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Abstract
As machine learning models grow more complex and their applications become
more high-stakes, tools for explaining model predictions have become increasingly
important. This has spurred a flurry of research in model explainability and has
given rise to feature attribution methods such as LIME and SHAP. Despite their
widespread use, evaluating and comparing different feature attribution methods
remains challenging: evaluations ideally require human studies, and empirical
evaluation metrics are often data-intensive or computationally prohibitive on real-
world datasets. In this work, we address this issue by releasing XAI-BENCH: a
suite of synthetic datasets along with a library for benchmarking feature attribu-
tion algorithms. Unlike real-world datasets, synthetic datasets allow the efficient
computation of conditional expected values that are needed to evaluate ground-
truth Shapley values and other metrics. The synthetic datasets we release offer
a wide variety of parameters that can be configured to simulate real-world data.
We demonstrate the power of our library by benchmarking popular explainabil-
ity techniques across several evaluation metrics and across a variety of settings.
The versatility and efficiency of our library will help researchers bring their ex-
plainability methods from development to deployment. Our code is available at
https://github.com/abacusai/xai-bench.

1 Introduction
The last decade has seen a rapid increase in applications of machine learning in a wide variety of high-
stakes domains, such as credit scoring, fraud detection, criminal recidivism, and loan repayment [46,
11, 47, 9]. With the widespread deployment of machine learning models in applications that impact
human lives, research on model explainability has become increasingly important. The applications
of model explainability include debugging, legal obligations to give explanations, recognizing
and mitigating bias, data labeling, and faster adoption of machine learning technologies [41, 69,
7, 21]. Many different methods for explainability are actively being explored, including logic
rules [26, 63, 56], hidden semantics [68], feature attribution [51, 41, 50, 15, 61], and explanation
by example [38, 13]. The most common type of explainers are post-hoc, local feature attribution
methods [69, 41, 1, 51, 50, 15], which output a set of weights corresponding to the importance of each
feature for a given datapoint and model prediction. Although various feature attribution methods are
being deployed in different use cases today, currently there are no widely adopted methods to easily
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Figure 1: Overview of the main components in XAI-BENCH.

evaluate and/or compare different feature attribution algorithms. Indeed, evaluating the effectiveness
of explanations is an intrinsically human-centric task that ideally requires human studies. However,
it is often desirable to develop new explainability techniques using empirical evaluation metrics
before the human trial stage. Although empirical evaluation metrics have been proposed, many of
these metrics are either computationally prohibitive or require strong assumptions, to compute on
real-world datasets. For example, a popular method for feature attribution is to approximate Shapley
values [41, 19, 39, 61], but computing the distance to ground-truth Shapley values requires estimating
exponentially many conditional feature distributions, which is not possible to compute unless the
dataset contains sufficiently many datapoints across exponentially many combinations of features.

In this work, we overcome these challenges by releasing a suite of synthetic datasets, which make
it possible to efficiently benchmark feature attribution methods. The use of synthetic datasets,
for which the ground-truth distribution of data is known, makes it possible to exactly compute
the conditional distribution over any set of features, thus enabling computations of many feature
attribution evaluation metrics such as distance to ground-truth Shapley values [41], remove-and-
retrain (ROAR) [31], faithfulness [4], monotonicity [43], and infidelity [67]. Our synthetic datasets
offer a wide variety of parameters which can be configured to simulate real-world data and have
the potential to identify subtle failures, such as the deterioration of performance on datasets with
high feature correlation. We give examples of how real datasets can be converted to similar synthetic
datasets, thereby allowing explainability methods to be benchmarked on realistic synthetic datasets.

We showcase the power of our library by benchmarking popular explainers such as SHAP [41],
LIME [51], MAPLE [50], SHAPR [1], L2X[15], and breakDown [60], on a broad set of evaluation
metrics, across a variety of axes of comparison, such as feature correlation, model type, and data
distribution type. Our library is designed to substantially reduce the time required for researchers and
practitioners to move their explainability algorithms from development to deployment. Our code, API
docs, and raw experimental results are available at https://github.com/abacusai/xai-bench.
We welcome contributions and hope to grow the repository to handle a wide variety of use-cases.

Our contributions. We summarize our main contributions below.

• We release a set of synthetic datasets with known ground-truth distributions, along with a library
that makes it possible to efficiently evaluate feature attribution techniques with respect to popular
evaluation metrics. Our synthetic datasets offer a number of parameters that can be configured to
simulate real-world applications.

• We demonstrate the power of our library by benchmarking popular explainers such as SHAP [41],
LIME [51], MAPLE [50], SHAPR [1], L2X[15], and breakDown [60].

2 Related Work

Model explainability in machine learning has seen a wide range of approaches, and multiple tax-
onomies have been proposed to classify the different types of approaches. Zhang et al. [69] describe
three dimensions of explainability techniques: passive/active, type of explanation, and local/global
explainations. The types of explanations they identified are logic rules [26, 63, 56], hidden seman-
tics [68], feature attribution [51, 41, 50, 15, 61, 1], and explanation by example [38, 13]. Other
surveys on explainable AI include Arrieta et al. [6], Adadi and Berrada [2], and Došilović et al. [24].
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Techniques for feature attribution include approximating Shapley values [41, 19, 39, 61], approximat-
ing the model locally with a more explainable model [51], and approximating the mutual information
of each feature with the label [15]. Other work has also identified failure modes for some explanation
techniques. For example, recent work has shown that explanation techniques are susceptible to
adversarial feature perturbations [23, 58, 30], high feature correlations [35], and small changes in
hyperparameters [27, 8].

2.1 Benchmarking Explainability Techniques

One recent work [33] gave an experimental survey of explainability methods, testing SHAP [41],
LIME [51], Anchors [52], Saliency Maps [57], Grad-CAM++ [12], and their proposed ExMatchina
on image, text, audio, and sensory datasets. They use human labeling via Mechanical Turk as an
evaluation metric. Another work [7] gave an experimental survey of several algorithms includ-
ing local/global, white-box/black-box, and supervised/unsupervised techniques. The only feature
attribution algorithms they tested were SHAP and LIME. Other recent work gives a benchmark on ex-
plainability for time-series classification [25], or for natural language processing (NLP) [21]. Finally,
concurrent work [5] releases a library with several evaluation metrics for local linear explanation
methods and uses the library to compare LIME and SHAP. To the best of our knowledge, no prior
work has released a library with five different evaluation metrics or released a set of synthetic datasets
for explainability with more than one tunable parameter.

2.2 Metrics

While the “correctness” of feature attribution methods may be subjective or application-specific [66],
comparisons between methods are often based on human studies [34, 53, 55]. However, human
studies are not always possible, and several empirical (non-human) evaluation metrics have been
proposed. Faithfulness [4, 7, 3, 22, 36], infidelity [67, 10, 54], and monotonicity [43, 7, 18] are
popular explainability metrics which measure whether each feature’s susceptibility to change the
model output is aligned with each feature’s attribution weight. Another popular metric, remove-and-
retrain (ROAR) [31, 28, 29, 44], measures these statistics by retraining the model each time relevant
features are removed, in order to avoid inaccuracies due to distribution shift. In the next section, we
give the formal definition and a discussion for each metric.

3 Evaluation Metrics

3.1 Preliminaries

We first give definitions and background information used throughout the next three sections. Given
a distribution D, each datapoint is of the form (x, y) ∼ D, where x denotes the set of features, and y
denotes the label. We assume that x ∈ [0, 1]D, yet all of the concepts we discuss can be generalized
to arbitrary categorical and real-valued feature distributions. Assume we have a training set Dtrain and
a test set Dtest, both drawn from D. For the case of regression, we train a model f : [0, 1]D → [0, 1]
on the training set. We also implement classification using cross-entropy loss. Common choices for
f include a neural network or a decision tree.

A feature attribution method is a function g which can be used to estimate the importance of each
feature in making a prediction. That is, given a model f and a datapoint x, then g(x, f) = w ∈ RD,
where each output weight wi corresponds to the relative importance of feature i when making the
prediction f(x). Common choices for g include SHAP [41] or LIME [51].

3.2 Metrics

In this section, we formally define popular evaluation metrics for explainability methods. Each
evaluation metric has pros and cons and may be more or less appropriate depending on the application
and problem instance. We provide a guide to choosing metrics in Section 3.3.

A feature attribution evaluation metric is a function that evaluates the weights of a feature attribution
method on a datapoint x. For example, given a datapoint x and a set of feature weightsw = g(x, f),
then a value near or below zero indicates that g did not provide an accurate feature attribution estimate
for x, while a value near one indicates that g did provide an accurate feature attribution estimate.

Many evaluation metrics involve evaluating the change in performance of the model when a subset of
features of a datapoint are removed. In order to measure the true marginal improvement for a set of
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features S, one approach is to evaluate the model when replacing the features S with their expected
values conditioned on the remaining features [19, 62, 14, 32]. Formally, given a datapoint x ∼ D
and a set of indices S ⊆ {1, · · · , D}, we define D (xS) as the conditional probability distribution
x′ ∼ D such that x′i = xi for all i ∈ S. In other words, given x and S, we have

p (x′ ∼ D (xS)) = p (x′ ∼ D | x′i = xi for all i ∈ S) . (1)

By this definition, D (x∅) = D, and if we define F = {1, · · · , D}, then x′ ∼ D (xF ) is equal to
x with probability 1. Later in this section, we discuss other popular choices such as interventional
conditional distributions [42, 1]. Given a datapoint x, a model f , and a weight vector w, the first
evaluation metric, faithfulness [4], is defined as follows:

faithfulness = Pearson
(∣∣∣Ex′∼D(xF\i)[f(x′)]− f(x)

∣∣∣
1≤i≤D

, [wi]1≤i≤D

)
. (2)

Intuitively, faithfulness computes the Pearson correlation coefficient [65] between the weight vec-
tor w and the approximate marginal contribution

∣∣∣Ex′∼D(xF\i)[f(x′)]− f(x)
∣∣∣ for each feature i.

Faithfulness is a lightweight metric that is especially useful for comparing which feature would have
the most impact on the model output when individually changed.

The next metric computes the marginal improvement of each feature ordered by the weight vector w
without replacement, and then computes the fraction of indices i such that the marginal improvement
for feature i is greater than the marginal improvement for feature i+ 1. This makes it useful when
comparing the effect of features as they are added sequentially. Formally, define S+(w, i) as the set
of i most important weights, and let S+(w, 0) = ∅. Given a datapoint x, a model f , and a weight
vector w, monotonicity [43] is defined as follows:

monotonicity =
1

D − 1

D−2∑
i=0

I|δ+i |≤|δ+i+1|
, (3)

where δ+
i = Ex′∼D(xS+(w,i+1))

[f(x′)]− Ex′∼D(xS+(w,i))
[f(x′)]. (4)

The types of metrics discussed so far all evaluate weight vectors by comparing an estimate of the
marginal improvement of a set of features to their corresponding weights. Estimating the marginal
improvement requires computing f on different combinations of features, and it is possible that these
combinations of features have very low density in D, and are therefore unlikely to occur in Dtrain.
This is especially true for structured data or data where there are large low-density regions in D
that may make the evaluations on f unreliable. To help mitigate this issue, another paradigm of
explainability evaluation metrics was proposed: remove-and-retrain (ROAR) [31]. In this paradigm,
in order to evaluate the marginal improvement of sets of features, the model is retrained using a new
dataset with the features removed. For example, rather than computing |Ex′∼D(xF\i)[f(x′)]− f(x)|,
we would compute |f∗(Ex′∼D(xF\i)[x

′])− f(x)|, where f∗ denotes a model that has been trained
on a modification of Dtrain where each datapoint has its i features with highest weight removed. The
original work plots the retrained model performance versus the number of features ablated [31],
removing features in order of decreasing importance. Then feature attribution methods are compared
by inspecting the steepness of these plots. Follow-up work has compressed the ROAR statistic into
a scalar value by computing the area-under-the-curve (AUC) [28, 44]. We use this AUC version in
Section 5, to be consistent with the other metrics that only output a single value. Note that to compute
ROAR on all datapoints in the test set, the explainer must evaluate all datapoints in the training set to
construct D+ 1 ablated datasets, and then the model must be retrained for each of these datasets. We
give the formal definition in Appendix E.

A caveat for all of the aforementioned metrics is that they evaluate each feature weight by computing
the effect of removing the feature from a single set of features S. While this evaluation is sufficient in
many cases, it may lead to unreliable measurements for e.g. highly nonlinear models. Furthermore, the
explicit goal of a popular line of explainability methods is to obtain fast and accurate approximations
of Shapley values [41, 1, 40, 19, 39, 61]. To address this, we consider a metric based on Shapley
values, GT-Shapley, which computes the Pearson correlation coefficient [65] of the feature weights
to the ground-truth Shapley values. Shapley values take into account the marginal improvement of a
feature i across all possible exponentially many sets with and without i.
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Next, we consider the infidelity metric [67]. This metric is computed by considering the effects
of replacing each feature with a noisy baseline conditional expectation. Instead of computing the
correlation between the feature importances and the change in function values (as in faithfulness and
GT-Shapley), infidelity computes the difference between the change in function value and the dot
product of the change in feature value with the feature importance vector, in expectation over the
noise. Note that if we were to only add noise to one feature at a time, this would be similar in spirit
to faithfulness (since the dot product would be equal to the weight of the feature which had noise
added). Similar to prior work [67], we consider perturbations based on Gaussian noise. Therefore,
infidelity can pick up nonlinear trends in feature importances better than faithfulness or monotonicity.

Finally, while Equation (1) defines “observational” conditional expectations [41, 1], we also imple-
ment “interventional” conditional expectations [19, 62], which are defined by assuming the features
in S are independent of the remaining features. This can be applied to all metrics defined in this
section. The best choice of conditional expectations depends on the application [14], and we discuss
the tradeoffs in the next section.

3.3 A guide to choosing metrics
All of the metrics listed above may be used for evaluating and comparing different feature attribution
techniques. However, each metric has strengths and weaknesses, and choosing the most useful metric
for a given situation depends on the use case, dataset, feature attribution technique, and computational
constraints. We discuss strengths, weaknesses, and example use cases of each metric type.

For the ROAR paradigm, retraining the model with the most important features removed is especially
important when the original model is not calibrated for out-of-distribution predictions [31], such as
in high-dimensional applications like computer vision [44, 29, 59]. However, retraining might fail to
give an accurate evaluation in the presence of high feature correlations [48]. Furthermore, retraining
the model incurs a much larger computational cost.

For some feature attribution algorithms, the explicit goal is to efficiently approximate the Shapley
values [41, 1, 40, 19, 39, 61], and the GT-Shapley metric is the best choice to determine which
technique gives the best approximations to the true Shapley values. However, evaluating the ground-
truth Shapley values has a computational cost that is exponential in the number of features. Therefore,
the GT-Shapley metric is slow to evaluate on high-dimensional datasets.

Faithfulness, monotonicity, and infidelity are far less computationally intensive compared to ROAR
and GT-Shapley. The main difference between faithfulness and monotonicity is that faithfulness
considers subsets of features by iteratively removing the most important features with replacement,
while monotonicity does this without replacement. Therefore, the former is better for applications
where the main question is which features would individually change the output of the model on a
given datapoint (and therefore may be better on datasets with less correlated features). The latter is
better for applications where the main goal is to see the cumulative effect of adding features (and
therefore performs comparatively better in the presence of correlated features).

The main difference between infidelity and faithfulness (as well as monotonicity) is that infidelity
considers ablations of subsets of features, while faithfulness only considers ablating a single feature
at a time. Therefore, infidelity may be more appropriate for models with highly nonlinear feature
interactions, compared to faithfulness and monotonicity.

Finally, we discuss using interventional versus observational conditional expectations. As pointed
out in prior work [14], interventional conditional expectations are better for applications that require
being “true to the model”, while observational conditional expectations are better for applications that
require being “true to the data”, because observational conditional expectations tend to spread out
importance among correlated features (even features that are not used by the model). For example,
interventional conditional expectations are more appropriate in explaining why a model caused a loan
to be denied, while observational conditional expectations are more appropriate in explaining the
causal features in the drug response to RNA sequences [14].

4 Synthetic Datasets

In this section, we describe the synthetic datasets used in our library. We start by discussing the
benefits of synthetic datasets when evaluating feature attribution methods, and then describe the
feature distributions implemented for these datasets.
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4.1 The case for synthetic data

As shown in Section 3.2, for multiple metrics it is key to compute the conditional expectation
Ex′∼D(xS)[f(x′)] for a subset S, datapoint x, and trained model f . On real-world datasets, the
conditional distribution D (xS) can only be approximated, and the approximation may be very poor
when the conditional distribution defines low-density regions of the feature space. Since all evaluation
metrics require computing Θ(D) or Θ(2D) expectations for each datapoint x, is is likely that some
evaluations will make use of a poor approximation. However, for the synthetic datasets that we define,
the conditional distributions are known, allowing exact computation of the evaluation metrics.

Additionally, as we show in Section 5, synthetic datasets allow one to explicitly control all attributes of
the dataset, which allows for targeted experiments, for example, investigating explainer performance
as a function of feature correlation. For explainers such as SHAP [41] which assume feature
independence, this type of experiment may be very beneficial. Finally, synthetic datasets can be used
to simulate real datasets, which enables fair benchmarking of explainers with quantitative metrics.

4.2 Synthetic feature distributions

Now we describe the synthetic datasets in our library. In general, the datasets are expressed as
y = h(x), with y as label and x as feature vector. The generation is split into two parts, generating
features x, and defining a function to generate labels y from x. We implement multiple families
of synthetic distributions in our library, including multivariate Gaussian, mixture of Gaussians, and
multinomial feature distributions.

To give a concrete example, we describe here how to generate and use multivariate Gaussian
synthetic features. The multivariate normal distribution of a D-dimensional random vector X =
(X1, ..., XD)T can be written as X ∼ N (µ, Σ), where µ is the D-dimensional mean vector, and
Σ is the D ×D covariance matrix. Without loss of generality, we can partition the D-dimensional
vector x as X = (X1,X2)T . To compute the distribution of X1 conditional on X2 = x∗2 where
x∗2 is a K-dimensional vector with 0 < K < D, we can then partition µ and Σ accordingly:

µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Then the conditional distribution is a new multivariate normal (X1|X2 = x∗2) ∼ N (µ∗, Σ∗) where

µ∗ = µ1 + Σ12Σ
−1
22 (x∗2 − µ2), Σ∗ = Σ11 + Σ12Σ

−1
22 Σ21. (5)

For any x∗2 ∈ RK , one can compute µ∗ and Σ∗ and then generate samples from the conditional
distribution. Parameter µ can take any value, and Σ must be symmetric and positive definite.
Similarly, we also give the derivation for additional distribution families in Appendix D, including
mixtures of multivariate Gaussians, and multinomial features.

4.3 Labels

After defining a distribution of features via one of the above distribution families, we can then define
a distribution over labels. The distributions we implement are linear, piecewise constant,
nonlinear additive, and piecewise linear.

Data labels are computed in two steps: (1) raw labels are computed from features, i.e. yraw =∑D
n=1 Ψn(xn) where Ψn is a function that operates on feature n, and (2) final labels are normalized

to have zero mean and unit variance. The normalization ensures that a baseline ML model, which
always predicts the mean of the dataset, has an MSE of 1. This allows results derived from different
types of datasets to be comparable at scale.

For linear datasets, Ψn(xn) are scalar weights, and we can rewrite the raw labels as yraw = wTx.
In our experiments in Section 5, we set w = [0, 1, . . . , d − 1]. piecewise linear datasets are
similar to linear, but a different weight vector is used in different parts of the feature space. In
our experiments in Section 5, on the datasets with continuous features, we set w = [0, 1, . . . , d− 1]
when the sum of the feature values is positive, and w = [d − 1, d − 2, . . . , 0] otherwise. For
piecewise constant datasets, Ψn(xn) are piecewise constant functions made up of different
threshold values (similar to Aas et al. [1]). For nonlinear additive datasets, Ψn(xn) are nonlinear
functions including absolute, cosine, and exponent function adapted from Chen et al. [15]. Detailed
specifications can be found in Appendix F.
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5 Experiments

We show experiments on several popular feature attribution methods across synthetic datasets.

5.1 Feature attribution methods

We compare eight different feature attribution methods: SHAP [41], SHAPR [1], brute-force Kernel
SHAP (BF-SHAP) [41], LIME [51], MAPLE [50], L2X [15], breakDown [60], and the baseline
RANDOM, which outputs random weights drawn from a standard normal distribution. We ran light
hyperparameter tuning on all datasets. See Appendix E for details and descriptions for all methods.
We report the mean and standard deviation from ten trials for all experiments.

5.2 Parameterized synthetic data experiments

We first show experiments using multivariate Gaussian datasets described in Section 4. Without loss
of generality, we can assume that the feature set is normalized (in other words, µ is set to 0, and the
diagonal of Σ is set to 1). In all sections except Section 5.3, we set the non-diagonal terms of Σ to ρ,
which allows for the convenient parameterization of a global level of feature dependence [1].

We run experiments that compare eight feature attribution methods on the five evaluation metrics
defined in Section 3.1 across several datasets and ML models. We conduct experiments by varying
one or two of these dimensions at a time while holding the other dimensions fixed (for example,
we compare different datasets while keeping the ML model fixed) and in Appendix G, we give the
exhaustive set of experiments. Throughout this section, we will identify different types of failure
modes, for example, failures for some explainability techniques over specific metrics (Table 1) or
failures for some techniques on datasets with high levels of feature correlation (Figures 2 and 3).

Performance across metrics As shown in Table 1, the relative performance of explainers varies
dramatically across metrics for a fixed multilayer perceptron trained on a nonlinear additive
dataset with ρ = 0.5. Since ρ = 0.5 implies that the features are fairly correlated, we find that
SHAPR outperforms SHAP on GT-Shapley, which is consistent with the fact that SHAPR was
designed to outperform SHAP in the presence of dependent features [1]. SHAPR achieved the
top performance for three metrics, but MAPLE had the most consistent performance across all
five metrics. One possible explanation for this is that MAPLE draws on ideas from three different
areas of explainability: example-based, local, and global explanations [50], which helps it achieve
steady performance across many metrics. Finally, while breakDown achieves the worst score for
GT-Shapley, it achieves the best score for monotonicity. Note that breakDown works by greedily
choosing the features with the greatest effect on the model output, with replacement, making it
particularly well-suited for the monotonicity metric, which checks whether replacing features sorted
by importance with their background value with replacement monotonically decreases the change in
model output.

Table 1: Explainer performance across metrics. All performance numbers are from explaining a
multilayer perceptron trained on the Gaussian nonlinear additive dataset with ρ = 0.5.

RANDOM SHAP SHAPR LIME MAPLE L2X BREAKDOWN
faithfulness(↑) 0.002±0.034 0.651±0.051 0.799±0.036 0.524±0.06 0.478±0.061 0.000±0.075 0.110±0.049

monotonicity(↑) 0.525±0.017 0.537±0.014 0.550±0.025 0.517±0.022 0.543±0.026 0.535±0.022 0.562±0.021

ROAR(↑) 0.380±0.051 0.455±0.054 0.465±0.054 0.432±0.051 0.432±0.059 0.365±0.053 0.329±0.057

GT-Shapley(↑) 0.004±0.049 0.810±0.023 0.930±0.012 0.711±0.032 0.530±0.128 −0.014±0.068 −0.127±0.066

infidelity(↓) 0.114±0.058 0.050±0.023 0.036±0.013 0.053±0.016 0.019±0.011 0.025±0.010 0.126±0.057

Performance across dataset types and feature correlations Next, we explore how the type
of dataset and feature correlation affects performance of explainers on a multilayer perceptron
with the faithfulness metric. As shown in Figure 2, a general trend is that explainers become
less faithful as feature correlation increases. Explainers such as Kernel SHAP assume feature
independence [1, 45] and tend to perform well when features are indeed independent (ρ = 0). This
is especially apparent with the linear dataset, where the performance of most methods cluster
above 0.9 at ρ = 0. However, LIME’s performance drops as much as ∼ 90% when features are
almost perfectly correlated (ρ = 0.99). On the other hand, for both the nonlinear additive and
piecewise constant datasets, MAPLE’s performance stayed relative stable across values of ρ.
For experiments on the piecewise linear dataset, see Appendix G.
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Figure 2: Results for faithfulness on a multilayer perceptron trained on three different datasets.
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Figure 3: Results for faithfulness for three types of ML models—linear regression, decision tree, and
multilayer perceptron—trained on a Gaussian piecewise constant dataset.

Performance across ML models Next, we train three ML models: linear regression, decision tree,
and multilayer perceptron, with a piecewise constant dataset and compare faithfulness. Figure 3
shows that as in Figure 2, explainer performance drops as features become more correlated. Most
explainers perform well for linear regression up to ρ = 0.75. The performance of SHAP, SHAPR,
and LIME remain relatively consistent across ML models. In contrast, MAPLE performs significantly
worse on the decision tree model.

5.3 Simulating real datasets

In this section, we demonstrate the power and flexibility of synthetic datasets by simulating two
popular datasets: the wine quality dataset [16, 60] and the forest fire dataset [17] with synthetic
features so that they can be used to efficiently benchmark feature attribution methods.

Wine quality dataset The wine dataset has 11 continuous features (xreal) and one integer quality
rating (yreal) between 0 and 10. In this section, it is formulated as a regression task, but it can also be
formulated as a multi-class classification task. The features are first normalized to have zero mean
and unit variance, then an empirical covariance matrix is computed (Appendix Figure 5), which is
then used as the input covariance matrix to generate synthetic multivariate Gaussian features (xsim).
Simulated wine quality (ysim) is labeled by a k-nearest neighbor model based on real datapoints
(xreal, yreal).

We evaluate how close the simulated dataset is to the real one in two steps. First, we compute the
Jensen-Shannon Divergence (JSD) [64] of the real and synthetic wine datasets. JSD measures the
similarity between two distributions; it is bounded between 0 and 1, and lower JSD suggests higher
similarity between two distributions. The JSD of marginal distributions between the real empirical
features and the synthetic Gaussian features has a mean of 0.20, and the JSD of real and synthetic
targets is 0.23, suggesting a good fit. Second, we train three types of ML models on both simulated
and real wine datasets and compare the MSE of explanations on a common held-out real test set. As
shown in Appendix Table 5, consistent low MSE across ML models and explainers suggest that the
simulated dataset is a good proxy for the original wine dataset for evaluating explainers.
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Next, we compute evaluation metrics for seven different explainers on the synthetic wine dataset. Note
that computing these metrics accurately is not possible on the real wine dataset, as the conditional
distribution is unknown. As shown in Table 2, SHAPR performs well on GT-Shapley, consistent with
Table 1. SHAP and SHAPR both outperform LIME and MAPLE on faithfulness.

Forest fire dataset The forest fire dataset has 12 continuous features and one real-valued label
indicating the area of burned forest. Again, we normalize the features to have zero mean and unit
variance, and then we compute the covariance matrix, which is used to generate the synthetic dataset
(the same way as the wine quality dataset above).

For the forest fire dataset, the JSD of marginal distributions between the real empirical features and
the synthetic Gaussian features has a mean of 0.17, and the JSD of real and synthetic targets is 0.15,
suggesting a good fit. We compute evaluation metrics for six different explainers on the synthetic
forest fire dataset. See Table 3. SHAP achieved top performance on three of the five metrics.

Table 2: Explainer performance on the simulated wine dataset across metrics. All performance
numbers are from explainers for a decision tree.

RANDOM SHAP SHAPR LIME MAPLE L2X BREAKDOWN
faithfulness (↑) −0.007±0.005 0.534±0.045 0.528±0.032 0.368±0.031 0.034±0.033 −0.030±0.018 −0.042±0.011

monotonicity (↑) 0.529±0.008 0.549±0.009 0.551±0.009 0.547±0.007 0.520±0.014 0.522±0.005 0.493±0.014

ROAR (↑) 0.698±0.031 0.780±0.016 0.549±0.031 0.738±0.026 0.818±0.022 0.664±0.02 0.625±0.002

GT-Shapley (↑) 0.004±0.013 0.825±0.006 0.945±0.002 0.745±0.015 0.685±0.008 −0.108±0.029 −0.064±0.02

infidelity (↓) 0.353±0.174 0.234±0.124 0.212±0.146 0.234±0.126 0.234±0.132 0.285±0.115 0.365±0.133

Table 3: Explainer performance on the simulated forest fires dataset across metrics. All performance
numbers are from explainers for a decision tree.

RANDOM SHAP LIME MAPLE L2X BREAKDOWN
faithfulness (↑) 0.022±0.034 0.571±0.023 0.449±0.007 0.080±0.056 0.001±0.008 0.158±0.032

monotonicity (↑) 0.537±0.02 0.591±0.007 0.598±0.002 0.561±0.002 0.527±0.01 0.575±0.012

ROAR (↑) 0.575±0.002 0.615±0.011 0.616±0.008 0.696±0.024 0.534±0.018 0.604±0.019

GT-Shapley (↑) 0.012±0.06 0.870±0.005 0.779±0.027 0.804±0.011 0.031±0.12 0.105±0.013

infidelity (↓) 0.207±0.125 0.075±0.074 0.077±0.075 0.077±0.079 0.091±0.07 0.117±0.076

5.4 Recommended usage

In Section 5, we gave a sample of the types of experiments that can be performed with our library (re-
call that comprehensive experiments are in Appendix G). For researchers looking to develop new
explainability techniques, we recommend benchmarking new algorithms across all metrics using our
synthetic datasets with different values of ρ. These datasets give a good initial picture of the efficacy
of new techniques. For researchers with a dataset and application in mind, we recommend converting
the dataset into a synthetic dataset using the technique described in Section 5.3. Note that converting
to a synthetic dataset also gives the ability to evaluate explainability techniques on perturbations of
the original covariance matrix, to simulate robustness to distribution shift. Finally, researchers can
decide on the evaluation metric that is most suitable to the application at hand. See Section 3.3 for a
guide to choosing the best metric based on the application.

6 Societal Impact

Machine learning models are more prevalent now than ever before. With the widespread deployment
of models in applications that impact human lives, explainability is becoming increasingly important
for the purposes of debugging, legal obligations, and mitigating bias [41, 69, 7, 21]. Given the
importance of high-quality explanations, it is essential that explainability methods are reliable across
all types of datasets. Our work seeks to speed up the development of explainability methods, with
a focus on catching edge cases and failure modes, to ensure that new explainability methods are
robust before they are used in the real world. Of particular importance are improving the reliability
of explainability methods intended to recognize biased predictions, for example, ensuring that the
features used to predict criminal recidivism are not based on race or gender [37]. Frameworks for
evaluating and comparing explainability methods are an important part of creating inclusive and
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unbiased technology. As pointed out in prior work [20], while methods for explainability or debiasing
are important, they must be part of a larger, socially contextualized project to examine the ethical
considerations of the machine learning application.

7 Conclusions and Limitations

In this work, we released a set of synthetic datasets along with a library for benchmarking feature
attribution algorithms. The use of synthetic datasets with known ground-truth distributions makes it
possible to exactly compute the conditional distribution over any set of features, enabling accurate
computations of several explainability evaluation metrics, including ground-truth Shapley values,
ROAR, faithfulness, and monotonicity. Our synthetic datasets offer a variety of parameters which
can be configured to simulate real-world data and have the potential to identify failure modes of
explainability techniques, for example, techniques whose performance is negatively correlated with
dataset feature correlation. We showcase the power of our library by benchmarking several popular
explainers with respect to five evaluation metrics across a variety of settings.

Despite the fact that the synthetic datasets aim to cover a broad range of feature distributions,
correlations, scales, and target generation functions, there is almost certainly a gap between synthetic
and real-world datasets. However, as discussed before, it is often the case that we do not know the
ground truth generative model of real datasets, thus making it impossible to compute many objective
metrics. Hence, there is a trade-off between data realism and ground truth availability.

Note that our library is not meant to be a replacement for human interpretability studies. Since the
goals of explainability methods are inherently human-centric, the only foolproof method of evaluating
explanation methods are to use human trials. Rather, our library is meant to substantially speed up
the process of development, refinement, and identifying failures, before reaching human trials.

Overall, we recommend developing new explainability methods in this library, and then conducting
human trials on real data. Our library is designed to substantially accelerate the process of moving new
explainability algorithms from development to deployment. With the release of API documentation,
walkthroughs, and a contribution guide, we hope that the scope of our library can increase over time.
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A Dataset Documentation and Intended Use

Our code is available at https://github.com/abacusai/xai-bench.

A.1 Author responsibility

We bear all responsibility in case of violation of rights, etc. The license of our repository is the
Apache License 2.0. For more information, see https://github.com/abacusai/xai-bench/
blob/main/LICENSE.

A.2 Maintenance plan and contributing policy.

We plan to actively maintain the repository, and we welcome contributions from the explainability
community and machine learning community at large. For more information, see https://github.
com/abacusai/xai-bench. As our benchmarks are synthetic, we will host the code to generate
the datasets on GitHub.

A.3 Code of conduct

Our Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
The policy is copied below.

“We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality,
personal appearance, race, caste, color, religion, or sexual identity and orientation.”

B Reproducibility Checklist

To ensure reproducibility, we use the Machine Learning Reproducibility Checklist v2.0, Apr. 7,
2020 [49]. An earlier verision of this checklist (v1.2) was used for NeurIPS 2019 [49].

• For all models and algorithms presented,

– A clear description of the mathematical setting, algorithm, and/or model. We
clearly describe all of the settings and algorithms in Section 3.1 and Appendix Sec-
tion E.

– A clear explanation of any assumptions. Some of the explainability techniques
implemented in our repository make assumptions about the dataset (e.g., that all
features are independent). We give this information in Appendix E.

– An analysis of the complexity (time, space, sample size) of any algorithm. We
reported the complexity analysis in Section 3.1 and Appendix Section E.

• For any theoretical claim,

– A clear statement of the claim. We do not make theoretical claims.
– A complete proof of the claim. We do not make theoretical claims.

• For all datasets used, check if you include:

– The relevant statistics, such as number of examples. We used a real dataset in
Section 5.3. We give the statistics for this dataset in the same section.

– The details of train / validation / test splits We give this information in our repository.
– An explanation of any data that were excluded, and all pre-processing step. We

did not exclude any data or perform any preprocessing.
– A link to a downloadable version of the dataset or simulation environment. Our

repository contains all of the instructions to download and run experiments on the
datasets in our work. See https://github.com/abacusai/xai-bench.
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– For new data collected, a complete description of the data collection process, such
as instructions to annotators and methods for quality control. We release new
synthetic datasets, so there was no collection process. The code to generate the
synthetic datasets is hosted on GitHub.

• For all shared code related to this work, check if you include:

– Specification of dependencies. We give installation instructions in the README of
our repository.

– Training code. The training code is available in our repository.
– Evaluation code. The evaluation code is available in our repository.
– (Pre-)trained model(s). We do not release any pre-trained models. The code to run

all experiments in our work can be found in the GitHub repository.
– README file includes table of results accompanied by precise command to run

to produce those results. We include a README with detailed instructions to repro-
duce our experiments.

• For all reported experimental results, check if you include:

– The range of hyper-parameters considered, method to select the best hyper-
parameter configuration, and specification of all hyper-parameters used to gen-
erate results. We use default configuration for explainers except SHAPR, which we
discuss in Appendix E.2. Our repository allows setting the hyperparameters to other
values set by the user.

– The exact number of training and evaluation runs. We reported that we ran ten
trials for each experiment.

– A clear definition of the specific measure or statistics used to report results. We
define our metrics in Section 3.2.

– A description of results with central tendency (e.g. mean) & variation (e.g. error
bars). We report mean and standard deviation for all experiments.

– The average runtime for each result, or estimated energy cost. We report the
runtimes in Section G.

– A description of the computing infrastructure used. We use CPUs for all experi-
ments. We give details of our experiments in Appendix Section G.

C Multivariate Gaussian distribution

The probability density function of a non-degenerative multi-variate normal distribution is

fx(x1, ..., xD) =
exp(− 1

2 (x− µ)
T
Σ−1(x− µ))√

(2π)D|Σ|
, (6)

with parameters µ ∈ RD and Σ ∈ RD×D.

D Additional Synthetic Feature Distributions

Mixture of multivariate Gaussians features We first describe mixture of multivariate Gaussians
features. Suppose now that X = (X1, ..., XD)T is a D-dimensional random vector distributed
as a mixture of k Gaussians. We write this as X ∼ ∑k

j=1 πjN (µj ,Σj), where each µj is a D-
dimensional mean vector for the jth mixture component, and Σj is the D ×D covariance matrix for
the jth mixture component.

Suppose, as before we use the partition defined byX =

[
X1

X2

]
and partition the parameters of each

mixture component accordingly as

µj =

[
µj,1
µj,2

]
,Σj =

[
Σj,11 Σj,12

Σj,21 Σj,22

]
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for j = 1, . . . , k. Then, given X2 = x∗2, the conditional distribution is also a mixture of Gaussians,
written (X1|X2 = x∗2) ∼∑k

j=1 π
∗
jN (µ∗j ,Σ

∗
j ), where the parameters of each mixture component

can be written

µ∗j = µj,1 + Σj,12Σ
−1
j,22(x∗2 − µj,2) (7)

Σ∗j = Σj,11 + Σj,12Σ
−1
j,22Σj,21 (8)

π∗j =
πjfj,2(x∗2)∑k
`=1 π`f`,2(x∗2)

(9)

and where fj,2 denotes the probability density function of the multivariate normal distribution
N (µj,2,Σj,22).

Multinomial features We follow a similar derivation for the conditional distribution of a multi-
nomial distribution. Suppose now that X = (X1, ..., XD)T is a D-dimensional random vector
following a multinomial distribution, where Xi ∈ {0, . . . ,m}, and

∑D
i=1Xi = m. We write this as

X ∼ Multinomial(m, p1, . . . , pD), where the parameter m > 0 denotes the number of trials, and the
parameters p1, . . . , pD denote the D event probabilities.

Suppose, as before we use the partition defined byX =

[
X1

X2

]
. Then, givenX2 = x∗2 ∈ {0, . . . ,m}k,

the conditional distribution is also distributed as a multinomial, written (X1|X2 = x∗2) ∼
Multinomial(m∗, p∗1, . . . , p

∗
D−k), where the parameters of of this multinomial can be written

m∗ = m−∑k
j=1 x

∗
2,j , and p∗i = pi/

(
1−∑k

j−1 pj

)
.

E Descriptions of Explainability Metrics and Explainers

E.1 Metrics

In this section, we give the formal definitions for the rest of the evaluation metrics from Section 3.
We start by giving the definition of the ROAR-based metrics.

Recall that the major difference between ROAR-based metrics and other metrics is that in order to eval-
uate the marginal improvement of sets of features, ROAR-based metrics retrain the model using a new
dataset with the features removed. For example, rather than computing

∣∣∣Ex′∼D(xF\i)[f(x′)]− f(x)
∣∣∣,

we would compute
∣∣∣f∗(Ex′∼D(xF\i)[x′])− f(x)

∣∣∣, where f∗ denotes a model that has been trained
on a modification ofDtrain where each datapoint has its i features with highest weight removed. Given
a datapoint x and a set of features S ⊆ F , we start by defining x̄S , the expected value of a datapoint
conditioned on the features S from x:

x̄S =

{
xi for indices i ∈ S
E
[
x′i | x′ ∼ D s.t. x′j = xj for j ∈ S

]
for indices i /∈ S (10)

Recall from Section 3 that S+(w, i) denotes the set of i most important weights, and S+(w, 0) = ∅.
Let DS(k)+

train denote a new training set by replacing each x ∼ Dtrain with x̄F\S+(w(x),k), where w(x)

denotes the weight vector for x. That is, Dk+
train is the training set modified by removing the k most

important features for each datapoint. Let fS(k)+ denote the model f retrained on DS(k)+
train instead of

Dtrain. Then ROAR is defined as follows:
δ̄+
i = fS(k)+(x̄S+

i+1(w))− fS(k)+(x̄S+
i (w)), (11)

ROAR =
1

D − 1

D−2∑
i=0

I|δ+i |≤|δ̄+i+1|
(12)
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Now we give the formal definition for Shapley values. Given a datapoint x, the Shapley value vi is
defined as follows.

vi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |! (Ex′∼D(xS∪{i})[f(x′)]− Ex′∼D(xS)[f(x′)]), (13)

where D (xS) is defined as in Equation 1. Then for a datapoint x, ground truth Shapley correlation is
defined as the correlation between the weight vector w and the set of Shapley values for x. Formally,

GT-Shapley = Pearson ([vi]1≤i≤D, [wi]1≤i≤D) . (14)

The main drawback of this metric is its time complexity, which is Θ(2D) for a D-dimensional dataset.
Computation quickly becomes infeasible as D scales up.

E.2 Local Feature Attribute Explainers

In this section, we give descriptions and implementation details of all of the explainability methods
and metrics implemented in our library.

E.2.1 SHAP

Lundberg et al. [41] proposed a few methods such as BF-SHAP to estimate Shapley values defined
by Equation 13. Due to the unavailability of the generative model of conditional distribution for
real datasets, one can not accurately compute E[fS(xS)]. BF-SHAP makes two assumptions: (1)
model linearity, which makes E[fS(xS)] = fS(E[xS ]), (2) feature independence assumption: E[xS ]
with marginal expectation instead of conditional expectation. In this work, we refer the official
implementation of SHAP as SHAP, and re-implemented brute-force kernel SHAP as BF-SHAP.

E.2.2 SHAPR

Aas et al. [1] proposes several techniques to relax both assumptions and improve BF-SHAP such as
“Gaussian”, “copula”, and “empirical”. Because the “empirical” method with a fixed σ performs well
across tasks in the original paper, we re-implemented the original R package in python with a tuned
from {0.1, 0.2, 0.4, 0.8} and fixed σ = 0.4 and refer it as SHAPR.

E.2.3 LIME

Local Interpretable Model-agnostic Explanations (LIME) [51] interprets individual predictions based
on locally approximating the model around a given prediction. We use LIME from the official SHAP
repository.

E.2.4 MAPLE

MAPLE [50] is another technique that combines local neighborhood selection with local feature
selection. We use official implementation from the official SHAP repository.

E.2.5 L2X

L2X [15] used a mutual information-based approach to explainability. The L2X explainer has a
hyperparameter k which needs to be defined by the user to decide the top k most important features
to pick. For each D-dimensional data point, L2X outputs a D-dimensional binary vector Ik with 1
indicating important features and 0 indicating unimportant features. Because k is often unknown a
priori, we modified L2X as follows:

w =
2

k(k + 1)

D∑
k=1

Ik, (15)

where 2
k(k+1) is a scaling factor to ensure the elements in w sum up to 1. The original L2X model

uses 1 million training samples to achieve good performance, due to the computation limitation of
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metrics calculation, we limit the training set size of synthetic experiment to 1000, and experiments
show that L2X often fails to achieve good performance.

E.2.6 BREAKDOWN

BREAKDOWN [60] is another technique to decompose model predictions into parts that can be
attributed to particular variables. We use the official python implementation from https://github.
com/MI2DataLab/pyBreakDown.

E.2.7 RANDOM

RANDOM explainer is implemented to serve as a baseline model. The explainer generates random
weights from standard normal distribution.

F Dataset details

For 5-dimensional datasets, linear w = [4, 3, 2, 1, 0],

piecewise constant:

Ψ1(x1) =

{
1, x1 >= 0

−1, x1 < 0
(16)

Ψ2(x2) =


−2, x2 < −0.5

−1, −0.5 ≤ x2 < 0

1, −0 ≤ x2 < 0.5

2, x2 ≥ 0.5

(17)

Ψ3(x3) = floor(2cos(πx3)) (18)
Ψi(xi) = 0, i = 4, 5 (19)

where floor() is a rounding function that rounds a real number to the nearest integer with the lowest
absolute value.

Nonlinear additive:

Ψ1(x1) = sin(x1) (20)
Ψ2(x2) = |x2| (21)

Ψ3(x3) = x2
3 (22)

Ψ4(x4) = ex4 (23)
Ψ5(x5) = 0 (24)

where floor() is a rounding function that rounds a real number to the nearest integer with lowest
absolute value.
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Figure 4: Label distribution of (a) Gaussian Linear, (b) Gaussian Nonlinear Additive, and (c) Gaussian
Piecewise Constant datasets. 1 million datapoints are generated for each dataset, and 120 equal sizedd
bins from -6 to 6 are used for discretizing the distribution.
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Figure 5: Empirical covariance matrix of the wine dataset. Features are normalized to have unit
variance and zero mean.

G Additional results

In this section, we present additional results and experimental details.

Table 4: Time taken in seconds by explainers to explain 100 test datapoints from the Gaussian
piecewise constant dataset for a multilayer perceptron model.

Random SHAP SHAPR BF-SHAP MAPLE LIME L2X
Time (in seconds) 0.00009 3.9 323.8 0.2 3.2 28.0 6.5

Table 4 shows the time explainers take to generate explanations for 100 test datapoints. All of our
experiments were run on CPUs. We report mean and standard deviation across three runs for all
experiments except for Table 4. All synthetic experiments have a training size of 1000, and test size
of 100.

The wine dataset contains 4898 datapoints. In Table 5, we give the mean squared error between
explanations for predictions of models trained on the real vs. simulated wine dataset described in
Section 5.

We conclude by presenting the comprehensive results for five different evaluation metrics, eight
different feature attribution algorithms, nine different datasets, and five different values of ρ.
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Table 5: Mean squared error (MSE) between explanations for predictions of models trained on real
and simulated wine dataset. Random predictions are generated from standard Gaussian distribution for
every feature for each datapoint. Low MSE across ML models and explainers suggest the simulated
wine dataset is a good representation of the real dataset for explainability benchmarking.

Model SHAP LIME MAPLE L2X Random
Linear 0.028± 0.009 0.047± 0.016 0.027± 0.009 0.0009± 0.0001

1.988±0.001Tree 0.047± 0.003 0.009± 0.001 0.052± 0.012 0.0008± 0.0001
MLP 0.028± 0.003 0.037± 0.008 0.040± 0.002 0.0008± 0.0001
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Figure 6: Results of faithfulness across ML models, dataset types, and ρs.
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Figure 7: Results of monotonicity across ML models, dataset types, and ρs.
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Figure 8: Results of ROAR across ML models, dataset types, and ρs.
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Figure 9: Results of GT-Shapley across ML models, dataset types, and ρs.
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Figure 10: Results of infidelity across ML models, dataset types, and ρs.
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