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A Constrained margin ablation

This section demonstrates the effect of several hyperparameters on the performance of constrained
margins. We analyse the selection of the number of principal components, the number of samples, as
well as the effect of clipping.

A.1 Number of principal components

In order to better understand the interaction between the selection of the number of principal
components and predictive power, we calculate the mean constrained margin using 1 to 50 principal
components for all the development set tasks (tasks 1 to 5). We once again make use of 5 000 samples.
However, in this case, the first order Taylor approximation is used to reduce the computational burden.
The result of this analysis is shown in Figure 1. We indicate the number of principal components
selected by the Kneedle algorithm (applied to the principal components in descending order of
explained variance) for each task with a star.
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Figure 1: Predictive performance (Kendall’s rank correlation) as a function of the number of principal
components for Task 1 (red circles), 2 (blue squares), 4 (green diamonds), and 5 (yellow triangles).
The number of principal components reported on per task in the main paper is indicated with a star.

One observes that the elbow method selects the number of components in a near-optimal fashion for
Task 1, 2, and 4. Furthermore, the optimal number is generally very low, whereafter the correlation
decreases. Task 5 (which is the task for which constrained margins produce the lowest performance)
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behaves in a contrary manner, as the ranking correlation increases as the number of components
becomes larger. We find that it only reaches a maximum rank correlation of 0.4 at 270 components
(not shown here).

A.2 Number of samples

We have used 5 000 samples to calculate the mean constrained margin for each task (and the same
number for all other margin measurements). It is worth determining what effect the number of
samples has on the final performance. In Figure 2 we show the Kendall’s rank correlation between
mean constrained margin and test accuracy for the development set using 500 to 5 000 samples (using
the modified DeepFool algorithm).
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Figure 2: Predictive performance of constrained margins (Kendall’s rank correlation) as a function of
the number of principal components for Task 1 (red circles), 2 (blue squares), 4 (green diamonds),
and 5 (yellow triangles).

One observes that the rank correlation plateaus rather quickly for most tasks, and one can likely
get away with only using 500 to 1 000 samples per model. However, to mitigate any effect that the
stochastic selection of training samples can have on the reproducibility of the results, we have chosen
to use 5 000 throughout. To this end, we show the number of principal components selected, as well
as the number of samples used for each task in Table 1, note that Task 6 and 7 use the maximum
number of samples available.

Table 1: Number of principal components and samples used for each task to calculate constrained
margins. Tasks 6 and 7 use the maximum number of samples available for the dataset.

Task Dataset Components  Samples
1 CIFAR10 5 5000
2 SVHN 3 5000
4 CINIC10 5 5000
5 CINIC10 5 5000
6 OxFlowers 8 2 040
7 OxPets 3 3680
8 FMNIST 4 5000
CIFARI10
? (augmented) 3 5 000
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A.3 Enforcing bound constraints

Our modified DeepFool algorithm (Algorithm 1 in the main paper) enforces bound constraints on
the sample by clipping X to stay within the minimum and maximum feature values of the dataset
after each step (see line 10 of the algorithm). Since the original images have pixel values between
0 and 1, the z-normalised data has a strict lower and upper bound. Allowing X to deviate outside
these values will produce boundaries that cannot exist in practice. Given that the original DeepFool
algorithm does not include any form of bound constraints, we analyse the effect clipping has on the
performance of constrained and standard input margins. Table 2 shows the Kendall’s rank correlation
per task with and without clipping.

Table 2: Kendall’s rank correlation between mean margin and test accuracy for constrained and
standard input margins with and without clipping.

Task Constrained Input
Clipped Unclipped Clipped Unclipped
1 0.8040 0.8088 -0.1235  -0.1239
2 0.8672 0.8463 0.6730 0.6716
4 0.6651 0.6576 0.2224 0.2163
5 0.2292 0.1984 -0.0367  -0.0655
6 0.8008 0.7990 -0.2190  -0.2194
7 0.5027 0.5133 0.3144 0.3162
8 0.6004 0.4672 -0.1849  -0.1521
9 0.8145 0.8024 0.1089 0.1048

Average  0.6605 0.6366 0.0943 0.0935

It is evident that clipping has little effect on standard input margins — this makes sense, given that
samples on the decision boundary are generally very close to the training sample. However, in
the case of constrained margins, we observe that clipping improves the results in most cases, and
especially so for Task 8. This demonstrates that enforcing the bound constraints is a useful inclusion.

B Extended margin comparison

This section contains additional results relevant to Section 4.2 in the main paper. We compare using
the first-order Taylor approximation to DeepFool, and also the selection of hidden layers.

B.1 Comparison of Taylor and DeepFool

For constrained and standard input margins, we have experimented with using both the first-order
Taylor approximation as well as the DeepFool method to calculate the distance to the decision
boundary. Here we do a full comparison between the different methods. Tables 3 and 4 show the
predictive performance of all the variations using Kendall’s rank correlation and CMI, respectively.

Table 3: Kendall’s rank correlation between mean margin and test accuracy for constrained, standard
input, and hidden margins for the PGDL dataset. DF indicates margins calculated using the DeepFool
algorithm, while Taylor indicates the first-order Taylor approximation.

Constrained Constrained  Input Input  Hidden Ist Hidden all

Task (DF) (Taylor) ~ (DF)  (Taylor)  (Taylor)  (Taylor)

i 0.8040 06991 0.1235 00265 05794  0.7825

2 0.8672 0.8281  0.6730 0.6841  0.7037 0.8281

4 0.6651 0.6966 02224 0.6251 07958 02707

5 0.2292 02381  -0.0367 03571 05427 01329

6 0.8008 06753  -02190 -0.1351  0.4427 0.2839

7 0.5027 04192 03144 03215 03623 0.3481

8 0.6004 03419  -0.1849 -0.1233  -0.0656  0.1859

9 0.8145 07258  0.1089  0.1573  0.7097 0.4556
Average  0.6605 05780 00943 02392 0.5088 04110
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Table 4: Conditional Mutual Information between mean margin and generalization gap for constrained,
standard input, and hidden margins for the PGDL dataset. DF indicates margins calculated using the
DeepFool algorithm, while Taylor indicates the first-order Taylor approximation.

Constrained Constrained Input Input  Hidden Ist Hidden all

Task (DF) (Taylor) (DF) (Taylor) (Taylor) (Taylor)
1 39.37 23.77 01.36  00.07 09.40 29.78
2 51.12 43.37 05.01 06.12 37.74 32.23
4 21.48 22.18 03.49 14.95 34.73 00.79
5 05.12 05.42 00.73 08.46 19.11 01.55
6 30.52 10.65 01.77  00.57 04.24 01.36
7 12.60 12.91 02.16  01.47 05.04 05.81
8 13.54 03.70 00.68 00.70 00.36 00.91
9 51.46 18.61 00.80  00.29 23.74 04.75
Average 28.15 17.58 02.00  04.08 16.80 09.65

One observes that constrained margins are significantly improved if the more accurate DeepFool
method is applied, while standard input margins actually perform worse when using DeepFool. Due
to the high dimensionality of hidden layers, it is computationally infeasible to apply DeepFool to
hidden margins. However, note that constrained margins calculated using the Taylor approximation
still outperform hidden margins calculated using the Taylor approximation.

B.2 Comparison of hidden-layer selection

As mentioned in Section 4.1, there are three different methods that have previously been used to
select relevant hidden layers when calculating hidden margins. In Table 5 we compare all variations:
Using only the first (‘First’) or last (‘Last’) layer [6], the average margin over three equally spaced
layers (‘Equally spaced’) [11], and average over all layers (‘All’) [17].

Table 5: Kendall’s rank correlation between mean hidden margin and test accuracy using different
hidden layer selections.

Task First Last Equally All
spaced

0.5794  0.8294 0.4688 0.7825
0.7037 0.7135 0.8686 0.8281
0.7958 0.1066 0.6778  0.2707
0.5427 0.0089 0.2798  0.1329
0.4427 0.2365 0.2211 0.2839
0.3623 03179 0.3055 0.3481
-0.0656  0.2068 -0.0944 0.1859
0.7097 0.3831 0.4677 0.4556
Average 0.5088 0.3503 0.3994 0.4110

O 0NN BN~

It is clear that the selection of hidden layers plays a significant role in the overall performance of
hidden margins, and we observe a large variation per task between the different methods. While
we have used the two best-performing methods as a benchmark to compare with in the main paper
(‘First’ and ‘All’), this biases the comparison in favour of hidden margins, as there is no method at
present to determine a priori which hidden layer selection will perform best for a given task.
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C Derivation of constrained margins (Equation (5))

This section uses the same notation as defined in Section 3.2 of the main paper. We first describe
the standard linear approximation of the margin following Huang et al. [32], before deriving the
constrained margin of Equation (5) as numbered in the main paper.

Any function f can be approximated with its differential at point x using

fx+d) = f(x)+Hd (1
where H = Vif(x) 2

that is, the Jacobian of the output with regard to the input features at point x. We aim to find the
smallest ||d|| for some norm ||.|| such that f(x) # f(x + d), or

fix+d) = fi(x+d) 3)
If we approximate f(.) with f(.), this implies:

fj(x) + foj(x) -d 2 fz(x) + foz(x) -d
= (Vufj(x) = Vifi(x))-d = fi(x) = f;(x) O]

where V, f1(x) is the gradient vector of the k' output value of f with regard to input x. Then, as
shown in [32], the maximum ||d|| will be at:

fikx) = ;%)
d|| = 5
1= 900~ Veh T ©
where ||.|| and ||.||* are dual norms. Specifically, if ||.|| is the L2 norm, then:
d= o P 2D (9,500 — Vi) ©

T IVafi(x) = Vafix)[3

fi(x) = f;(x)
IV f(x) = Vi fi(x)]]2

Equations (6) and (7) provide the standard linear approximation of the margin as used by various
authors [11, 16].

The derivation process for constrained margins is identical — it is only the calculation of the Jacobian
that differs, as the gradient is calculated with regard to the transformed features rather than the
original features. Note that the size and direction of the update are calculated with regard to the
transformed features but the actual step is given in the original feature space.

and ||d||2 = (7

Let P, be the matrix constructed from the first m principal components as column vectors:
T
Pm = [p17p27~---pm] (8)
The new parameterisation x’ of any point x is then approximated by:
x =P,x 9)

where x is a column vector. Let B,, be the pseudoinverse of P,,. Since the full Py, when all
components are selected, is orthogonal, (Py)~! = (Py)T and B,, then equals the first m rows of
(Py)T. Then we can express each individual term zj, in terms of the elements of x':

Tp A Z b sy = Zps’kx; (10)
S S

with b, . the element in ,,, at row 7 and column ¢, and p,. . at the same position in F,.
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Let the Jacobian as used in Equations (1) to (7) be given by

Hr,c = (Sfr (11)
(SJ?C x

Then, assuming X input features we can use the existing N x X Jacobian, to calculate the new
N x m Jacobian in terms of x’ rather than x, using the chain rule:

/ 6 fr(x)
HT C = 63}’0
_ 0fp(x) day n Ofr(x) day,
dry “dxl, T dm, drl
Hr,lpc,l + ...+ Hr,npc,n
Vi fr(X) - Pe (12)

where p. is the cth row of P, transposed. Then each row h!. of the new Jacobian in terms of x’ is
given by
h!, = V,f.(x)P" (13)
Equation (13) which can be used directly in the adjusted version of Equations (6) and (7), such that
S AU R
fi(x) = fi(x)

- (X)) — (x T
(Ve fi(x) = Vi fi(x ))PT”%(foJ( ) — Vx fi(x))P (14)

B £ — ()
andlidll = I ) — Ve AT (13

In effect, we start at point x (the only point we have a model output for), and then use the gradient in
the lower dimensional space to find the minimal distance ||d||2.
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