
REFERENCES

A QUERY EXAMPLES

Our benchmark suite incorporates a broad range of query
types. We show examples of each query type as follows.

LLM filter. This query type leverages LLM for filtering
data within a WHERE clause. The LLM processes and ana-
lyzes information to meet some specified criteria, such as
identifying whether a movie is suitable for kids. This query
type illustrates typical use cases in sentiment analysis and
content filtering, which are important for application tasks,
such as customer feedback analysis and content moderation.

SELECT t.movietitle
FROM MOVIES
WHERE LLM(

'Given the following fields,
determine whether the movie is
suitable for kids. Answer ONLY
with "Yes" or "No".',

↪→
↪→
↪→
movieinfo,
reviewcontent,
reviewtype,
movietitle

) = 'Yes'

LLM projection. This query type makes calls to an LLM
within a SELECT statement to process information from
specified database column(s). It reflects common tasks in
data analytics in which the LLM is used for summarization
and interpretation based on certain data attributes.

SELECT LLM(
'Given the following information,

summarize good qualities in
this movie that led to a
favorable rating.',

↪→
↪→
↪→
reviewcontent, movieinfo

)
FROM MOVIES

Multi-LLM invocation. This query type involves multiple
LLM calls in different parts of the query and addresses sce-
narios in which several layers of data processing or analysis
are required. It represents advanced analytical tasks, such
as combining different data insights.

SELECT LLM(
'Given the information about a

movie, summarize the good
qualities that led to a
favorable rating.',

↪→
↪→
↪→
reviewtype,
reviewcontent,
movieinfo,
genres

)
FROM MOVIES

WHERE LLM(
'Given the following review, answer

whether the sentiment is
"POSITIVE" or "NEGATIVE".
Respond ONLY with "POSITIVE" or
"NEGATIVE", in all caps.',

↪→
↪→
↪→
↪→
reviewcontent

) = 'NEGATIVE'

LLM aggregation. This query type incorporates an AVG
operator that incorporates LLM outputs into further query
processing. For example, one could use LLMs to assign
sentiment scores to individual reviews and then aggregate
these scores to calculate an average sentiment for overall
customer feedback. This query type is essential for tasks
that need to extract insights from complex textual data.

SELECT AVG(
LLM(

'Rate sentiment in numerical
values from 1 (bad) to 5
(good).',

↪→
↪→
reviewcontent, movieinfo

)
) AS AverageScore
FROM MOVIES

Retrieval-augmented generation (RAG). This query type
leverages external knowledge bases for enhanced LLM pro-
cessing, enriching LLM queries with a broader context.
It simulates use cases where queries need to pull in rele-
vant information from external sources, such as document
databases or knowledge graphs, to provide comprehensive
answers.

SELECT LLM(
'Given a question and four

supporting contexts, answer the
provided question.',
VectorDB.search(question, k=4),
question)

↪→
↪→
↪→
↪→

FROM FEVER

B DATASET INFORMATION

We detail the fields and functional dependencies (FDs) used
for each dataset as follows.

MOVIES

columns:
genres, movieinfo, movietitle,
productioncompany, reviewcontent,
reviewtype, rottentomatoeslink,
topcritic

FDs:
movieinfo, movietitle,
rottentomatoeslink



PRODUCTS

columns:
description, id, parent_asin,
product_title, rating, review_title,
text, verified_purchase

FDs:
parent_asin, product_title

BIRD

columns:
Body, PostDate, PostId, Text

FDs:
Body, PostId

PDMX

columns:
artistname, bestarrangement, bestpath,
bestuniquearrangement, composername,
complexity, genre, grooveconsistency,
groups, hasannotations, hascustomaudio,
hascustomvideo, haslyrics, hasmetadata,
haspaywall, id, isbestarrangement,
isbestpath, isbestuniquearrangement,
isdraft, isofficial, isoriginal,
isuserpro, isuserpublisher, isuserstaff,
license, licenseurl, metadata,
nannotations, ncomments, nfavorites,
nlyrics, notesperbar, nnotes, nratings,
ntracks, ntokens, nviews, path,
pitchclassentropy, postdate, postid,
publisher, rating, scaleconsistency,
songlength, songlengthbars,
songlengthbeats, songlengthseconds,
songname, subsetall, subsetdeduplicated,
subsetrated, subsetrateddeduplicated,
subtitle, tags, text, title, tracks,
version

FDs:
[metadata, path],
[hasannotations, hasmetadata, isdraft,
isofficial, isuserpublisher, subsetall
]

BEER

columns:
beer/beerId, beer/name, beer/style,
review/appearance, review/overall,
review/palate, review/profileName,
review/taste, review/time

FDs:
[beer/beerId, beer/name]

FEVER

-- FEVER --
columns:
claim, evidence1, evidence2,
evidence3, evidence4

FDs: []

SQuAD

columns:
question, context1, context2,
context3, context4, context5

FDs: []

C PROMPTS

We detail the system and user prompts for each query type
and dataset as follows.

System Prompt

You are a data analyst. Use the provided JSON data
to answer the user query based on the specified
fields. Respond with only the answer,
no extra formatting.

Answer the below query:
{QUERY}

Given the following data:
{fields}

User Prompt - LLM Filter

MOVIES: Given the following fields, answer in one
word, 'Yes' or 'No', whether the movie would be
suitable for kids. Answer with ONLY 'Yes' or 'No'.

PRODUCTS: Given the following fields determine if
the review speaks positively ('POSITIVE'),
negatively ('NEGATIVE'), or netural ('NEUTRAL')
about the product. Answer only 'POSITIVE',
'NEGATIVE', or 'NEUTRAL', nothing else.

BIRD: Given the following fields related to posts
in an online codebase community, answer whether the
post is related to statistics. Answer with only
'YES' or 'NO'.

PDMX: Based on following fields, answer 'YES' or
'NO' if any of the song information references a
specific individual. Answer only 'YES' or 'NO',
nothing else.

BEER: Based on the beer descriptions, does this
beer have European origin? Answer 'YES' if it does
or 'NO' if it doesn't.



User Prompt - LLM Projection

MOVIES: Given information including movie
descriptions and critic reviews, summarize the good
qualities in this movie that led to a favorable
rating. (also used in multi-invocation)

PRODUCTS: Given the following fields related to
amazon products, summarize the product, then answer
whether the product description is consistent with
the quality expressed in the review. (also used
in multi-invocation)

BIRD: Given the following fields related to posts
in an online codebase community, summarize how the
comment Text related to the post body.

PDMX: Given the following fields, provide an
overview on the music type, and analyze the given
scores. Give exactly 50 words of summary.

BEER: Given the following fields, provide an
high-level overview on the beer and review in a
20 words paragraph.

User Prompt - LLM Aggregation

MOVIES: Given the following fields of a movie
description and a user review, assign a sentiment
score for the review out of 5. Answer with ONLY a
single integer between 1 (bad) and 5 (good).

PRODUCTS: Given the following fields of a product
description and a user review, assign a sentiment
score for the review out of 5. Answer with ONLY a
single integer between 1 (bad) and 5 (good).

User Prompt - Multi-LLM Invocation

MOVIES/PRODUCTS: Given the following review, answer
whether the sentiment associated is 'POSITIVE' or
'NEGATIVE'. Answer in all caps with ONLY 'POSITIVE'
or 'NEGATIVE':

User Prompt - RAG

FEVER: You are given 4 pieces of evidence as
{evidence1}, {evidence2}, {evidence3}, and
{evidence4}. You are also given a claim as {claim}.
Answer SUPPORTS if the pieces of evidence support
the given {claim}, REFUTES if the evidence refutes
the given {claim}, or NOT ENOUGH INFO if there is
not enough information to answer. Your answer
should just be SUPPORTS, REFUTES, or NOT ENOUGH
INFO and nothing else.

SQuAD: Given a question and supporting contexts,
answer the provided question.

D ABLATIONS

We present two sets of ablation experiments: one comparing
the prefix hit rate (PHR) between GGR and an optimal
oracle, and another examining the impact of using a smaller
LLM model.

D.1 PHR of GGR v.s. OPHR

OPHR is a very expensive brute-force oracle algorithm that
iterates through all possible combinations of value groups
and calculates the prefix hit count. In our empirical evalua-
tion, it is impractical to run on larger datasets.

Thus, we test the first (10, 25, 50, 100, 200) rows for each
dataset and terminate OPHR runs exceeding 2 hours, report-
ing the result of the successful run with the most rows. For
PDMX, we reduce 57 columns to 10 to enable runs on even
as few as 10 rows. The PHR (prefix hit rate) and solver
runtime in seconds across datasets are reported in Table 1,
with the dataset labeled as {dataset}-{#rows}.

Dataset PHR (%) Solver Runtime (s)

OPHR GGR Diff OPHR GGR

Movies-50 80.6 80.6 0% 2556 0.05
Products-25 19.7 18.5 -1.2% 357 0.06
BIRD-50 77.5 76.2 -1.3% 0.43 0.05
PDMX-25 29.4 28.6 -0.8% 822 0.05
Fever-50 7.3 6.9 -0.4% 110 0.23
Beer-10 25.7 25.6 -0.1% 1269 0.08
SQuAD-10 34.0 34.0 0% 1.6 0.05

Table 1. Comparison of Prefix Hit Rate (PHR) and solver runtime
across datasets. GGR achieves near-optimal PHR while being
orders of magnitude faster than OPHR.

We can see that on these small samples of the datasets, our
algorithm (GGR) achieves within 2% of the optimal, but
can be up to hours faster on solver runtime.

D.2 Results of Smaller Model

To analyze the impact of using a smaller model, we run
the Filter Query described in Fig.3a with the Llama-3.2-1B
model, using the same setup as with Llama-3 8B (i.e., single
L4 instance), and compare the prefix hit rate and end-to-
end query execution time of GGR with the default vLLM
baseline (i.e. Cache Original). The results are reported in
Table 2.

Metric BIRD Movies PDMX

Runtime (orig/GGR) 1.5× 1.3× 1.3×
Orig PHR (%) 10.41 29.32 11.97
GGR PHR (%) 83.99 82.10 56.00

Metric Products BEER

Runtime (orig/GGR) 1.4× 1.2×
Orig PHR (%) 24.06 47.98
GGR PHR (%) 82.10 73.93

Table 2. Cache runtime ratio and prefix hit rate (PHR) (%) com-
parison between original and GGR ordering for Llama-3.2-1B.

We observe similar prefix hit rates with Llama-3.2-1B com-
pared to our previous 8B model runs. This consistency



arises from the effectiveness of GGR field reordering, which
converts non-reusable field contents (0 hits) into reusable
prefixes within the cache. We also observe that under the
same GPU instance setup (e.g., L4 with 24 GB memory),
larger models like Llama-8B (7.6 GB) exhibit larger relative
performance gains from GGR compared to smaller models
like Llama-1B (1.8 GB), despite seeing similar prefix hit
rates. This is because prefix caching benefits from reducing
computational overhead on shared prefixes and enabling
larger batch sizes for LLM generation by reducing memory
usage through sharing. For smaller models, the availability
of ample GPU memory diminishes the relative impact of
prefix caching, as larger batch sizes can be achieved without
relying on caching. But for larger models, or when there is
less available GPU space, prefix caching benefits become
more pronounced.


