images are of higher
quality than those from other methods. CycleGAN achieves fa-
vorable results on these two criteria by introducing only minor
changes, though it does not fully capture the style of the illustra-
tive image. This will be discussed in more detail in the User Study
section. CLIP-image is a criterion that evaluates the quality of the
synthesized images; our method performs better than the others,
indicating that it carries more of the illustrative style. For CLIP-
aesthetic, the score from our method is higher than that of Adapter
and CycleGAN but lower than those of ControlNet, LoRA, and SD
with text. The reason for this is that this criterion is derived from
feature maps based on the pretrained CLIP model on the LAION-5B
dataset, which contains a larger proportion of real images. The
scores are assigned based on these real images, which can lead to
a shift in scoring. On the other hand, the scores obtained by our
method are closer to that of the ground truth, indicating that the
synthesized images from our method more closely resemble the
ground truth compared to those from other methods.
Table 2 denotes the details of consumption. Image synthesis tests
were conducted on a single RTX 3090 GPU with the resolution of
the synthesized images set to 512×512 pixels. The model parameter
sizes are calculated based on a float32 precision format. As shown in
the table, the inference time of our method is significantly shorter
than that of ControlNet’s, and slightly longer than those of the
Adapter and the baseline model. However, the usage of the time is
comparable. In terms of memory usage for parameters, our method
requires slightly more memory than the basic Stable Diffusion and
T2I-Adapter, but much less than ControlNet. This is because the
style adaptation module in our method has far fewer parameters
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Figure 5: Qualitative comparison between Uni-DlLoRA and other state-of-the-art approaches. From left to right, the displayed
results correspond to CycleGAN, Stable Diffusion (SD), fine-tuned SD, SD with LoRA, T2I-Adapter, ControlNet, and our method,
respectively. The text caption is utilized for content synthesis in SD, fine-tuned SD, and SD with LoRA, while the prompt
’illustrative style’ is used for style guidance in both SD and fine-tuned SD. The figure is best viewed when zoomed in.

than the extra UNet Denoiser. In summary, our proposed method
requires only a small amount of extra memory compared to Stable
Diffusion and can generate high-quality images with an illustrative
style on a home-use GPU.
Qualitative Comparison: The generated results include Cycle-
GAN [54] for GAN-based models, and for diffusion-based models,
we have pretrained Stable Diffusion (SD), Fine-tuned SD [36], SD
with LoRA [13], ControlNet [50], and T2I-Adapter [30], along with
results from ourmethod for comparison. Pretrained Stable Diffusion
(SD) has zero-shot capabilities but cannot perform style transfer
independently; text prompts are adopted for its synthesis. Similarly,
prompts are also adopted for Fine-tuned SD and SD with LoRA.

Figure 5 illustrates the comprehensive qualitative comparison. Gen-
erally speaking, images generated by T2I-Adapter, ControlNet, and
our method are able to capture the illustrative style, while Cycle-
GAN and SD with LoRA struggle to alter the style of the source
image. Since the pretrained SD learns the illustrative style from a
universal dataset, it cannot accurately capture the specific illustra-
tive style of a real designer. Specifically, all methods can preserve
the appearance of the input image in each row. However, results
from CycleGAN struggle to modify the style of the images, whereas
the generated images capture the style of the real images and ap-
pear more realistic when compared with illustrative images. The
images generated from fine-tuned Stable Diffusion, Stable Diffu-
sion with text, and Stable Diffusion with LoRA are able to capture
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Figure 6: User study. The table on the left represents the R2G
score, while the table on the right illustrates the SCR score.

the semantic information from the input images. However, they
lack the detailed nuances of the illustrative style. Additionally, the
generated images do not integrate harmoniously with the overall
composition. For instance, see rows (b) and (c): the resulting images
appear rigid and exhibit a discernible style conflict when compared
with the ground truth. In terms of the generated results from the
T2I-Adapter, ControlNet, and our own model, all are capable of con-
veying the illustrative style while maintaining the appearance of
the runway model. However, the T2I-Adapter and ControlNet may
fall short in replicating the intricacies of the clothing. For example,
there is a slight color shift in the results from the T2I-Adapter evi-
dent in rows (b) and (d). Additionally, the clothing details exhibit
variations in row (c). As for the images generated by ControlNet,
while they effectively capture the style and general appearance,
there is potential for improvement in clothing details, such as the
red attire in row (c) and the gray clothing in row (a).
User Study: Since the evaluation of illustrations is often abstract
and subject to many human perceptions, the opinions of 100 human
participants will be used as the standard for assessing effective-
ness. A user study was conducted to assess the abstract quality of
the results from our method compared to those obtained by other
methods. Two approaches are adopted for this evaluation. The first
employs R2G metrics, as mentioned in the research by Zhu et al.
(2019) [57], which measures the percentage of generated images
classified as ground truth (illustrative images). The second criterion
involves the scores assigned to the highest-quality results by the
participants. They are instructed to base their evaluations on the
ability of each competing approach to produce accurate clothing
and an illustrative style. This is quantified using another metric
named SCR, defined as the percentage of images considered the best
among all the models. Higher values in these three metrics indicate
better performance. The comparative results of the study are illus-
trated in Figure 6, which clearly demonstrates that our methods
surpass the others in terms of human perception: 50% of the results
from our method are perceived as ground truth. Regarding the SCR
metric, our SCR score is 53%, indicating that participants favored
our approach more frequently than the competing methods.
4.3 Ablation Study
An ablation study was conducted to evaluate the impact of each
component within the proposed model in the StylishU-SR dataset.
Table 3 illustrates the impact of each component on the dataset.

Table 3: Qunatitative comparison between each component.

Methods Metrics
𝐹𝐼𝐷64 ↓ 𝐿𝑃𝐼𝑃𝑆 ↓ CLIP-image ↑ CLIP-aes ↑

Baseline (SD) 2.677 0.298 74.748 5.598
Uniadapter 0.814 0.214 83.789 5.291
Uni-SgLoRA 0.749* 0.213* 84.814* 5.356
Full Model 0.557 0.209 87.677 5.407*

The bold text denotes the best result and the second-best results are denoted with *.
Real Image OursBaseline Uniadapter Uni-SgLoRAGround Truth Reconstructed

Figure 7: Ablation results on the StylishU-SR. The images in
this figure correspond to the ablation studies in Table 3.
Baseline (SD) neither employs the uniadapter module only a UNet-
based noise prediction module with extra prompt "illustrative style".
Although it can generate images with a precise appearance in Fig-
ure 7, its ability to retain the illustrative style and preserve the
texture of the garments is limited. To effectively model the complex
textures within the clothing, a learnable adaption module extracts
image information and then sent to the UNet denoiser. When in-
corporating latent appearance features extracted by a pretrained
adaptation module, we refer to this process as Uniadapter. Com-
pared to the baseline, the Uniadapter reduces the 𝐹𝐼𝐷64 score from
2.677 to 0.814, indicating a performance improvement. As shown
in Figure 7, the results from Uniadapter capture more appearance
and image information than the baseline model. To enhance the
style translation, a style adaptation module is adopted during both
training and sampling to capture the style features. From the table,
it is clear to see that the style adaption module improves the re-
sults in all four criteria. The SgLoRA module not only improves the
generation quality from the statistics but also in human perception
shown in Figure 7. To further disentangle the style and content
information of the source image, the Dual-LoRA module is adapted
to align the output image content and style with the source image
content and style. The last column in Figure 7 illustrates that our
model can successfully catch the content and reconstruct the source
image with good quality. In comparison with Uni-SgLoRA, our full
model improves the 𝐹𝐼𝐷64, 𝐿𝑃𝐼𝑃𝑆 , 𝐶𝐿𝐼𝑃-𝑖𝑚𝑎𝑔𝑒 and 𝐶𝐿𝐼𝑃−𝑎𝑒𝑠 by
a margin of 0.192, 0.004, 2.863 and 0.051, respectively.
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to 1. Generated images progressively carry the illustrative style. Both images inside the dataset and in the wild are evaluated.

4.4 Illustrative Style Interpolation
The proposed model is capable of modifying the final generated
graphic’s illustrative style by adjusting the sampling positions. We
utilize the DDIM [43] sampling approach for the generation task.
Specifically, the image generation task involves sampling a total
of 50 times. To adjust the strength of the effect, we perform linear
interpolation with values between 0 and 1. Based on this value, we
add Gaussian noise of corresponding strength to the latent features
extracted from the input image. Additionally, the introduction of
Gaussian noise at various timesteps is also based on the interpolated
value. This allows the generated image to obtain more style infor-
mation. Three samples from the test dataset and three real-world
samples are selected to demonstrate the effectiveness of the illus-
trative style interpolation. As depicted in Figure 8, it is evident that
the style of the images undergoes a gradual transformation from
the left source image to the right source image. This gradual shift
showcases the model’s capability to provide a smooth transition in
two different styles.

4.5 Generate Image in the Wild
Our model, which is fine-tuned based on a pretrained stable dif-
fusion model, exhibits strong robustness and is also capable of
performing illustrative style transfer on runway images outside
of the dataset. The images in the figure showcase some successful
instances of illustrative style transformation. As illustrated in the
right half of the Figure 8. we can observe that for the image that
is out-of-dataset, the method not only generates images that carry
illustrative style but also captures varying degrees of style based on
the number of sample steps. This successful style evolution and the
consistency observed in images from the test dataset and images in
the wild underscore the robustness and strong adaptability of the
proposed method.

5 LIMITATIONS
Although our proposed method achieves solid results in most cases,
it still fails in certain scenarios as shown in Figure 9. For instance,
due to the images being formed by the overlay of noise, precise

Figure 9: Failure cases using the proposed method.

alignment remains an area in the complicated domain like fashion
for improvement. As demonstrated in the figure, the generated illus-
trative images still exhibit noticeable differences from the original
in aspects such as the texture of the clothing (the first six exam-
ples), and the shape of the garments (the rest six examples). The
aforementioned examples also prove that the image transformation
through this method entails a certain level of randomness and does
not align as closely with the source image as might be desired. The
sketch images may be insufficient to carry all the detail necessary,
thus failing to constrain the final image synthesis adequately.

6 CONCLUSIONS AND FUTUREWORK
Leveraging the existing challenges within illustrative transforma-
tion, this paper has created a newhigh-resolution real-to-illustration
dataset. It also introduces a novel approach to resolve these chal-
lenges. The proposed model incorporates the concept of disen-
tanglement, utilizing a shared image extractor and distinct style
adaption modules to learn the content and style of images, and
converts these into an illustrative style. This innovation contributes
significantly to the fashion field. Nevertheless, the method has lim-
itations, and the illustrative style transformation does not fully
achieve alignment with the source images. In the future, we aim to
achieve complete content alignment while better-capturing texture
information and further enhancing the style transformation.
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