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ABSTRACT

Human intelligence is adept at absorbing valuable insights from external knowl-
edge. This capability is equally crucial for artificial intelligence. In contrast,
classical reinforcement learning agents lack such capabilities and often resort to
extensive trial and error to explore the environment. This paper introduces PAE:
Planner-Actor-Evaluator, a novel framework for teaching agents to learn to ab-
sorb external knowledge. PAE integrates the Planner’s knowledge-state align-
ment mechanism, the Actor’s mutual information skill control, and the Evaluator’s
adaptive intrinsic exploration reward to achieve 1) effective cross-modal informa-
tion fusion, 2) enhanced linkage between knowledge and state, and 3) hierarchi-
cal mastery of complex tasks. Comprehensive experiments across 11 challenging
tasks from the BabyAI and MiniHack environment suites demonstrate PAE’s su-
perior exploration efficiency with good interpretability.

1 INTRODUCTION
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Figure 1: The Planner-Actor-Evaluator (PAE)
framework consists of three key components.

Accepting suggestions from external guidance
is an integral part of human learning. Hu-
mans can absorb insightful external knowledge
and seamlessly integrate it into their strategies
to tackle complex tasks (Council et al., 2000;
Mills et al., 2010). By leveraging existing
knowledge, human players can quickly adapt
to completely unfamiliar games after just a few
rounds of playing. Their ability to swiftly trans-
fer and align existing knowledge with the cur-
rent environment is a true testament to human
intelligence. Building intelligent systems that
can learn and integrate like humans is an ul-
timate goal we relentlessly pursue. Currently,
reinforcement learning (RL) has demonstrated
its potential towards this goal, with remarkable
breakthroughs in numerous domains, approach-
ing or even surpassing human capabilities on
Atari Games (Mnih et al., 2013), Go (Silver
et al., 2016) and StarCraft (Vinyals et al., 2019).

However, currently RL struggles to efficiently
capture and integrate the vast amount of expert
knowledge already existing in the domain. Specifically, RL faces challenges in long-term and sparse
reward tasks due to a lack of guidance, requiring extensive trial and error. Our primary focus in this
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work is teaching agents to leverage external knowledge and approach optimal solutions faster in
sparse reward environments.

Although mimicking human capabilities benefits RL, it remains challenging for RL agents to realize
the above capabilities (Chowdhury et al., 2023). Three main challenges arise when training agents to
absorb external knowledge to improve their capabilities. (1) Difficulties in knowledge acquisition
and representation. Existing approaches utilize Behavioral Cloning (BC) to acquire knowledge by
imitating human behaviors directly (Codevilla et al., 2018) or adopt Inverse Reinforcement Learn-
ing (IRL) to learn reward functions for providing knowledge (Arora & Doshi, 2021). However,
this necessitates many demonstrations, which are costly to label and collect. (2) Obstacles to the
integration of external knowledge and internal strategies. Integration requires bridging the gap
between the discrete nature of external knowledge and the continuous nature of internal strategies.
Two potential directions emerge: one is enabling internal strategies to query external knowledge, but
it faces challenges at the retrieval level (Reid et al., 2022). The other approach is directly encoding
domain knowledge as propositional rules into neural networks for a warm start, leading to training
difficulties and poor generalization (Silva & Gombolay, 2021). (3) Challenge of synergistic updat-
ing of external knowledge and internal strategies. Large Language Models (LLMs) have recently
demonstrated impressive capabilities (Chowdhery et al., 2022; Brown et al., 2020), but constant
changes in the external world can quickly render them obsolete for time-sensitive tasks (e.g., news
question answering). While some recent studies have attempted to directly map the rich seman-
tic knowledge within LLMs to actions (Carta et al., 2023; Mezghani et al., 2023), these mappings
cannot be updated or come with high update costs.

We propose using natural language as a knowledge source to bypass the difficulties of knowledge ac-
quisition and representation. The language contains natural and flexible prior knowledge for efficient
exploration and skill acquisition, enabling rapid generalization across tasks. Truly understanding the
semantics and focusing on the key information is a good start to integrating external knowledge and
internal strategies. To synergize the updating of external knowledge and internal strategies, external
knowledge sources and internal strategies should retain the ability to learn and improve over time.

To bridge the gap between RL and human in handling sparse reward tasks, as shown in Figure 1,
we propose a novel paradigm for guiding agent learning to absorb external knowledge called PAE:
Planner-Actuator-Evaluator. The Planner is equipped with a state-knowledge alignment mecha-
nism. This mechanism enables the Planner to access external knowledge sources and retrieve suit-
able knowledge that aligns with the current state. This aligned knowledge is progressively provided
to the Actor, increasing in complexity. The Actor leverages the state information and the external
knowledge provided by the Planner for joint reasoning. It incorporates a cross-attention mecha-
nism, allowing the Actor to precisely focus on the critical state and external knowledge features.
Additionally, the Actor employs a discriminative network to reverse-infer the Planner’s guidance,
strengthening the connection between states and knowledge. The Evaluator calculates intrinsic re-
wards based on the quality of external knowledge the Planner provides and the Actor’s reasoning
effectiveness. These intrinsic rewards guide independent updates of the Planner and the Actor.

To summarize, our contributions are as follows:
• We present a novel framework, PAE, for learning to incorporate external knowledge to

achieve better and faster solutions in sparse reward environments. We demonstrate that
knowledge instructing significantly improves strategy exploration in RL.

• Our PAE framework introduces a circular feedback mechanism. The Evaluator’s feedback
keeps the Planner aware of the scenario. The external knowledge the Planner provides
aligns with the Actor’s current capabilities, enabling the Actor to master knowledge from
easy to complex.

• Our proposed framework produces interpretable sequences of steps, with the Planner pro-
viding a comprehensible plan in natural language form.

We evaluated our proposed PAE framework across 11 challenging tasks from the BabyAI (Chevalier-
Boisvert et al., 2018) and MiniHack (Samvelyan et al., 2021) environment suites. Compared to
non-knowledge-guided baseline methods, our PAE framework improves performance by an average
of 148% and achieves convergence at least 40% faster. Compared to baseline approaches using
language guidance, the PAE framework exhibits an average performance improvement of at least
13% and converges at least 31% faster.
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2 RELATED WORK

We build upon extensive work in areas related to the study of knowledge and reinforcement learn-
ing (RL). Our focus lies in knowledge acquisition and representation, the integration of external
knowledge and internal strategies, and exploration in RL.

Knowledge Acquisition and Representation Converting and representing extracted knowledge ef-
fectively is the primary challenge in enhancing a reinforcement learning agent’s capabilities with
external knowledge. Imitation learning and inverse reinforcement learning capture domain knowl-
edge by mimicking human actions via state-action pairs, yet these often require laborious human
labeling and feedback (Codevilla et al., 2018; Ho & Ermon, 2016). Representing knowledge as a
graph (Xu et al., 2020; Zhang et al., 2022), such as a knowledge or scene graph, encounters issues
of limited structured data and sparse valid information. He et al. (2017) treat documents as exter-
nal knowledge; the agent must learn to interpret them for task-solving. Bougie & Ichise (2018) use
environmental data from object detectors as external knowledge, broadening its applicability. In con-
trast, our approach employs natural language directly as external knowledge, eliminating the need
for preprocessing. This fosters agent exploration guided by human-intuitive, natural interaction.

External Knowledge and Internal Strategy Integration Incorporating external knowledge to en-
hance agent decision-making is crucial. Some methods teach AI to use language for querying exter-
nal knowledge (Carta et al., 2022; Liu et al., 2022) but grapple with generating sizable, retrievable
language queries. Several approaches (Humbird et al., 2018; Silva & Gombolay, 2021) aim to
embed human domain knowledge into neural decision trees yet face the challenge of bridging tree-
to-neural network gaps. Our focus is linking natural language with policies to guide agent learning.
Like Language-conditioned RL, our approach trains agents to follow instructions in interactive envi-
ronments (Luketina et al., 2019). While prior research explored this setting for various tasks in 2D or
3D environments (Colas et al., 2020; Chevalier-Boisvert et al., 2018), we aim to craft a comprehen-
sive framework that encompasses knowledge selection and representation, the integration of external
knowledge and internal strategies, and updating knowledge-guided strategy. Our approach absorbs
and understands key parts of the language for joint reasoning and selects external knowledge to
provide knowledge appropriate to the current agent’s capabilities. This results in enhanced task per-
formance, greater adaptability, and improved interpretability. Some more recent work (Carta et al.,
2023; Du et al., 2023) have extracted and employed knowledge from LLMs for decision-making
tasks. These approaches often directly map the internal knowledge of LLMs to actions. However,
this mapping weakens the policy update potential of reinforcement learning algorithms and might
present challenges regarding update costs for time-sensitive tasks.

Exploration in RL Exploration stands as a crucial challenge in reinforcement learning, covering
ϵ-greedy action selection (Strouse et al., 2021), state counting (Bellemare et al., 2016), curiosity-
driven exploration (Schmidhuber, 1991), and intrinsic motivation (Oudeyer et al., 2007). Our ap-
proach aligns with intrinsic motivation, where novelty fosters access to new states. Other forms of
intrinsic motivation include empowerment (Klyubin et al., 2005), promoting agent control over the
environment, and goal diversity (Pong et al., 2020), encouraging increased entropy within the goal
distribution. In contrast, we propose intrinsic motivation as a “cyclic feedback mechanism”: The
Evaluator’s intrinsic reward prompts the Planner to equip the Actor with knowledge suitable for its
current capacity, guiding the Actor to execute tasks aided by external knowledge. Our approach
also emphasizes enhancing reinforcement learning through language-guided exploration (Mu et al.,
2022; Carta et al., 2022). This methodology typically assumes an annotator’s presence to generate
language descriptions for intrinsic rewards, guiding exploration. We adopt this framework while
automating and unifying the entire process, encompassing knowledge representation and selection,
integrating external knowledge and intrinsic strategies, and computation of guided intrinsic rewards.

3 PRELIMINARIES

We formally define the problem formulation of Knowledge-Instructed Reinforcement Learning. We
consider augmented Partially Observable Markov Decision Processes (POMDPs) (Kaelbling et al.,
1998). Our augmented POMDP can be described by a 7-tuple M = ⟨S,A, T ,R,Ω, O,K⟩. S is
the state space. A donates the action space. Ω is the observation space. K is the knowledge set.
T : S × A × S 7→ R+ is the state transition function. O : S × A × Ω 7→ R+ is the observation
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function. R : S × A × K 7→ R represents the state-action reward. At each time step t, the agent
receives an observation ot ∈ Ω and a knowledge k ∈ K. Based on these inputs, the agent selects
an action at ∈ A, and transits to the next state st+1 ∈ S. Via RL, our goal is to find some policy
π : S × K 7→ A that maximizes the expected return.

We assume that the environment provides knowledge following previous work (Jiang et al., 2019;
Mirchandani et al., 2021; Waytowich et al., 2019; Mu et al., 2022). We impose no specific represen-
tation requirements and present all knowledge in natural language. Natural language’s hierarchical
structure and rich semantics profoundly impact an agent’s cognitive functions (Colas et al., 2022).
Agents can update internal strategies guided by language’s generality and abstraction, enhancing
comprehension of complex concepts and alignment with human values. Many modern RL environ-
ments include language by default (Mu et al., 2022), like BabyAI (Chevalier-Boisvert et al., 2018),
NetHack (Küttler et al., 2020), MiniHack (Samvelyan et al., 2021), text-based games (Côté et al.,
2019; Shridhar et al., 2020; Urbanek et al., 2019), and most video games. In language-absent envi-
ronments, language descriptions relevant to the agent’s state can be produced by generative models
of language trained on gigantic amounts of text such as GPT (Brown et al., 2020), PaLM (Chowdh-
ery et al., 2022), and Llama (Touvron et al., 2023).

4 METHOD

We introduce the PAE framework, a novel approach for instructing agents to learn to absorb knowl-
edge. As shown in Figure 1, PAE consists of three core components: (1) the Planner, a policy
network that delivers language-based external knowledge guidance, adapting in complexity follow-
ing both task features and the Actor’s current capabilities; (2) the Actor, a knowledge-conditioned
policy, designed to integrate external knowledge and environment states for joint reasoning; and (3)
the Evaluator, a module that offers intrinsic rewards to both the Planner and Actor, guiding their
strategy updates.

4.1 ALIGNING EXTERNAL KNOWLEDGE AND STATES VIA PLANNER

To enhance guidance, the Planner must progressively select increasingly challenging knowledge
for the Actor during the training procedure. This presents two key challenges: 1) correctly under-
standing knowledge in natural language and aligning it with the current environmental state, and 2)
adjusting the complexity of the chosen knowledge based on the Actors’ abilities. To achieve this,
we consider the Planner as a policy network πp(k|s0,K;θ) modeled by an MDP: it inputs an ini-
tial state s0

1 and a set of knowledge K and selects a piece of knowledge k ∈ K as output. The
Planner provides new knowledge whenever a new episode starts, or the Actor reaches an intrinsic
goal guided by the knowledge. The Planner receives rewards only when the Actor completes the
task using the provided knowledge, aiming to maximize cumulative rewards. Figure 2 provides an
overview of the Planner.

Encoding. To assist the Planner in better comprehending hidden information within the environ-
ment and knowledge, we introduce a state encoder and a knowledge encoder to encode state and
knowledge information to embedded features separately. Specifically, for the state encoder, visual
state embeddings s0 ∈ RHW×c are fed to a shape-preserving 2D convolution layer to generate the
state feature ŝ0 ∈ RHW×ds . To capture both the content and spatial characteristics of the states,
position embeddings Epos are added to ŝ0, which is formulated as:

ŝ0 = Conv(s0) + Epos, s0 ∈ RHW×C ŝ0,Epos ∈ RHW×ds , (1)

where c is the dimension of embedding vectors and ds is the channels of feature maps after convo-
lution. For the knowledge encoder, each unit of knowledge ki ∈ K is encoded using a pre-trained
language model (e.g. BERT-base) with frozen parameters, yielding the knowledge embeddings k̂i:

k̂ = [k̂(1), k̂(2), . . . , k̂(n)] = Proj(LM([k(1), k(2), . . . , k(n)])), k̂ ∈ Rn×dk , (2)

where Proj(·) is a linear projection layer and dk is the dimension of knowledge embedding vectors.

1The reason we choose s0 instead of st is that the Planner is required to provide macro-level guidance based
on its curriculum, rather than step-by-step guidance based on the Actor’s specific actions at timestep t.

4



Published as a conference paper at ICLR 2024

Cross AttentionQ

K V

Cross AttentionCross 
Attention

Knowledge-State Alignment

State Embedding

Full Observation
Conv

Position

𝑠!

Knowledge Embedding

𝐤
	
$Knowledge Oracle External Knowledge

1) Projection
2) Linear Forward

Planner Architecture

Actor

BERT

Pre-trained LM

𝐬&𝟎

Figure 2: Overview of the Planner Network

Alignment. To better align external knowledge with the current environment, we utilize the scaled
dot-product cross-attention mechanism to enable the Planner to attend between knowledge and
states. Specifically, we compute the query Q using the knowledge embeddings k̂ and compute
the key K and value V using the position-embedded state feature ŝ0. In summary, the alignment
procedure can be formulated as:

k̂s0 = Attention(Q,K, V ) = SoftMax

(
QKT

√
dk

)
V

where Q = k̂WQ, K = ŝ0WK , V = ŝ0WV ,

(3)

where WQ ∈ Rdk×dk , WK ∈ Rds×dk and WV ∈ Rds×dk are learnable projection matrices.

Forwarding. The cross-attention layer produces n context vectors k̂s0 = [k̂
(1)
s0 , k̂

(2)
s0 , . . . , k̂

(n)
s0 ] that

aggregates critical information from both the knowledge set and the state, emphasizing knowledge
most relevant to the current state. Then, k̂s0 ∈ Rn×dk will be linear projected to n 1-dimensional
scales and go through a softmax layer, aiding the Planner in selecting the appropriate instruction for
the Actor.

πp(k|s0,K;θ) = SoftMax(LN(k̂s0)). (4)

4.2 TRAINING ACTOR-SPECIFIC INCREMENTAL SKILLS WITH EXTERNAL KNOWLEDGE

The Actor is a knowledge-conditioned policy parameterized as πa(at|pst, k;ω). Once the Planner
provides the Actor with suitable external knowledge, we aim for the Actor’s competence in two
key areas. First, like the Planner, the Actor must comprehensively grasp knowledge in its natural
language form. Second, we want the guiding knowledge to influence the state reached by the Ac-
tor, such that different knowledge leads to distinct skills. Accordingly, we seek to strengthen the
correlation between knowledge and state.

Encoding, Alignment & Forwarding. To master language comprehension and align knowledge
with current observable states, the Actor adopts a three-stage pipeline similar to the Planner: en-
coding, alignment, and forward. However, unlike the Planner, the Actor receives pst ∈ Rhw×c, a
partially observable state of size h × w, and k, a single piece of knowledge filtered by the Planner,
at each time step t. In the Encoding stage, due to the reduced information content of the input state
pst, we remove the shape-preserving convolution and directly add position information to state em-
beddings. Meanwhile, we also utilize the parameter-frozen language model to encode the existing
knowledge effectively:

pŝt = pst + epos pŝt, pst, epos ∈ Rhw×c

k̂ = Proj(LM(k)) k̂ ∈ R1×dk
(5)

During the Alignment stage, we also incorporate the scaled dot-product cross-attention mechanism
to achieve the knowledge-state alignment.

pk̂st = Attention(Q,K, V ) = SoftMax

(
QKT

√
dk

)
V

where Q = k̂WQ, K = pŝtWK , V = pŝtWV

(6)
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Figure 3: Overview of the Actor Network

Moving on to the Forward stage, we aim to enhance the Actor’s attention to current state informa-
tion. To achieve this, we employ strided convolution to extract state information further. We then
concatenate this extracted information with the state-aligned knowledge, passing it through a Linear
and a softmax layer to generate the distribution over actions.

πa(at|st, k;ω) = SoftMax(LN([Conv(pst),
pk̂st ])). (7)

Maximize the mutual information between knowledge and states. We utilize the mutual infor-
mation maximization objective to build on the idea that knowledge should dictate the states the agent
visits. Our approach maximizes the mutual information I(s; k) between knowledge and states. The
objective can be written as follows:

I(s; k) = H(k)−H(k|s)
= Ek∼p(k),s∼π[log p(k|s)]− Ek∼p(k)[log p(k)]

≥ Ek∼p(k),s∼π [log qϕ(k|s)− log p(k)] .

(8)

As we cannot compute p(k|s) exactly by integrating over all states and their associated knowledge,
we approximate p(k|s) using a trainable discriminative network qϕ(k|s). Previous work (Eysenbach
et al., 2018) has proved that maximizing the mutual information between s and k can translate into
maximizing the variational lower bound obtained by replacing p(k|s) with qϕ(k|s) (as shown in
Equation 8). From this variational lower bound, we give the mutual information rewards rMI used
to encourage the Actor to strengthen the connection between state and knowledge:

rI = log qϕ(k|ps)− log p(k). (9)

The discriminative network qϕ(k|ps) is optimized using a cross-entropy loss Lϕ, denoting as:

Lϕ(
ps, k) = −

∑
k′∈K

(k′ = k) · log(qϕ(k′|ps)). (10)

In summary, the Planner samples a piece of knowledge k from the logits output by πp(k|s0,K;θ)
and provides it to the Actor. The Actor employs the conditional network πa(at|pst, k;ω) to make
decisions in the environment guided by this knowledge k. The Actor is motivated to explore states
that offer higher rewards and have a close relationship with k. The discriminative network qϕ(k|s)
uses the k provided by the Planner as ground truth and updates through supervised learning to bet-
ter infer knowledge k from the visited states. p(k) is provided by the Planner’s policy network
πp(k|s0,K;θ). More implementation details are shown in Appendix A.3. Algorithm 1 in Ap-
pendix A.4.1 summarizes our PAE procedure.

4.3 EVALUATION MECHANISM

Reinforcement learning in long-term and sparse reward tasks is often difficult and requires a lot of
trial and error. The standard solution to speed up this process is introducing additional reward signals
to better guide learning. Incorporating external knowledge offers a more straightforward approach
to reward shaping.

For the Actor, the external knowledge from the Planner serves as the missing signal in the envi-
ronment. In addition to the extrinsic reward for accomplishing the final task, the Actor receives an
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additional intrinsic reward of +1 for each subtask completed per the Planner’s guidance. Conse-
quently, the total rewards for the Actor comprise three terms: environmental extrinsic rewards rex,
the maximization of the mutual information term rMI , and intrinsic rewards rin:

ractor = rex + rin(I(πa(at|st, k;ω) 7→ k)) + αIrI , (11)

where I is the indicator function, πa(at|pst, k;ω) 7→ k denotes that the Actor completed the subtask
following external knowledge guidance, αI > 0 is a scaling factor.

For the Planner, we follow the previous approach (Mu et al., 2022; Campero et al., 2020) of using
the Actor’s task completion as an intrinsic reward. This task is neither too easy (i.e., the knowledge
given by the Planner is too simple) nor impossible (i.e., the knowledge given by the Planner is too
complex) for the Actor to complete the current task, i.e., an automatic curriculum. Specifically,
we evaluate the Planner using the number of steps required for the Actor to follow the guidance
proposed by the Planner; if the number of steps required for the Actor to follow the guidance is
within the threshold t∗, or if the guidance can not be followed until the end of the episode, the
Planner receives a reward of −β, otherwise, the Planner gets a reward of +α:

rplanner = rex + rin; rin =

{
+α if t ≥ t∗

−β if t < t∗ or t > tmax
(12)

For the value of t∗, we use an adaptive but heuristic approach, where the threshold increases linearly
by one when the Actor successfully follows the guidance ten times.

5 EXPERIMENTAL EVALUATION

Our experimental evaluation aims to test our central hypothesis: that external knowledge improves
the exploration efficiency for RL algorithms in sparse reward environments. We conducted a series
of experiments organized as follows: 1) In Section 5.1, we quantitatively evaluate the exploratory
capabilities of the PAE by comparing it to various baseline methods. 2) In Section 5.2, we revealed
the underlying mechanisms of the PAE through ablation experiments. 3) In Section 5.3, we elucidate
the interpretability of PAE’s strategy by visualizing the agent’s learning process at different stages.
See Appendix A.5 for additional experimental results. More implementation details of PAE are
shown in Appendix A.3.

Environments: We evaluated our method across two task types, totaling six environments within the
BabyAI environment: Key Corridor tasks (KEYCORRS3R3, KEYCORRS4R3, KEYCORRS5R3)
and Obstructed Maze tasks (OBSTRMAZE1DL, OBSTRMAZE2DLHB, OBSTRMAZE1Q). The suf-
fix signifies the environment’s size; a larger environment increases the exploration difficulty in
the same type of task. To demonstrate PAE’s scalability, we extended our PAE approach to the
more challenging MiniHack tasks. MiniHack consists of procedurally generated tasks within a
roguelike game, offering a richer observation space than the BabyAI environment. Additionally, it
presents up to 75 dimensions of structured and context-sensitive action space. Our comparisons
of PAE with baseline methods encompassed five MiniHack environments: LAVACROSS-RING,
LAVACROSS-POTION, LAVACROSS-FULL, RIVER-MONSTER, and MULTIROOM-N4-MONSTER.
See Appendix A.2 for more details.

We follow the previous work (Mu et al., 2022) to introduce knowledge. In BabyAI, the Planner
receives a fully observed state and a set of 652 instructions from the BabyAI platform. Meanwhile,
the Actor gets a 7 × 7 representation of its field of view and a single instruction filtered by the
Planner. See Table 3 in Appendix A.2 for a list of knowledge provided by BabyAI. In MiniHack,
the Planner and Actor have the same field of view. Observations consist of a 21×79 matrix of glyph
identifiers, a 21-dimensional vector with the agent’s statistics (like location and health), and a series
of 256-character knowledge entries. The Planner accesses multiple knowledge entries, whereas the
Actor receives a selectively filtered entry from the Planner. See Table 4 in Appendix A.2 for a list
of knowledge provided by MiniHack.

5.1 QUALITATIVE RESULTS: COMPARE TO BASELINES

We compare PAE with six baseline algorithms across three categories to highlight PAE’s advan-
tages. 1) Vanilla Baseline Algorithms: IMPALA (Espeholt et al., 2018), a standard asynchronous
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Figure 4: Performance of PAE, IMPALA, RND, ICM, AMIGo, L-AMIGo and L-NovelD in eleven
environments, with error regions to indicate standard deviation over five random seeds.

actor-critic method, focuses on rapid parallel training and learns only from raw environmental re-
wards, without any intrinsic motivation or external guidance. 2) Intrinsic Motivation Algorithms:
RND (Burda et al., 2018) uses a randomly initialized neural network to compute prediction errors,
which serve as intrinsic rewards for exploring new states. ICM (Pathak et al., 2017) encourages
exploration by predicting the outcomes of actions and generating intrinsic rewards from prediction
errors. AMIGo (Campero et al., 2020) pairs a goal-generating teacher with a goal-conditioned
student policy, enriching environmental rewards with intrinsic goals. 3) Language-Instructed Algo-
rithms: L-AMIGo (Mu et al., 2022) builds on AMIGo’s model, using language to spotlight relevant
abstract concepts in the environment. L-NovelD (Mu et al., 2022) combines natural language with
an intrinsic motivation approach to reward states described in natural language that transitions from
low to high novelty. While all the above baselines, except the vanilla ones, incorporate some form of
external guidance, L-AMIGo is the most similar to ours. However, it introduces language knowledge
solely at the level of external guidance without focusing on its integration with internal strategies.
The full hyperparameter sweep for PAE and all baselines is reported in Appendix A.3.4.

As shown in Figure 4, PAE achieves almost the fastest convergence across all eleven environments.
Notably, AMIGo, RND, ICM, and IMPALA fail to converge within the current step limit. Compared
to the best performance in non-knowledge-guided baseline methods (AMIGo, ICM, RND), our PAE
framework improves performance by an average of 148% and achieves convergence at least 40%
faster. Compared to baseline approaches using language guidance, the PAE framework exhibits
an average performance improvement of 13% and converges at least 31% faster. Tables 6 and 7
in Appendix A.5 give the quantitative performance of all models in the BabyAI and MiniHack
environments, respectively. Furthermore, we observe excellent training stability in PAE, especially
after convergence.

5.2 ABLATION EXPERIMENT AND ANALYSIS

To better understand the advantages PAE brings through introducing external knowledge, this sec-
tion compares the mechanisms for introducing external knowledge in removing or replacing imple-
mentations. Full-Model is the full version of PAE. In w/o Curriculum, the Planner attaches equal
weight to all external knowledge. w/o Planner eliminates the entire Planner’s guidance to the Ac-
tor. Table 1 displays the final mean extrinsic rewards and the number of steps (in millions) needed
for each model to converge. Each entry consists of two rows of results, with the top row being the
average extrinsic reward at the end of training and the bottom row being the minimal stable steps
to attain that reward. Lower bottom row values signify quicker convergence, and “> x” indicates a
lack of convergence within the maximum training steps “x”. Training curves for the ablation study
are provided in Appendix A.5.
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Table 1: Comparison of PAE and ablation models.
Key Corridor Tasks Obstructed Maze Tasks

Model KEYCORRS3R3 KEYCORRS4R3 KEYCORRS5R3 OBSTRMAZE1D1 OBSTRMAZE2D1HB OBSTRMAZE1Q

Full-Model 0.89 ± 0.002 0.92 ± 0.005 0.94 ± 0.001 0.93 ± 0.004 0.87 ± 0.018 0.89 ± 0.006
6M 30M 90M 6M 150M 150M

w/o Curriculum 0.86 ± 0.020 0.00 ± 0.000 0.00 ± 0.000 0.93 ± 0.004 0.71 ± 0.324 0.85 ± 0.047
20M >60M >200M 12M >200M 250M

w/o Planner 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
>20M >60M >200M >20M >200M >300M

We can see that the ‘w/o Curriculum,’ the Planner attaches equal weight to all external knowl-
edge, performs well in four of the six environments (KEYCORRS3R3, OBSTRMAZE1DL, OB-
STRMAZE2DLHB, OBSTRMAZE1Q) but requires at least 54% more training steps compared to
the FULL-MODEL in these four environments. ‘w/o Curriculum’ earned zero rewards in the other
two environments (KEYCORRS4R3, KEYCORRS5R3). We analyze this because tasks like Ob-
structedMaze require more robust exploration to unlock critical states, while tasks like KeyCorridor
emphasize easy-to-difficult completion of the final task. The ‘w/o Planner’ model earned no external
rewards in all six environments. The above results and analysis prove the critical role of introducing
external knowledge, especially of suitable difficulty, for exploration in sparse reward environments.

5.3 INTERPRETABILITY

One advantage of PAE’s introduction of language knowledge is that it can provide insights into de-
veloping an agent’s abilities during training. We first show in Figure 5 (a) that PAE has a similar ca-
pability to the approach of the automatic curriculum: Planner generates an interpretable curriculum.
In the KeyCorridorS3R3 environment, the Planner first provides the Actor with easily achievable
external knowledge (open the door) and gradually increases the difficulty as training progresses (go
to the door, pick up the key), ultimately converging to the final goal (pick up a ball).

open the 
[C] door

go to the
[C] door

go to the
[C] key

pick up the
[C] key

pick up the 
[C] ball

go to the 
[C] ball

(b) Actor, Knowledge acquisition

open the 
[C] door

go to the
[C] door

pick up the
[C] key

go to the
[C] key

pick up the 
[C] ball

(a) Planner, Knowledge curriculum

Figure 5: Interpretation of knowledge-instructed exploration. The knowledge curriculum introduced
by the Planner (left) and the Actor’s knowledge acquisition process (right) are illustrated in the
KeyCorridorS3R3 environment.

In addition to generating a similar curriculum, Figure 5 (b) also visualizes the number of steps
required for the Actor to follow each external knowledge, offering insights into this incremental
capability acquisition. We can see that the Planner provides increasingly difficult knowledge during
the training process, reflected in a gradual increase in the probability of complex knowledge being
presented. Conversely, the Actor gradually improves his proficiency in mastering each knowledge
fragment during the training process, reflected in a gradual decrease in the required steps.

6 CONCLUSION

In this work, we propose Planner-Actor-Evaluator (PAE), a knowledge-instructed reinforcement
learning framework for efficient exploration in sparse reward environments. PAE has several desir-
able properties: it achieves alignment and joint inference of external knowledge and internal agent
states and emerges as an interpretable curriculum. Moreover, PAE is algorithm agnostic, making it
compatible with any deep reinforcement learning algorithm.
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Heinrich Küttler, Nantas Nardelli, Alexander Miller, Roberta Raileanu, Marco Selvatici, Edward
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A APPENDIX

The supplementary material provides additional results, discussions, and implementation details.

• In Section A.1, we discuss the limitations of our PAE approach and provide insights on
related work.

• In Section A.2, we detail the BabyAI and MiniHack environments and the chosen testing
tasks.

• In Section A.3, we provide the implementation and training details for the PAE and the
baseline algorithms.

• In Section A.4, we describe our PAE algorithm and the baseline algorithms.

• In Section A.5, we present additional experimental results and analysis.

A.1 LIMITATIONS AND DISCUSSIONS

Limitations Despite the impressive results of our approach, we acknowledge at least two limitations.
Firstly, our framework relies on environments like BabyAI and MiniHack to provide knowledge.
This dependency means that applying PAE in environments lacking Oracle knowledge is challeng-
ing. However, we are fully committed to exploring the use of Large Language Models to provide
knowledge. Secondly, our current approach only accepts unimodal knowledge in natural language.
More exciting extensions will involve human interaction to provide more natural and multimodal
knowledge, which deserves further exploration.

Relationship with LLM-based frameworks LLM-based agents are gaining popularity in solving
RL tasks, and very recent studies have shown considerable potential (Carta et al., 2023; Chen et al.,
2023). There are currently two main categories of LLM-based agents for decision-making: 1. Fine-
tuning LLMs using RL for decision-making, and 2. Employing LLMs directly for decision-making
as plug-ins. These differ significantly from PAE, which uses external knowledge to enhance RL
algorithms. In contrast, recent LLM-based agent studies primarily showcase the abilities of LLMs
or expand their capabilities using RL methods. In our PAE approach, LLMs are a tool to aid agents
in understanding the semantics of knowledge.

A.2 ENVIRONMENT AND TASK DETAILS

BabyAI and Minigrid The BabyAI platform enables research in grounded language learning in-
volving humans. In BabyAI, agents maximize rewards by completing tasks within limited steps,
guided by language instructions. The platform utilizes a grid world environment (Minigrid), a par-
tially observable 2D grid world housing agents and objects (available in 6 colors): boxes, balls,
doors, and keys. These entities occupy N ×M tiled rooms interconnected by doors, which may be
locked or closed. Agents can pick up, drop, and move objects, while doors require color-matching
keys for unlocking. As shown in Figure 6, we evaluated our approach in the BabyAI across six
environments spanning two task types: the Key Corridor task (KEYCORRS3R3, KEYCORRS4R3,
KEYCORRS5R3) and the Obstructed Maze task (OBSTRMAZE1DL, OBSTRMAZE2DLHB, OB-
STRMAZE1Q). Table 2 illustrates critical properties of the Minigrid environment. Table 3 shows the
66 categories of templates provided by BabyAI, totaling 652 pieces of language knowledge.

Key Corridor In the Key Corridor task, the ‘S’ in the environment name’s suffix indicates the room’s
size, while ‘R’ signifies the number of rows. The agent must retrieve an item behind a locked door.
The key, concealed in a different room, must be found by the agent exploring the environment.
Figure 11 illustrates the flow chart for the agent to complete the Key Corridor tasks.

Obstructed Maze In the Obstructed Maze task, a small blue ball is concealed in a corner. With the
door locked and blocked by the ball, the key to unlock it is hidden inside a box. The agent must
execute a series of precise steps. Typically, this involves opening the box to obtain the correctly
colored key, using the key to unlock the door, and subsequently accessing the door to reach the
objective. Figure 12 illustrates the flow chart for the agent to complete the Obstructed Maze tasks.

MiniHack The MiniHack environment is a graphical adaptation of NetHack (Küttler et al., 2020),
featuring a richer observation space compared to BabyAI. It includes more symbols and supports
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(a) KeyCorridorS3R3 (b) KeyCorridorS4R3 (c) KeyCorridorS5R3

(f) ObstructedMaze-1Q(e) ObstructedMaze-2D1hb(d) ObstructedMaze-1Dl

Figure 6: Six challenging environments in BabyAI we used to evaluate PAE.

up to 75 different actions. Observations comprise a 21 × 79 matrix of glyph identifiers, a 21-
dimensional vector detailing agent statistics, location and health, and real natural language messages
received during gameplay. As shown in Figure 7, we evaluate our approach in five environments
of MiniHack, including two task types: navigation tasks (RIVER-MONSTER, MULTIROOM-N4-
MONSTER) and skill acquisition tasks (LAVACROSS-RING, LAVACROSS-POTION, LAVACROSS-
FULL). Navigation tasks in MiniHack challenge the agent program to navigate various obstacles,
like crossing a river by maneuvering boulders or traversing intricate or randomly generated mazes
to reach a specific destination. Skill Acquisition tasks leverage the extensive variety of NetHack’s
objects, monsters, and dungeon features, including their interplay. For instance, to wear a ring, the
agent must choose the PUTON action, select the ring from the inventory, and decide which hand to
wear it on. Table 2 details MiniHack’s main features, while Table 4 enumerates some real natural
language messages received by the agent during gameplay.

Knowledge in BabyAI and MiniHack (1) The knowledge presented in Table 3 for BabyAI and in
Table 4 for MiniHack can be regarded as target states. For example, in MiniGrid, the message “go
to the door” can be interpreted as “(in this state), go to the door.” In MiniHack, the message “the o is
killed!” can be interpreted as ”(in this state), kill the o!”. We can view these system text descriptions
as the required states that the Planner hopes the Actor will achieve after taking a series of actions.
Consequently, the Actor must either take the appropriate action to achieve these goals or extract
useful strategies from the actions (trajectories) previously taken toward these goals. (2) Much of
the knowledge in MiniHack does not directly contribute to task completion. Given that MiniHack’s
knowledge is derived from actual player feedback during gameplay, it naturally includes irrelevant or
emotional messages, such as “ouch!” and “never mind.” A rough estimate is provided here: an agent
capable of solving the Lavacross task will encounter approximately 80 messages, of which only
6-10 (8-13%) are necessary for a successful trajectory. This requires the Planner to semantically
understand these environment messages and filter and exclude those useless knowledge.

A.3 IMPLEMENTATION DETAILS

A.3.1 MODEL ARCHITECTURE DETAILS OF PLANNER

This section provides more details of the Planner architecture used in our method. Planner consists
of three components, i.e., encoding, alignment, and forwarding of states and knowledge.

Encoding Following BabyAI, the environment observation is a symbolic H×W ×3 fully observed
representation, with N varying according to the environment’s size. Each cell in the H ×W grid
has 3 features indicating the object’s type (e.g., boxes, balls, doors, keys), color (from 6 possible
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Table 2: Examples of BabyAI and MiniHack environments and their entity labeling.

Illustration Observation Other Properties

Door

Goal

Door

Obstruction
Agent

Box

Observation: In BabyAI, the
agent’s observation space is an ego-
centric 7x7 grid representation ori-
ented in the direction the agent
faces. Each cell within this grid
has three defining features: object,
color, and state. These features
identify the object in the cell, its
color, and its state (e.g., distinguish-
ing between a locked and unlocked
door).

Action:
Turn left, Turn right, Move for-
ward, Pick up an object, Drop,
Toggle, Done
Reward:
A reward of ‘1 - 0.9 ×
(step count / max steps)’ is
given for success and 0 for fail-
ure.
Termination:
The agent picks up the correct
object.
Timeout.

Observation: In MiniHack, the
agent’s observation consists of a
21× 79 matrix of glyph identifiers,
a 21-dimensional vector with the
agent’s statistics (like location and
health), and a series of messages.
A “message” is the UTF-8 encod-
ing of the on-screen message dis-
played at the top of the screen, rep-
resented as a 256-dimensional vec-
tor. Each glyph represents a com-
pletely unique entity, with integers
ranging from 0 to MAX GLYPH
(5991).

Action:
MiniHack contains 75 actions,
including movement com-
mands, managing inventory,
casting spells, chopping wands,
and more.
Reward & Termination:
MiniHack’s RewardManager
allows you to specify one or
more events that can yield
varying (positive or negative)
rewards. It also enables you to
control which subsets of events
are sufficient or required for
episode termination.

choices), and its state (like open or closed for doors). The Planner embeds these features into
type/color/state embeddings with dimensions of 5, 3, and 2, resulting in a visual embedding s0 of
size HW × 10. To process s0, the Planner employs a 4-layer shape-preserving convolution neural
network interleaved with the Exponential Linear Units, where each convolution layer has 16 filters
with a size of 3times3, a stride of 1 and padding of 1. The convolution neural network’s output
ŝt provides an embedding layer sized HW × 16. The Planner integrates a randomly initialized,
trainable position embedding Epos with Conv(s0) to encapsulate the state’s content and spatial
features and make preparations for alignment.

Meanwhile, the Planner utilized a pre-trained BERT model with frozen parameters to understand
the semantics and encode knowledge. Specifically, we use the vector output of the encoder (in this
case, BERT) in the [CLS] position for the sentence embedding. This model encoded a set of n
natural language instructions, supplied by the Oracle, into instruction embeddings with dimensions
of n×768. Subsequently, a linear projection layer transformed these embeddings to produce outputs
with dimensions of n× 16, denoting as k̂.

Alignment To integrate the two types of input embeddings, ŝ0 ∈ RHW×10, k̂ ∈ Rn×16, we employ
the scaled dot-product cross-attention mechanism. The query Q is computed using k̂WQ, and the
key and value are derived from ŝtWK and ŝtWV , respectively.

Forward After aligning knowledge and environment states, the cross-attention layer yields an out-
put, k̂s0 , which is a n× 16 context vector capturing the correlation between the knowledge set and
the current state. We project this context vector onto n-dimensional logits through a linear layer and
finally get the most suitable external knowledge for the Actor after softmax sampling.
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Table 3: All knowledge is provided by BabyAI and covers 66 template categories totaling 652
entries. [C] is one of 6 possible colors: green, grey, yellow, blue, purple, and red.

Go to the <Object> Open the <Object> Pick Up the <Object>

Put the <Object> Next to the <Object>

go to the ball

go to the box

go to the door

go to the key

go to the <C> ball

go to the <C> box

go to the <C> door

go to the <C> key

open the box

open the door

open the <C> box

open the <C> door

pick up the ball

pick up the box

pick up the key

pick up the <C> ball

pick up the <C> box

pick up the <C> key

put the ball next to the ball

put the ball next to the box

put the ball next to the door

put the ball next to the key

put the box next to the ball

put the box next to the box

put the box next to the door

put the box next to the key

put the key next to the ball

put the key next to the box

put the key next to the door

put the key next to the key

put the <C> box next to the <C> ball

put the <C> box next to the <C> box

put the <C> box next to the <C> door

put the <C> box next to the <C> key

put the <C> key next to the <C> ball

put the <C> key next to the <C> box

put the <C> key next to the <C> door

put the <C> key next to the <C> key

put the ball next to the <C> ball

put the ball next to the <C> box

put the ball next to the <C> door

put the ball next to the <C> key

put the box next to the <C> ball

put the box next to the <C> box

put the box next to the <C> door

put the box next to the <C> key

put the key next to the <C> ball

put the key next to the <C> box

put the key next to the <C> door

put the key next to the <C> key

(c) LavaCross-Full(a) LavaCross-Ring (b) LavaCross-Potion

(d) MultiRoom-N4-Monster (e) River-Monster

Figure 7: Five challenging environments in MiniHack we used to evaluate PAE.

A.3.2 MODEL ARCHITECTURE DETAILS OF ACTOR

This section details the Actor architecture used in our approach. The Actor consists of a policy
network and a discriminative network.

The policy network adopts a similar network architecture as the Planner, with the difference that the
inputs to the policy network at each time step t are a partial observation of size 7 × 7 × 3 and a
single piece of knowledge k filtered by the Planner. Due to the reduction of the information content
of the input state, we remove the shape-preserving convolution and add the position information
directly to the state embedding pst, obtaining pŝt of size (7× 7)× 10. For the knowledge selected
by the Planner, we utilize the same parameter-frozen BERT model to get the knowledge embedding
k̂ of dimension 64 after a linear projection. We compute the cross attention of pŝt and k̂ by using
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Table 4: Some natural language messages in MiniHack. A “message” is the UTF-8 encoding of the
on-screen message displayed at the top of the screen.

River-Monster MultiRoom-N4-Monster LavaCross

-the stairs are solidly fixed to the floor. 

-with great effort you move the boulder.

-that was close.

-it’s solid stone. 

-you don’t have anything to zap. 

-you hit the o. 

-you try to crawl out of the water. 

-your movements are slowed slightly     

because of your load. 

-the o is killed! 

-you try to move the boulder but in vain. 

-you pull free from the o. 

-you are almost hit by a dart. 

-the o picks up a food ration. 

-you have a little trouble lifing i –a scroll.

-you have a little trouble lifting j –a o

corpse. 

-…       

-in what direction?

-that hurts!

-it’s a wall.

-you see no door there. 

-you kick at empty space. 

-you strain a muscle. 

-this door is locked. 

-dumb move! 

-ouch! 

-as you kick the door, it crashes open! 

-this door is broken. 

-you hear the wailing of the banshee… 

- as you kick the door, it shatters to pieces! 

-this doorway has no door.

-what a strange direction! 

-your leg feels better.

-never mind.

-…

-what do you want to throw? 

-you would burn to a crisp trying to pick 

things up.

-what do you want to use or apply?

-you move over some lava. 

-the flint stone falls down the stairs. 

-the flint stone hits another object. 

-you see here a uncursed flint stone. 

-sorry, i don’t know how to use that. 

-you float in the opposite direction. 

-there is a staircase up here. 

-you don’t have anything to drink. 

-in what direction? 

-it’s a wall. 

-there is nothing here to pick up.

-you don’t have anything to use or apply.

-emile’s ghost touches you!

-agent’s ghost touches you! 

-…       

k̂t to generate query Q, pŝt for key K and value Q. Then, we used four strided convolution layers
to extract the state information to get 1 × 1 × 32 state embedding. Finally, we concatenated state
embedding and knowledge-state alignment embedding and passed it through one linear layer and
softmax layer to get the logit distribution over the seven actions.

The Actor uses a separate discriminative network qϕ(k|pst) to infer the knowledge provided by
the Planner from the learned strategies. Intuitively, the Actor is motivated to bridge the connection
between knowledge and states and explore states with a close relationship with k. The discriminative
network qϕ(k|pst) is optimized using a cross-entropy loss Lϕ, denoting as:

Lϕ(
pst, k) = −

∑
k′∈K

(k′ = k) · log(qϕ(k′|pst)) (13)

Specifically, we employ a same-structure strided convolution network in the policy network to get
the state feature ps̃t, and knowledge embeddings k̂ similar to the Planner:

s̃t = Conv(pst) ∈ R1×32

k̂a = Proj(LM([k(1), k(2), . . . , k(n)])) ∈ Rn×32
(14)

Then a dot-product operation between ps̃t and knowledge embeddings is performed, followed by a
softmax layer outputting qϕ(k|pst):

qϕ(k|pst) = SoftMax(k̂a · ˜pst
T
) (15)

Interestingly, whereas the discriminative network was initially derived from the definition of mutual
information, we find that the discriminative network can be viewed as predicting and modeling the
knowledge distribution of the planner from its perspective to strengthen the connection between
state and knowledge.

A.3.3 TRAINING DETAILS

Each model was trained using five independent seeds on a system with 112 Intel® Xeon® Platinum
8280 cores and 6 Nvidia RTX 3090 GPUs. Run times ranged from 10 hours (for OBSTRUCTED-
MAZE1DL) to 100 hours (for the longest KEYCORRIDORS5R3 task).
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A.3.4 HYPERPARAMETERS

For PAE, we ran a grid search over batch size ∈ {8, 32, 150}, unroll length ∈
{20, 40, 100, 200}, entropy cost for the Actor ∈ {0.0001, 0.0005, 0.001}, the Actor learning rate
∈ {0.0001, 0.0005, 0.001}, the Planner learning rate ∈ {0.0001, 0.0005, 0.001}, entropy cost for
the Planner ∈ {0.001, 0.005, 0.01}. Table 5 shows the best parameters obtained from the search.

For RND and ICM, we followed previous work (Raileanu & Rocktäschel, 2020) and used batch
size of 32, unroll length of 100, RMSProp optimizer learning rate of 0.0001 with ϵ = 0.01 and
momentum of 0, intrinsic reward coefficient of 0.1, and entropy coefficient of 0.0005, which were
the best values they found using grid searches in the same tasks.

For AMIGo and L-AMIGo, we followed previous work (Campero et al., 2020; Mu et al., 2022) and
used teacher policy batch size of 32, student policy batch size of 32, teacher grounder batch size
of 100, RMSProp optimizer learning rate of 0.0001 with ϵ = 0.01 and momentum of 0, intrinsic
reward coefficient of 1, unroll length of 100, value loss cost of 0.5, entropy cost of 0.0005, which
were the best values for the same tasks described in their paper.

Table 5: Hyperparameters of PAE adopted in all the experiments.

Parameter Value
Actor batch size B 32
Planner batch size Bp 32
Unroll Length 100
Discount 0.99
Value loss cost 0.5
Actor entropy cost 0.0005
Planner entropy cost 0.5
Actor mutual information cost αI 0.0001
Actor cross attention head number 1
Planner cross attention head number 1
Pretrained language model Bert-base
Pretrained language model output dim 768
Actor language embedding dim 64
Planner language embedding dim 256
Planner embedding projection dim 16
Actor learning rate 5e-4
Planner learning rate 5e-4
Adam betas (0.9, 0.999)
Adam ϵ 1e-8
Clip gradient norm 40.0
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A.4 ALGORITHMS DETAILS

A.4.1 ALGORITHMS DETAILS OF THE PAE

Algorithm 1 illustrates the overall rollout process of PAE. We implemented the PAE and repro-
duction baseline algorithms using TorchBeast2 (Küttler et al., 2019), an IMPALA-based PyTorch
platform for rapid asynchronous parallel training in reinforcement learning.

Algorithm 1: Asynchronous learning algorithm for PAE
Input: Buffer B, Actor batch B, Planner batch Bp, Actor batch size B, Planner batch size Bp

Initialize: B← ∅, B← ∅, Bp ← ∅, πa(at|st, k;ω)← ω0, πp(k|s0,K;θ)← θ0
1 Function INTERACT(Actor Policy: π∗

a, Planner Policy: π∗
p , Buffer: B):

2 {s0, ps0} ← Env.Reset(0) ▷ s0 denotes full observation, ps0 denotes partial observation
3 k ← π∗

p(k0|s0,K;θ∗)

4 ksteps ← 0
5 while True do
6 at ← π∗

a(at|pst, k;ω∗)
7 {st+1,

pst+1, rt, kdone, sdone} ← Env.Step(at) ▷ Interact with the environment
8 ksteps ← ksteps + 1
9 if sdone then

10 {s0, ps0} ← Env.Reset(0) ▷ This episode is finished
11 k ← π∗

p(k0|s0,K;θ∗)

12 ksteps ← 0
13 end
14 if kdone then
15 k ← π∗

p(k|s0,K;θ∗) ▷ The Actor successfully followed the Planner’s guidance
16 ksteps ← 0
17 end
18 Update B ▷ Update Buffer B using newly collected experience
19 end
20 end
21 Function MAIN():
22 π∗

a ← πa.copy() ▷ Make a parameter-fixed copy of πa for environment interacting
23 π∗

p ← πp.copy() ▷ Make a parameter-fixed copy of πp for environment interacting
24 Th← Thread(INTERACT, π∗

a, π∗
p , B) ▷ Create a thread for environment interacting

25 while not converged do
26 Update B← B ▷ Sample batch B of size B from Buffer B
27 Train πa(at|pst, k;ω) on B ▷ Training policy πa using reinforcement learning
28 Train qϕ(k|pst) on B ▷ Training discriminative network qϕ using supervised learning
29 Update π∗

a ← πa.copy() ▷ Update π∗
a with latest model πa

30 Update Bp with {s0, k, ksteps, sdone} from Bp

31 if |Bp| > Bp then
32 Train πp(k|s0,K;θ) on Bp ▷ Training policy πp using reinforcement learning
33 Bp ← ∅
34 Update π∗

p ← πp.copy() ▷ Update π∗
p with latest model πp

35 end
36 end
37 Th.join() ▷ Stop interacting with the environment
38 end

2https://github.com/facebookresearch/torchbeast
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A.4.2 DETAILS OF THE BASELINE ALGORITHMS

Below, we describe the implementation details of the various baseline algorithms. IMPALA is an
off-policy actor-critic framework. The actor-critic agent maintains a policy πθ(a|x) and a value
function vθ(x), both parameterized by θ. Both the policy and value functions are refined using the
actor-critic update rule. IMPALA also incorporates an entropy regularization loss. The update is
derived from the gradient of a specific pseudo-loss function:

LValue (θ) =
∑
s∈T

(vs − Vθ (xs))
2

LPolicy (θ) = −
∑
s∈T

ρs log πθ (as|xs) (rs + γvs+1 − Vθ (xs))

LEntropy (θ) = −
∑
s∈T

∑
a

πθ (a|xs) log πθ (a|xs)

L(θ) = gvLValue (θ) + gpLPolicy (θ) + geLEntropy (θ).

(16)

This decoupled architecture facilitates high throughput. Nonetheless, there can be a bias since the
policy generating the trajectory might lag several updates behind the learner’s policy when comput-
ing the gradient. IMPALA addresses this potential bias by employing the V-trace, which balances
the variance-contraction trade-off in these off-policy updates.

RND The main idea of RND is to calculate intrinsic reward based on the prediction error linked
to an agent’s transfer. RND employs two neural networks: a fixed, randomly initialized target
network that defines the prediction task and a predictor network trained on the agent’s collected
data. RND considers the prediction error from the predictor network, based on features produced
by the target network, as a reward for novel states. We followed AMIGo (Campero et al., 2020),
using a re-implemented version based on TorchBeast (Küttler et al., 2019) provided by (Raileanu &
Rocktäschel, 2020).

ICM utilizes curiosity as an intrinsic reward, defining it as the agent’s error in predicting its own
behavior’s consequences within a feature space learned through a self-supervised inverse dynamics
model. Specifically, ICM encodes states st and st+1 as features ϕ(st) and ϕ(st+1), respectively,
trained to predict at (i.e., the inverse dynamics model). The forward model takes ϕ(st) and at
as inputs and predicts the feature representation ϕ(st+1) for st+1. The prediction error within the
feature space serves as a curiosity-driven intrinsic reward. We followed AMIGo (Campero et al.,
2020) using a re-implemented version of ICM provided by (Raileanu & Rocktäschel, 2020). based
on TorchBeast (Küttler et al., 2019).

AMIGo is a meta-learning method that automatically learns to self-propose adversarial motivational
intrinsic goals. AMIGo consists of two subsystems: a goal-conditioned student policy that outputs
the agent’s actions in the environment and a goal-generating teacher that guides the student’s train-
ing. These two components train in adversarial training, where the student maximizes rewards by
reaching the goal as quickly as possible, and the teacher maximizes rewards by proposing goals that
the student can reach but not too quickly. We use the open-source AMIGo (Campero et al., 2020)
code3 as a baseline for our PAE method.

L-AMIGo utilizes language as a generalized medium to emphasize relevant environmental abstrac-
tions. It is an extension of AMIGo where the teacher presents goals using language instead of
coordinates (x, y). The student is a conditional policy, receiving language goals gt instead of (x, y).
Specifically, the student network is decomposed into policy and grounding networks. The policy
network produces a distribution of goals based on the student’s state, while the grounding network
predicts the probability of achieving the goal.

L-NovelD combines natural language with an intrinsic motivation approach to reward states de-
scribed in natural language that transitions from low to high novelty. It is an extension of NovelD,
which includes two main terms. The first term measures the novelty of state transitions, encouraging
exploration without penalizing revisiting less novel states. The second term rewards the agent only
for first-time state visits in an episode.

3https://github.com/facebookresearch/adversarially-motivated-intrinsic-goals
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A.5 ADDITIONAL RESULTS

A.5.1 QUANTITATIVE RESULTS

Figure 4 shows the training curves of our PAE method alongside the IMPALA, RND, ICM, AMIGo,
L-NovelD, and L-AMIGo baseline algorithms. Each model was trained using five independent
random seeds. The results reported for each baseline and each environment are the best performance
configuration of the policy for that environment. Tables 6 and 7 give the quantitative results of these
comparison experiments in the BabyAI and MiniHack environments, respectively, and show the
average extrinsic reward and the number of steps (in millions) required for each model to converge.
Each entry consists of two rows of results, with the top row being the average extrinsic reward at
the end of training and the bottom row being the minimal stable steps to attain that reward. Lower
bottom row values signify quicker convergence, and “> x” indicates a lack of convergence within
the maximum training steps “x”.

Table 6: Comparison of PAE and baseline methods in BabyAI environment
.

Key Corridor Tasks Obstructed Maze Tasks
Model KEYCORRS3R3 KEYCORRS4R3 KEYCORRS5R3 OBSTRMAZE1D1 OBSTRMAZE2D1HB OBSTRMAZE1Q

PAE (Ours) 0.89 ± 0.002 0.92 ± 0.005 0.94 ± 0.001 0.93 ± 0.004 0.87 ± 0.018 0.89 ± 0.006
6M 30M 90M 6M 150M 150M

L-AMIGo 0.86 ± 0.040 0.90 ± 0.011 0.93 ± 0.016 0.90 ± 0.030 0.23 ± 0.403 0.47 ± 0.029
12M 60M 160M 20M >200M >300M

L-NovelD 0.63 ± 0.097 0.15 ± 0.195 0.55 ± 0.484 0.79 ± 0.255 0.57 ± 0.164 0.60 ± 0.107
>20M >60M >200M >20M >200M >300M

AMIGo 0.43 ± 0.246 0.22 ± 0.343 0.43 ± 0.599 0.45 ± 0.366 0.10 ± 0.175 0.18 ± 0.023
>20M >60M >200M >20M >200M >300M

ICM 0.04 ± 0.052 0.30 ± 0.511 0.00 ± 0.000 0.31 ± 0.542 0.00 ± 0.000 0.00 ± 0.000
>20M >60M >200M 15M >200M >300M

IMPALA 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.006 0.00 ± 0.000 0.00 ± 0.000
>20M >60M >200M >20M >200M >300M

RND 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
>20M >60M >200M >20M >200M >300M

Table 7: Comparison of PAE and baseline methods in MiniHack environment
.

Model LAVACROSS-RING LAVACROSS-POTION LAVACROSS-FULL MULTIROOM-N4-MONSTER RIVER-MONSTER

PAE (Ours) 1.00 ± 0.001 0.99 ± 0.002 1.00 ± 0.001 0.72 ± 0.020 0.13 ± 0.018
22M 35M 24M >40M >20M

L-AMIGo 0.57 ± 0.223 0.58 ± 0.214 0.45 ± 0.111 0.31 ± 0.035 0.09 ± 0.016
>40M >40M >40M >40M >20M

L-NovelD 0.88 ± 0.197 0.99 ± 0.009 0.98 ± 0.015 0.51 ± 0.122 0.02 ± 0.017
>40M 30M 30M >40M >20M

AMIGo 0.46 ± 0.116 0.54 ± 0.048 0.44 ± 0.101 0.29 ± 0.026 0.08 ± 0.009
>40M >40M >40M >40M >20M

ICM 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.18 ± 0.199 0.12 ± 0.028
>40M >40M >40M >40M >20M

IMPALA 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
>40M >40M >40M >40M >20M

RND 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
>40M >40M >40M >40M >20M

A.5.2 ABLATION EXPERIENTIAL RESULTS

Figure 8 illustrates the effect of introducing external knowledge on PAE performance. Full-Model
is the full version of PAE. w/o Curriculum provides randomized guidance to the Actors through
external knowledge, while w/o Planner eliminates the Planner’s guidance.
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KeyCorrS3R3 KeyCorrS4R3 KeyCorrS5R3

ObstrMaze1Dl ObstrMaze2Dlhb ObstrMaze1Q

Full-Model (Ours) w/o Curriculum w/o Planner

Figure 8: Ablation of PAE’s external knowledge.
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A.5.3 QUALITATIVE RESULTS

Figure 9 shows an example of PAE completing a task in KEYCORRS5R3. In this example, the Actor
first needs to explore the environment to find the key, then open the door of the corresponding color,
drop the key, and retrieve the item behind the door. Figure 10 shows the flow of the Planner forming
an automatic curriculum in KeyCorrS5R3 and the progressive acquisition of skills by the Actor.
Typically, in the early stages, the Planner provides easy guidance. As the training progresses and the
Actor’s ability increases, the Planner provides more hard guidance. We can see in the trajectory that
the Planner and Actor are progressing together and eventually complete the task successfully.

1 2 3 4 5

6 7 8 9 10

Figure 9: Example of PAE in completing a task in KEYCORRS5R3. To save space, we only sampled
one sub-trajectory for display.

Go to the door Open the door Go to the purple door Open the grey door Pick up the key Pick up the ball

HardEasy

Curriculum

Figure 10: An illustration of the training process. The Planner forms an automatic curriculum as the
training progresses, and the Actor progressively masters the skills.
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A.6 FLOW CHART

Figure 11 and Figure 12 show flowcharts of the agent completing the Key Corridor task and the
Obstructed Maze task, respectively.

Begin

Go to the door

Carrying key? 

Open the [locked] 
door [using a key]

Put down the key 
[in an appropriate place]

Door locked?

Find a ball? 

Pick up the ball

End

Open the door

Find a ball? 

Find a key? 

Pick up the keyGo to the ball

Pick up the ball

End

Go to the ball

Go to the key

Yes

Yes

Yes

Yes

Yes No

No

No

No

Ø Move forward
Ø Move forward
Ø Turn right
Ø Move forward
Ø Move forward
Ø Turn left
Ø …………
Ø Move forward

Ø Turn right
Ø Move forward
Ø …………
Ø Turn left
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Ø Turn left
Ø Move forward
Ø …………
Ø Move forward
Ø Turn right

Figure 11: Flow chart of an agent completing Key Corridor tasks.
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Figure 12: Flow chart of an agent completing Obstructed Maze tasks.

25


	Introduction
	Related work
	 Preliminaries
	Method
	Aligning External Knowledge and States via Planner
	Training Actor-specific Incremental Skills with External Knowledge
	Evaluation mechanism

	Experimental Evaluation
	Qualitative Results: Compare to baselines
	Ablation Experiment and Analysis
	Interpretability

	Conclusion
	Appendix
	Limitations and Discussions
	Environment and Task Details
	Implementation Details
	Model architecture details of Planner
	Model architecture details of Actor
	Training details
	Hyperparameters

	Algorithms Details
	Algorithms details of the PAE
	Details of the baseline algorithms

	Additional Results
	Quantitative Results
	Ablation Experiential Results
	Qualitative Results

	Flow Chart


