
Under review as a conference paper at ICLR 2024

A APPENDIX

The supplementary material provides additional results, discussions, and implementation details.

• In Section A.1, we detail the BabyAI environment and the chosen testing tasks.
• In Section A.2, we provide the implementation and training details for the PAE and the

baseline algorithms.
• In Section A.3, we describe our PAE algorithm and the baseline algorithms.
• In Section A.4, we present additional experimental results and analysis.

Our code is included in the supplementary material for reproduction.

A.1 ENVIRONMENT AND TASK DETAILS

BabyAI and Minigrid The BabyAI platform enables research in grounded language learning in-
volving humans. In BabyAI, agents maximize rewards by completing tasks within limited steps,
guided by language instructions. The platform utilizes a grid world environment (Minigrid), a par-
tially observable 2D grid world housing agents and objects (available in 6 colors): boxes, balls,
doors, and keys. These entities occupy N ×M tiled rooms interconnected by doors, which may be
locked or closed. Agents can pick up, drop, and move objects, while doors require color-matching
keys for unlocking. As shown in Figure 6, we evaluated our approach in the BabyAI across six
environments spanning two task types: the Key Corridor task (KEYCORRS3R3, KEYCORRS4R3,
KEYCORRS5R3) and the Obstructed Maze task (OBSTRMAZE1DL, OBSTRMAZE2DLHB, OB-
STRMAZE1Q). Table 2 illustrates key properties of the Minigrid environment. Table 3 shows the 66
categories of templates provided by BabyAI, totaling 652 pieces of language knowledge.

(a) KeyCorridorS3R3 (b) KeyCorridorS4R3 (c) KeyCorridorS5R3

(f) ObstructedMaze-1Q(e) ObstructedMaze-2D1hb(d) ObstructedMaze-1Dl

Figure 6: Six challenging environments we used to evaluate PAE.

Key Corridor In the Key Corridor task, the ‘S’ in the environment name’s suffix indicates the room’s
size, while ‘R’ signifies the number of rows. The agent must retrieve an item behind a locked door.
The key, concealed in a different room, must be found by the agent exploring the environment.
Figure 10 illustrates the flow chart for the agent to complete the Key Corridor tasks.

Obstructed Maze In the Obstructed Maze task, a small blue ball is concealed in a corner. With the
door locked and blocked by the ball, the key to unlock it is hidden inside a box. The agent must
execute a series of precise steps. Typically, this involves opening the box to obtain the correctly
colored key, using the key to unlock the door, and subsequently accessing the door to reach the
objective. Figure 11 illustrates the flow chart for the agent to complete the Obstructed Maze tasks.

14

Under review as a conference paper at ICLR 2024

Table 2: Examples of BabyAI environments and their entity labeling.

Illustration Observation Other Properties

Box

Goal

Door

Obstruction
Agent

Observation: In BabyAI, the
agent’s observation space is an ego-
centric 7x7 grid representation ori-
ented in the direction the agent
faces. Each cell within this grid
has three defining features: object,
color, and state. These features
identify the object in the cell, its
color, and its state (e.g., distinguish-
ing between a locked and unlocked
door).

Action:
Turn left, Turn right, Move for-
ward, Pick up an object, Drop,
Toggle, Done
Reward:
A reward of ‘1 - 0.9 ×
(step count / max steps)’ is
given for success and 0 for fail-
ure.
Termination:
The agent picks up the correct
object.
Timeout.

Table 3: All knowledge is provided by BabyAI and covers 66 template categories totaling 652
entries. [C] is one of 6 possible colors: green, grey, yellow, blue, purple, and red.

Pick Up the <Object>Open the <Object>Go to the <Object>

Put the <Object> Next to the <Object>

go to the ball
go to the box
go to the door
go to the key
go to the [C] ball
go to the [C] box
go to the [C] door
go to the [C] key

open the box
open the door
open the [C] box
open the [C] door

pick up the ball
pick up the box
pick up the key
pick up the [C] ball
pick up the [C] box
pick up the [C] key

put the ball next to the ball
put the ball next to the box
put the ball next to the door
put the ball next to the key
put the box next to the ball
put the box next to the box
put the box next to the door
put the box next to the key
put the key next to the ball
put the key next to the box
put the key next to the door
put the key next to the key

put the [C] box next to the [C] ball
put the [C] box next to the [C] box
put the [C] box next to the [C] door
put the [C] box next to the [C] key
put the [C] key next to the [C] ball
put the [C] key next to the [C] box
put the [C] key next to the [C] door
put the [C] key next to the [C] key

put the ball next to the [C] ball
put the ball next to the [C] box
put the ball next to the [C] door
put the ball next to the [C] key
put the box next to the [C] ball
put the box next to the [C] box
put the box next to the [C] door
put the box next to the [C] key
put the key next to the [C] ball
put the key next to the [C] box
put the key next to the [C] door
put the key next to the [C] key

A.2 IMPLEMENTATION DETAILS

A.2.1 MODEL ARCHITECTURE DETAILS OF PLANNER

This section provides more details of the Planner architecture used in our method. Planner consists
of three components, i.e., encoding, alignment, and forwarding of states and knowledge.

Encoding Following BabyAI, the environment observation is a symbolic H×W ×3 fully observed
representation, with N varying according to the environment’s size. Each cell in the H ×W grid
has 3 features indicating the object’s type (e.g., boxes, balls, doors, keys), color (from 6 possible
choices), and its state (like open or closed for doors). The Planner embeds these features into
type/color/state embeddings with dimensions of 5, 3, and 2, resulting in a visual embedding s0 of
size HW × 10. To process s0, the Planner employs a 4-layer shape-preserving convolution neural

15

Under review as a conference paper at ICLR 2024

network interleaved with Exponential Linear Units, where each convolution layer has 16 filters with
the size of 3×3, stride of 1, and padding of 1. The convolution neural network’s output ŝt provides an
embedding layer sized HW × 16. The Planner integrates a randomly initialized, trainable position
embedding Epos with Conv(s0) to encapsulate the state’s content and spatial features and make
preparations for alignment.

Meanwhile, the Planner utilized a pre-trained BERT model with frozen parameters to understand
the semantics and encode knowledge. Specifically, we use the vector output of the encoder (in this
case, BERT) in the [CLS] position for the sentence embedding. This model encoded a set of n
natural language instructions, supplied by the Oracle, into instruction embeddings with dimensions
of n×768. Subsequently, a linear projection layer transformed these embeddings to produce outputs
with dimensions of n× 16, denoting as k̂.

Alignment To integrate the two types of input embeddings, ŝ0 ∈ RHW×10, k̂ ∈ Rn×16, we employ
the scaled dot-product cross-attention mechanism. The query Q is computed using k̂WQ, and the
key and value are derived from ŝtWK and ŝtWV , respectively.

Forward After aligning knowledge and environment states, the cross-attention layer yields an out-
put, k̂s0 , which is a n× 16 context vector capturing the correlation between the knowledge set and
the current state. We project this context vector onto n-dimensional logits through a linear layer and
finally get the most suitable external knowledge for the Actor after softmax sampling.

A.2.2 MODEL ARCHITECTURE DETAILS OF ACTOR

This section details the Actor architecture used in our approach. The Actor consists of a policy
network and a discriminative network.

The policy network adopts a similar network architecture as the Planner, with the difference that the
inputs to the policy network at each time step t are a partial observation of size 7 × 7 × 3 and a
single piece of knowledge k filtered by the Planner. Due to the reduction of the information content
of the input state, we remove the shape-preserving convolution and add the position information
directly to the state embedding pst, obtaining pŝt of size (7× 7)× 10. For the knowledge selected
by the Planner, we utilize the same parameter-frozen BERT model to get the knowledge embedding
k̂ of dimension 64 after a linear projection. We compute the cross attention of pŝt and k̂ by using
k̂t to generate query Q, pŝt for key K and value Q. Then, we used four strided convolution layers
to extract the state information to get 1 × 1 × 32 state embedding. Finally, we concatenated state
embedding and knowledge-state alignment embedding and passed it through one linear layer and
softmax layer to get the logit distribution over the seven actions.

The Actor uses a separate discriminative network qϕ(k|pst) to infer the knowledge provided by
the Planner from the learned strategies. Intuitively, the Actor is motivated to bridge the connection
between knowledge and states and explore states with a close relationship with k. The discriminative
network qϕ(k|pst) is optimized using a cross-entropy loss Lϕ, denoting as:

Lϕ(
pst, k) = −

∑
k′∈K

(k′ = k) · log(qϕ(k′|pst)) (12)

Specifically, we employ a same-structure strided convolution network in the policy network to get
the state feature ps̃t, and knowledge embeddings k̂ similar to the Planner:

s̃t = Conv(pst) ∈ R1×32

k̂a = Proj(LM([k(1), k(2), . . . , k(n)])) ∈ Rn×32
(13)

Then a dot-product operation between ps̃t and knowledge embeddings is performed, followed by a
softmax layer outputting qϕ(k|pst):

qϕ(k|pst) = SoftMax(k̂a · ˜pst
T
) (14)

Interestingly, whereas the discriminative network was originally derived from the definition of mu-
tual information, we find that discriminative network can be viewed as predicting and modeling the
knowledge distribution of the planner from its own perspective in order to strengthen the connection
between state and knowledge.

16

Under review as a conference paper at ICLR 2024

A.2.3 TRAINING DETAILS

Each model was trained using five independent seeds on a system with 112 Intel® Xeon® Platinum
8280 cores and 6 Nvidia RTX 3090 GPUs. Run times ranged from 10 hours (for OBSTRUCTED-
MAZE1DL) to 100 hours (for the longest KEYCORRIDORS5R3 task).

A.2.4 HYPERPARAMETERS

For PAE, we ran a grid search over batch size ∈ {8, 32, 150}, unroll length ∈
{20, 40, 100, 200}, entropy cost for the Actor ∈ {0.0001, 0.0005, 0.001}, the Actor learning rate
∈ {0.0001, 0.0005, 0.001}, the Planner learning rate ∈ {0.0001, 0.0005, 0.001}, entropy cost for
the Planner ∈ {0.001, 0.005, 0.01}. Table 4 shows the best parameters obtained from the search.

For RND and ICM, we followed previous work (Raileanu & Rocktäschel, 2020) and used batch
size of 32, unroll length of 100, RMSProp optimizer learning rate of 0.0001 with ϵ = 0.01 and
momentum of 0, intrinsic reward coefficient of 0.1, and entropy coefficient of 0.0005, which were
the best values they found using grid searches in the same tasks.

For AMIGo and L-AMIGo, we followed previous work (Campero et al., 2020; Mu et al., 2022) and
used teacher policy batch size of 32, student policy batch size of 32, teacher grounder batch size
of 100, RMSProp optimizer learning rate of 0.0001 with ϵ = 0.01 and momentum of 0, intrinsic
reward coefficient of 1, unroll length of 100, value loss cost of 0.5, entropy cost of 0.0005, which
were the best values for the same tasks described in their paper.

Table 4: Hyperparameters of PAE adopted in all the experiments.

Parameter Value
Actor batch size B 32
Planner batch size Bp 32
Unroll Length 100
Discount 0.99
Value loss cost 0.5
Actor entropy cost 0.0005
Planner entropy cost 0.5
Actor mutual information cost α 0.0001
Actor cross attention head number 1
Planner cross attention head number 1
Pretrained language model Bert-base
Pretrained language model output dim 768
Actor language embedding dim 64
Planner language embedding dim 256
Planner embedding projection dim 16
Actor learning rate 5e-4
Planner learning rate 5e-4
Adam betas (0.9, 0.999)
Adam ϵ 1e-8
Clip gradient norm 40.0

17

Under review as a conference paper at ICLR 2024

A.3 ALGORITHMS DETAILS

A.3.1 ALGORITHMS DETAILS OF THE PAE

Algorithm 1 illustrates the overall rollout process of PAE. We implemented the PAE and repro-
duction baseline algorithms using TorchBeast2 (Küttler et al., 2019), an IMPALA-based PyTorch
platform for rapid asynchronous parallel training in reinforcement learning.

Algorithm 1: Asynchronous learning algorithm for PAE
Input: Buffer B, Actor batch B, Planner batch Bp, Actor batch size B, Planner batch size Bp

Initialize: B← ∅, B← ∅, Bp ← ∅, πa(at|st, k;ω)← ω0, πp(k|s0,K;θ)← θ0
1 Function INTERACT(Actor Policy: π∗

a, Planner Policy: π∗
p , Buffer: B):

2 {s0, ps0} ← Env.Reset(0) ▷ s0 denotes full observation, ps0 denotes partial observation
3 k ← π∗

p(k0|s0,K;θ∗)

4 ksteps ← 0
5 while True do
6 at ← π∗

a(at|pst, k;ω∗)
7 {st+1,

pst+1, rt, kdone, sdone} ← Env.Step(at) ▷ Interact with the environment
8 ksteps ← ksteps + 1
9 if sdone then

10 {s0, ps0} ← Env.Reset(0) ▷ This episode is finished
11 k ← π∗

p(k0|s0,K;θ∗)

12 ksteps ← 0
13 end
14 if kdone then
15 k ← π∗

p(k|s0,K;θ∗) ▷ The Actor successfully followed the Planner’s guidance
16 ksteps ← 0
17 end
18 Update B ▷ Update Buffer B using newly collected experience
19 end
20 end
21 Function MAIN():
22 π∗

a ← πa.copy() ▷ Make a parameter-fixed copy of πa for environment interacting
23 π∗

p ← πp.copy() ▷ Make a parameter-fixed copy of πp for environment interacting
24 Th← Thread(INTERACT, π∗

a, π∗
p , B) ▷ Create a thread for environment interacting

25 while not converged do
26 Update B← B ▷ Sample batch B of size B from Buffer B
27 Train πa(at|pst, k;ω) on B ▷ Training policy πa using reinforcement learning
28 Train qϕ(k|pst) on B ▷ Training discriminative network qϕ using supervised learning
29 Update π∗

a ← πa.copy() ▷ Update π∗
a with latest model πa

30 Update Bp with {s0, k, ksteps, sdone} from Bp

31 if |Bp| > Bp then
32 Train πp(k|s0,K;θ) on Bp ▷ Training policy πp using reinforcement learning
33 Bp ← ∅
34 Update π∗

p ← πp.copy() ▷ Update π∗
p with latest model πp

35 end
36 end
37 Th.join() ▷ Stop interacting with the environment
38 end

2https://github.com/facebookresearch/torchbeast

18

Under review as a conference paper at ICLR 2024

A.3.2 DETAILS OF THE BASELINE ALGORITHMS

Below, we describe the implementation details of the various baseline algorithms. IMPALA is an
off-policy actor-critic framework. The actor-critic agent maintains a policy πθ(a|x) and a value
function vθ(x), both parameterized by θ. Both the policy and value functions are refined using the
actor-critic update rule. IMPALA also incorporates an entropy regularization loss. The update is
derived from the gradient of a specific pseudo-loss function:

LValue (θ) =
∑
s∈T

(vs − Vθ (xs))
2

LPolicy (θ) = −
∑
s∈T

ρs log πθ (as|xs) (rs + γvs+1 − Vθ (xs))

LEntropy (θ) = −
∑
s∈T

∑
a

πθ (a|xs) log πθ (a|xs)

L(θ) = gvLValue (θ) + gpLPolicy (θ) + geLEntropy (θ).

(15)

This decoupled architecture facilitates high throughput. Nonetheless, there can be a bias since the
policy generating the trajectory might lag several updates behind the learner’s policy when comput-
ing the gradient. IMPALA addresses this potential bias by employing the V-trace, which balances
the variance-contraction trade-off in these off-policy updates.

RND The key idea of RND is to calculate intrinsic reward based on the prediction error linked
to an agent’s transfer. RND employs two neural networks: a fixed, randomly initialized target
network that defines the prediction task and a predictor network trained on the agent’s collected
data. RND considers the prediction error from the predictor network, based on features produced
by the target network, as a reward for novel states. We followed AMIGo (Campero et al., 2020),
using a re-implemented version based on TorchBeast (Küttler et al., 2019) provided by (Raileanu &
Rocktäschel, 2020).

ICM utilizes curiosity as an intrinsic reward, defining it as the agent’s error in predicting its own
behavior’s consequences within a feature space learned through a self-supervised inverse dynamics
model. Specifically, ICM encodes states st and st+1 as features ϕ(st) and ϕ(st+1), respectively,
trained to predict at (i.e., the inverse dynamics model). The forward model takes ϕ(st) and at
as inputs and predicts the feature representation ϕ(st+1) for st+1. The prediction error within the
feature space serves as a curiosity-driven intrinsic reward. We followed AMIGo (Campero et al.,
2020) using a re-implemented version of ICM provided by (Raileanu & Rocktäschel, 2020). based
on TorchBeast (Küttler et al., 2019).

AMIGo is a meta-learning method that automatically learns to self-propose adversarial motivational
intrinsic goals. AMIGo consists of two subsystems: a goal-conditioned student policy that outputs
the agent’s actions in the environment and a goal-generating teacher that guides the student’s train-
ing. These two components train in adversarial training, where the student maximizes rewards by
reaching the goal as quickly as possible, and the teacher maximizes rewards by proposing goals that
the student can reach but not too quickly. We use the open-source AMIGo (Campero et al., 2020)
code3 as a baseline for our PAE method.

L-AMIGo utilizes language as a generalized medium to emphasize relevant environmental abstrac-
tions. It is an extension of AMIGo where the teacher presents goals using language instead of
coordinates (x, y). The student is a conditional policy, receiving language goals gt instead of (x, y).
Specifically, the student network is decomposed into policy and grounding networks. The policy
network produces a distribution of goals based on the student’s state, while the grounding network
predicts the probability of achieving the goal.

3https://github.com/facebookresearch/adversarially-motivated-intrinsic-goals

19

Under review as a conference paper at ICLR 2024

A.4 ADDITIONAL RESULTS

A.4.1 QUANTITATIVE RESULTS

Figure 4 shows the training curves of our PAE method alongside the IMPALA, RND, ICM, AMIGo,
and L-AMIGo baseline algorithms. Each model was trained using five independent random seeds.
The results reported for each baseline and each environment are the best performance configuration
of the policy for that environment. Table 5 gives the quantitative results of these comparison experi-
ments and displays the mean extrinsic rewards and the number of steps (in millions) needed for each
model to converge. Each entry consists of two rows of results, with the top row being the average
extrinsic reward at the end of training and the bottom row being the minimal stable steps to attain
that reward. Lower bottom row values signify quicker convergence, and “> x” indicates a lack of
convergence within the maximum training steps “x”.

Table 5: Comparison of PAE and baseline methods.
Key Corridor Tasks Obstructed Maze Tasks

Model KEYCORRS3R3 KEYCORRS4R3 KEYCORRS5R3 OBSTRMAZE1D1 OBSTRMAZE2D1HB OBSTRMAZE1Q

PAE (Ours) 0.89 ± 0.002 0.92 ± 0.005 0.94 ± 0.001 0.93 ± 0.004 0.87 ± 0.018 0.89 ± 0.006
6M 30M 90M 6M 150M 150M

L-AMIGo 0.86 ± 0.040 0.90 ± 0.011 0.93 ± 0.016 0.90 ± 0.030 0.23 ± 0.403 0.47 ± 0.029
12M 60M 160M 20M >200M >300M

AMIGo 0.43 ± 0.246 0.22 ± 0.343 0.43 ± 0.599 0.45 ± 0.366 0.10 ± 0.175 0.18 ± 0.023
>20M >60M >200M >20M >200M >300M

ICM 0.04 ± 0.052 0.30 ± 0.511 0.00 ± 0.000 0.31 ± 0.542 0.00 ± 0.000 0.00 ± 0.000
>20M >60M >200M 15M >200M >300M

IMPALA 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.006 0.00 ± 0.000 0.00 ± 0.000
>20M >60M >200M >20M >200M >300M

RND 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000
>20M >60M >200M >20M >200M >300M

A.4.2 ABLATION EXPERIENTIAL RESULTS

Figure 7 illustrates the effect of introducing external knowledge on PAE performance. Full-Model
is the full version of PAE. w/o Curriculum provides randomized guidance to the Actors through
external knowledge, while w/o Planner eliminates the Planner’s guidance.

KeyCorrS3R3 KeyCorrS4R3 KeyCorrS5R3

ObstrMaze1Dl ObstrMaze2Dlhb ObstrMaze1Q

Full-Model (Ours) w/o Curriculum w/o Planner

Figure 7: Ablation of PAE’s external knowledge.

20

Under review as a conference paper at ICLR 2024

A.4.3 QUALITATIVE RESULTS

Figure 8 shows an example of PAE completing a task in KEYCORRS5R3. In this example, the Actor
first needs to explore the environment to find the key, then open the door of the corresponding color,
drop the key, and retrieve the item behind the door. Figure 9 shows the flow of the Planner forming
an automatic curriculum in KeyCorrS5R3 and the progressive acquisition of skills by the Actor.
Typically, in the early stages, the Planner provides easy guidance. As the training progresses and the
Actor’s ability increases, the Planner provides more hard guidance. We can see in the trajectory that
the Planner and Actor are progressing together and eventually complete the task successfully.

1 2 3 4 5

6 7 8 9 10

Figure 8: Example of PAE in completing a task in KEYCORRS5R3. To save space, we only sampled
one sub-trajectory for display.

Go to the door Open the door Go to the purple door Open the grey door Pick up the key Pick up the ball

HardEasy

Curriculum

Figure 9: An illustration of the training process. The Planner forms an automatic curriculum as the
training progresses, and the Actor progressively masters the skills.

21

Under review as a conference paper at ICLR 2024

A.5 FLOW CHART

Figure 10 and Figure 11 show flowcharts of the agent completing the Key Corridor task and the
Obstructed Maze task, respectively.

Begin

Go to the door

Carrying key?

Open the [locked]
door [using a key]

Put down the key
[in an appropriate place]

Door locked?

Find a ball?

Pick up the ball

End

Open the door

Find a ball?

Find a key?

Pick up the keyGo to the ball

Pick up the ball

End

Go to the ball

Go to the key

Yes

Yes

Yes

Yes

Yes No

No

No

No

Ø Move forward
Ø Move forward
Ø Turn right
Ø Move forward
Ø Move forward
Ø Turn left
Ø …………
Ø Move forward

Ø Turn right
Ø Move forward
Ø …………
Ø Turn left
Ø Drop
Ø Turn left
Ø Move forward
Ø …………
Ø Move forward
Ø Turn right

Figure 10: Flow chart of an agent completing Key Corridor tasks.

Begin

Go to the door

Carrying key?

Open the [locked]
door [using a key]

Put down the key
[in an appropriate place]

Door locked?

Find a ball?

Open the door

Find a ball?

Find a key?

Pick up the [color]
ball

End

Go to the [color] ball

Obstructed?

Go to the [ball/box]

Pick up the [ball/box]

Put down the [ball/box]
[in an appropriate place]

Color match?

Pick up the [color]
key

Go to the [color] keyColor match?

Ø Turn right
Ø Move forward
Ø …………
Ø Turn left
Ø Drop
Ø Turn left
Ø Move forward
Ø …………
Ø Move forward
Ø Turn right

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

Figure 11: Flow chart of an agent completing Obstructed Maze tasks.

22

