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A APPENDIX

A.1 PROOFS

Lemma 1. If maxc∈C P (y = c|x) > σl, 1/2 ≤ σl < 1, then the estimation result is probably
approximately correct. Otherwise, if maxc∈C P (y = c|x) ≤ σh, 0 < σh ≤ 1/2, then the estimation
result can be probably approximately wrong.

Proof.

From the study (Corbière et al., 2019), it can be stated that:

If the true probability is over the certain value (1/2 ≤ σl < 1)) for the certain input instance (x),
then the estimated answer from the model is correct:

P (y = y∗|θtask, x) > σl ⇒ ŷ = y∗. (4)

Eq.(4) can be rewritten as:

1−
∑
c6=y∗

P (y = c|θtask, x) > σl (5)

As P (y = c|θtask, x) ≥ 0, P (y = c|θtask, x) < 1/2 < P (y = y∗|θtask, x) ∀k 6= y holds.

Therefore, Eq.(6) holds.

ŷ = arg max
c∈C

P (y = c|θtask, x) = y∗ (6)

From the probably approximately correct (PAC) bound (Valiant, 1984) on the trained model with
parameter (θtask) and train dataset (Dtrain) through empirical risk minimization:

P (|P (ŷ = y∗|θtask)− P (ŷ = y∗|θtask, Dtrain)| ≤ ε) ≥ 1− δ (7)

If max
c∈C

P (y = c|θtask, x) > σl where 1/2 ≤ σl < 1, note that ŷ = arg max
c∈C

P (y = c|θtask, x) and

by the PAC bound, P (y = y∗|θtask, x) > σl with probability confidence on 1− δ approximately up
to an error ε correct.

It means that ŷ = c with probability confidence on 1− δ and approximately correct (up to error ε).

The proof for the otherwise case also can be derived in likewise way.

�

Theorem 1. If L(M�K;mi
j = 0,D) ≥ L(M�K;D) ≥ 0,∀(i, j) ∈ {(i, j)|mi

j = 1,∀mi
j ∈M},

pruning a channel by CSij is equal to solving empirical risk minimization (ERM) problem of the
neural network in the finite hypothesis space.

Proof.

Consider the pruning a channel by conduct element-wise product on filters with masking matrix
(Mi � Ki) is equal to finding Ki with which channel to be pruned (θij,q = 0,∀q) in the finite hy-
pothesis spaceH where the space consists of all possible channel pruning cases. Therefore, choosing
a channel to prune by CSij is written as:

arg min
j∈[0,ni)

CSij

= arg min
Ki|θi

j,q
=0,∀q∈H

CSij
(8)
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In the original score formulation transformed for channel pruning from weight-wise score in SNIP
(Lee et al., 2019), gij((M�K;D)) is approximated by the derivative of Lij for calculation efficiency
in implementation.

∆Lij(K;D) = L(M�K;D)− L(M|mij=0 �K;D)

≈ gij(M�K;D) =
∂L(M�K;D)

∂mi
j

|M=1

(9)

Apply this to CSij , obtains

CSij =
|gij(K;D)|∑

i′

∑
j′
|gi′j′(K;D)|

≈
|L(M�K;D)− L(M|mij=0 �K;D)|∑

i′
∑
j′ |L(M�K;D)− L(M|mij=0 �K;D)|

(10)

Therefore, Equation 8 becomes

arg min
Ki|θi

j,q
=0,∀q∈H

|L(M�K;D)− L(M|mij=0 �K;D)|∑
i′
∑
j′ |L(M�K;D)− L(M|mij=0 �K;D)|

(11)

where denominator term andL(M�K;D) term in numerator are constant with regard to j (wrapped
as Ki|θij,q=0,∀q).

As the cross entropy is usually used as loss function L(·), assume L(·) > 0. Then, when we denote
L(M�K;D) in numerator and denominator term as constant α, β ∈ R, α, β ≥ 0 respectively, the
equation becomes

arg min
Ki|θi

j,q
=0,∀q∈H

|α− L(M|mij=0 �K;D)|
β

(12)

This implies that, when L(M�K;D) ≥ α ≥ 0, the problem becomes equal to empirical risk min-
imization problem of the neural network in the finite hypothesis space H ′ where the space consists
of all possible channel pruning cases.

arg min
Ki|θi

j,q
=0,∀q∈H

|α− L(M|mij=0 �K;D)|
β

= arg min
Ki|θi

j,q
=0,∀q∈H

L(M�K; θij,q = 0,∀q,D)

= arg min
K∈H′

L(K;D)

(13)

�

Corollary 1. As solving ERM guarantees probably approximately correct (PAC) bound, under the
same condition in Theorem 1., pruning a channel by CSij also guarantees PAC bound and its esti-
mation error is upper bounded.

Proof.

According to the theorem from ERM (Vapnik, 1992), it is proven that:

For an ERM solutionKERMD ∈ arg minK∈H L(K;D), its estimation error can be upper bounded as

L(KERMD ;X )− inf
K∈H

L(K;X ) ≤ 2 sup
K∈H

|L(K;D)− L(K;X )| (14)
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In addition, from the theory from the PAC (Valiant, 1984), it is proven that:

(PAC Learnability of finite hypothesis space) For a finite hypothesis space H , H is PAC-learnable
by the empirical risk minimization algorithm.

(PAC Bound in finite hypothesis space) Hypothesis space H finite, dataset D with M i.i.d. samples,
0 < ε < 1: for any learned hypothesis h that is consistent on the training data:

P (errorX (h)− errorD(h) > ε) ≤ |H|e−2Mε2 (15)

where X denotes data instance space.

Therefore, under certain condition L(M � K;mi
j = 0,D) ≥ L(M � K;D) ≥ 0,∀(i, j) ∈

{(i, j)|mi
j = 1,∀mi

j ∈ M}, as we proved that pruning a channel by CSij is equal to solving
empirical risk minimization in the finite hypothesis space H ′ where the space consists of all possi-
ble channel pruning cases, we can say that estimation error can be upper bounded for the pruning
problem.

In addition, pruning problem can be the PAC-learnable by the above mentioned theorem in Valiant
(1984), therefore, gap between true error and train error is guaranteed to be upper bounded. �

A.2 FURTHER EXPERIMENTS

Experimental settings. We conducted further experiments on other network models and datasets
to verify robustness of accuracy degradation on the proposed pruning scheme over various cases.
Including the ResNet-101 for UC Merced land use statellite imagery dataset presented in main con-
tent, we further evaluated on VGG-16 for CIFAR-10 dataset and WRN-18 for Caltech101 dataset.
The detail settings for each experiment is described as follows.

• ResNet-101 for UC Merced satellite imagery dataset: We use ResNet-101 architecture
(He et al., 2016) transforming only the last single fully connected layer with 21 output
channels for the dataset. The model is trained with 160 epochs in total by using SGD opti-
mizer with momentum of 0.9, batch size of 32, and weight decay rate of 0.0001. The initial
learning rate is set to 0.1 and decayed by 1/10 at every 60 epochs. For data augmentation,
only resizing the input data to 256×256 size is applied. In the dataset (Yang & Newsam,
2010), 90% of total dataset is split to train set and the other 10% is used for test set.

• VGG-16 for CIFAR-10 dataset: In order to see the performance of our pruning scheme on
non-residual network, we also evaluate on VGG-16 with CIFAR-10 dataset. We modify the
VGG-16 architecture where an average pooling layer is attached after the last convolutional
layer, and only a single fully connected layer with 512 input channel is connected at the end
of network for CIFAR-10 from the original VGG-16 architecture (Simonyan & Zisserman,
2015). The model is trained with 160 epochs in total by using SGD optimizer with mo-
mentum of 0.9, batch size of 128, and the weight decay rate of 0.0001. The initial learning
rate is set to 0.1 and decayed by 1/10 at every 60 epochs. The standard data augmentation
(i.e., translation up to 4 pixels for fitting to VGG-16 operations, random horizontal flip and
normalization) is applied for input.

• WRN-18 for Caltech101 dataset: We also try to see the performance on wider residual
network by evaluating on WRN-18 with Caltech101 dataset. We use the WRN-18 archi-
tecture (Zagoruyko & Komodakis, 2016) where only a single fully connected layer at the
end of network is modified with 101 output channels for Caltech101 dataset. The model
is trained with 80 epochs in total by using SGD optimizer with momentum of 0.9, batch
size of 32, and weight decay rate of 0.0001. The initial learning rate is configured to 0.1
and decayed by 1/10 at 60 epoch. We just resize the input data to 224×224 size for data
augmentation. In the dataset (Fei-Fei et al., 2006), 90% of total dataset is randomly split to
train set and the other 10% is used for test set.

Results of further experiments. The results of further experiments on VGG-16 for CIFAR-10
dataset and WRN-18 for Caltech101 dataset are presented in Figure 7 and Figure 8 respectively. The
results show similar tendency to the result of ResNet-101 for satellite imagery dataset presented on
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the evaluation section in main paper. The proposed pruning scheme shows the best robustness to the
accuracy degradation by considering the layer-wise sensitivity.
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Figure 7: Test accuracy with respect to the
percentage of remaining channels over pruning
methods on VGG-16 for CIFAR-10 dataset
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Figure 8: Test accuracy with respect to the
percentage of remaining channels over pruning
methods on WRN-18 for Caltech101 dataset
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