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A Constrained margin ablation1

This section demonstrates the effect of several hyperparameters on the performance of constrained2

margins. We analyse the selection of the number of principal components, the number of samples, as3

well as the effect of clipping.4

A.1 Number of principal components5

In order to better understand the interaction between the selection of the number of principal6

components and predictive power, we calculate the mean constrained margin using 1 to 50 principal7

components for all the development set tasks (tasks 1 to 5). We once again make use of 5 000 samples.8

However, in this case, the first order Taylor approximation is used to reduce the computational burden.9

The result of this analysis is shown in Figure 1. We indicate the number of principal components10

selected by the Kneedle algorithm (applied to the principal components in descending order of11

explained variance) for each task with a star.12

Figure 1: Predictive performance (Kendall’s rank correlation) as a function of the number of principal
components for Task 1 (red circles), 2 (blue squares), 4 (green diamonds), and 5 (yellow triangles).
The number of principal components reported on per task in the main paper is indicated with a star.

One observes that the elbow method selects the number of components in a near-optimal fashion for13

Task 1, 2, and 4. Furthermore, the optimal number is generally very low, whereafter the correlation14

decreases. Task 5 (which is the task for which constrained margins produce the lowest performance)15
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behaves in a contrary manner, as the ranking correlation increases as the number of components16

becomes larger. We find that it only reaches a maximum rank correlation of 0.4 at 270 components17

(not shown here).18

A.2 Number of samples19

We have used 5 000 samples to calculate the mean constrained margin for each task (and the same20

number for all other margin measurements). It is worth determining what effect the number of21

samples has on the final performance. In Figure 2 we show the Kendall’s rank correlation between22

mean constrained margin and test accuracy for the development set using 500 to 5 000 samples (using23

the modified DeepFool algorithm).24

Figure 2: Predictive performance of constrained margins (Kendall’s rank correlation) as a function of
the number of principal components for Task 1 (red circles), 2 (blue squares), 4 (green diamonds),
and 5 (yellow triangles).

One observes that the rank correlation plateaus rather quickly for most tasks, and one can likely25

get away with only using 500 to 1 000 samples per model. However, to mitigate any effect that the26

stochastic selection of training samples can have on the reproducibility of the results, we have chosen27

to use 5 000 throughout. To this end, we show the number of principal components selected, as well28

as the number of samples used for each task in Table 1, note that Task 6 and 7 use the maximum29

number of samples available.30

Table 1: Number of principal components and samples used for each task to calculate constrained
margins. Tasks 6 and 7 use the maximum number of samples available for the dataset.

Task Dataset Components Samples
1 CIFAR10 5 5 000
2 SVHN 3 5 000
4 CINIC10 5 5 000
5 CINIC10 5 5 000
6 OxFlowers 8 2 040
7 OxPets 3 3 680
8 FMNIST 4 5 000

9 CIFAR10
(augmented) 5 5 000
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A.3 Enforcing bound constraints31

Our modified DeepFool algorithm (Algorithm 1 in the main paper) enforces bound constraints on32

the sample by clipping x̂ to stay within the minimum and maximum feature values of the dataset33

after each step (see line 10 of the algorithm). Since the original images have pixel values between34

0 and 1, the z-normalised data has a strict lower and upper bound. Allowing x̂ to deviate outside35

these values will produce boundaries that cannot exist in practice. Given that the original DeepFool36

algorithm does not include any form of bound constraints, we analyse the effect clipping has on the37

performance of constrained and standard input margins. Table 2 shows the Kendall’s rank correlation38

per task with and without clipping.39

Table 2: Kendall’s rank correlation between mean margin and test accuracy for constrained and
standard input margins with and without clipping.

Task Constrained Input
Clipped Unclipped Clipped Unclipped

1 0.8040 0.8088 -0.1235 -0.1239
2 0.8672 0.8463 0.6730 0.6716
4 0.6651 0.6576 0.2224 0.2163
5 0.2292 0.1984 -0.0367 -0.0655
6 0.8008 0.7990 -0.2190 -0.2194
7 0.5027 0.5133 0.3144 0.3162
8 0.6004 0.4672 -0.1849 -0.1521
9 0.8145 0.8024 0.1089 0.1048

Average 0.6605 0.6366 0.0943 0.0935

It is evident that clipping has little effect on standard input margins – this makes sense, given that40

samples on the decision boundary are generally very close to the training sample. However, in41

the case of constrained margins, we observe that clipping improves the results in most cases, and42

especially so for Task 8. This demonstrates that enforcing the bound constraints is a useful inclusion.43

B Extended margin comparison44

This section contains additional results relevant to Section 4.2 in the main paper. We compare using45

the first-order Taylor approximation to DeepFool, and also the selection of hidden layers.46

B.1 Comparison of Taylor and DeepFool47

For constrained and standard input margins, we have experimented with using both the first-order48

Taylor approximation as well as the DeepFool method to calculate the distance to the decision49

boundary. Here we do a full comparison between the different methods. Tables 3 and 4 show the50

predictive performance of all the variations using Kendall’s rank correlation and CMI, respectively.51

Table 3: Kendall’s rank correlation between mean margin and test accuracy for constrained, standard
input, and hidden margins for the PGDL dataset. DF indicates margins calculated using the DeepFool
algorithm, while Taylor indicates the first-order Taylor approximation.

Task Constrained
(DF)

Constrained
(Taylor)

Input
(DF)

Input
(Taylor)

Hidden 1st
(Taylor)

Hidden all
(Taylor)

1 0.8040 0.6991 -0.1235 0.0265 0.5794 0.7825
2 0.8672 0.8281 0.6730 0.6841 0.7037 0.8281
4 0.6651 0.6966 0.2224 0.6251 0.7958 0.2707
5 0.2292 0.2381 -0.0367 0.3571 0.5427 0.1329
6 0.8008 0.6753 -0.2190 -0.1351 0.4427 0.2839
7 0.5027 0.4192 0.3144 0.3215 0.3623 0.3481
8 0.6004 0.3419 -0.1849 -0.1233 -0.0656 0.1859
9 0.8145 0.7258 0.1089 0.1573 0.7097 0.4556

Average 0.6605 0.5780 0.0943 0.2392 0.5088 0.4110
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Table 4: Conditional Mutual Information between mean margin and generalization gap for constrained,
standard input, and hidden margins for the PGDL dataset. DF indicates margins calculated using the
DeepFool algorithm, while Taylor indicates the first-order Taylor approximation.

Task Constrained
(DF)

Constrained
(Taylor)

Input
(DF)

Input
(Taylor)

Hidden 1st
(Taylor)

Hidden all
(Taylor)

1 39.37 23.77 01.36 00.07 09.40 29.78
2 51.12 43.37 05.01 06.12 37.74 32.23
4 21.48 22.18 03.49 14.95 34.73 00.79
5 05.12 05.42 00.73 08.46 19.11 01.55
6 30.52 10.65 01.77 00.57 04.24 01.36
7 12.60 12.91 02.16 01.47 05.04 05.81
8 13.54 03.70 00.68 00.70 00.36 00.91
9 51.46 18.61 00.80 00.29 23.74 04.75

Average 28.15 17.58 02.00 04.08 16.80 09.65

One observes that constrained margins are significantly improved if the more accurate DeepFool52

method is applied, while standard input margins actually perform worse when using DeepFool. Due53

to the high dimensionality of hidden layers, it is computationally infeasible to apply DeepFool to54

hidden margins. However, note that constrained margins calculated using the Taylor approximation55

still outperform hidden margins calculated using the Taylor approximation.56

B.2 Comparison of hidden-layer selection57

As mentioned in Section 4.1, there are three different methods that have previously been used to58

select relevant hidden layers when calculating hidden margins. In Table 5 we compare all variations:59

Using only the first (‘First’) or last (‘Last’) layer [6], the average margin over three equally spaced60

layers (‘Equally spaced’) [11], and average over all layers (‘All’) [17].61

Table 5: Kendall’s rank correlation between mean hidden margin and test accuracy using different
hidden layer selections.

Task First Last Equally
spaced All

1 0.5794 0.8294 0.4688 0.7825
2 0.7037 0.7135 0.8686 0.8281
4 0.7958 0.1066 0.6778 0.2707
5 0.5427 0.0089 0.2798 0.1329
6 0.4427 0.2365 0.2211 0.2839
7 0.3623 0.3179 0.3055 0.3481
8 -0.0656 0.2068 -0.0944 0.1859
9 0.7097 0.3831 0.4677 0.4556

Average 0.5088 0.3503 0.3994 0.4110

It is clear that the selection of hidden layers plays a significant role in the overall performance of62

hidden margins, and we observe a large variation per task between the different methods. While63

we have used the two best-performing methods as a benchmark to compare with in the main paper64

(‘First’ and ‘All’), this biases the comparison in favour of hidden margins, as there is no method at65

present to determine a priori which hidden layer selection will perform best for a given task.66
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C Derivation of constrained margins (Equation (5))67

This section uses the same notation as defined in Section 3.2 of the main paper. We first describe68

the standard linear approximation of the margin following Huang et al. [32], before deriving the69

constrained margin of Equation (5) as numbered in the main paper.70

Any function f can be approximated with its differential at point x using71

f̂(x+ d) = f(x) +Hd (1)
where H = ∇xf(x) (2)

that is, the Jacobian of the output with regard to the input features at point x. We aim to find the72

smallest ||d|| for some norm ||.|| such that f(x) ̸= f(x+ d), or73

fj(x+ d) ≥ fi(x+ d) (3)

If we approximate f(.) with f̂(.), this implies:74

fj(x) +∇xfj(x) · d ≥ fi(x) +∇xfi(x) · d
=⇒ (∇xfj(x)−∇xfi(x)) · d ≥ fi(x)− fj(x) (4)

where ∇xfk(x) is the gradient vector of the kth output value of f with regard to input x. Then, as75

shown in [32], the maximum ||d|| will be at:76

||d|| =
fi(x)− fj(x)

||∇xfj(x)−∇xfi(x)||∗
(5)

where ||.|| and ||.||∗ are dual norms. Specifically, if ||.|| is the L2 norm, then:77

d =
fi(x)− fj(x)

||∇xfj(x)−∇xfi(x)||22
(∇xfj(x)−∇xfi(x)) (6)

78

and ||d||2 =
fi(x)− fj(x)

||∇xfj(x)−∇xfi(x)||2
(7)

Equations (6) and (7) provide the standard linear approximation of the margin as used by various79

authors [11, 16].80

The derivation process for constrained margins is identical – it is only the calculation of the Jacobian81

that differs, as the gradient is calculated with regard to the transformed features rather than the82

original features. Note that the size and direction of the update are calculated with regard to the83

transformed features but the actual step is given in the original feature space.84

Let Pm be the matrix constructed from the first m principal components as column vectors:85

Pm = [p1,p2, ....pm]T (8)

The new parameterisation x′ of any point x is then approximated by:86

x′ = Pmx (9)

where x is a column vector. Let Bm be the pseudoinverse of Pm. Since the full PN , when all87

components are selected, is orthogonal, (PN )−1 = (PN )T and Bm then equals the first m rows of88

(PN )T . Then we can express each individual term xk in terms of the elements of x′:89

xk ≈
∑
s

bk,sx
′
s =

∑
s

ps,kx
′
s (10)

with br,c the element in Bm at row r and column c, and pr,c at the same position in Pm.90
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Let the Jacobian as used in Equations (1) to (7) be given by91

Hr,c =
δfr
δxc

∣∣∣
x

(11)

Then, assuming X input features we can use the existing N × X Jacobian, to calculate the new92

N ×m Jacobian in terms of x′ rather than x, using the chain rule:93

H ′
r,c =

δfr(x)

δx′
c

=
δfr(x)

δx1
.
dx1

dx′
c

+ ...+
δfr(x)

δxn
.
dxn

dx′
c

= Hr,1pc,1 + ...+Hr,npc,n
= ∇xfr(x) · pc (12)

where pc is the cth row of P , transposed. Then each row h′
r of the new Jacobian in terms of x′ is94

given by95

h′
r = ∇xfr(x)P

T (13)

Equation (13) which can be used directly in the adjusted version of Equations (6) and (7), such that96

d =
fi(x)− fj(x)

||h′
j − h′

i||22
(h′

j − h′
i)

=
fi(x)− fj(x)

||(∇xfj(x)−∇xfi(x))PT ||22
(∇xfj(x)−∇xfi(x))P

T (14)

and||d||2 =
fi(x)− fj(x)

||[∇xfj(x)−∇xfi(x)]PT ||2
(15)

In effect, we start at point x (the only point we have a model output for), and then use the gradient in97

the lower dimensional space to find the minimal distance ||d||2.98
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