
A Appendix

A.1 Mathematical Details

A.1.1 Boundaries for counterfactual-prediction information

Following the introduction of the variational information bottleneck, we explain it as follows. Con-
sider a Markov chain of o − û∗ − m, (substituting the X − Y − Z in the original IB and VIB),
regarding the hidden representation of encoding û∗ of the input o, the goal of learning an encoding is
to maximize the information about target m measured by the mutual information between encoding
and the target I(û∗;m).

To prevent the encoding of data from being m = û∗, which is not a useful representation, a constraint
on the complexity can be applied to the mutual information as I(û∗;m) ≤ Ic, where Ic is the
information constraint. This is equivalent to using the Lagrange multiplier β to maximize the
objective function I(û∗;m) − βI(û∗; o). Intuitively, as the first term is to encourage m to be
predictive of û∗ while the second term is to encourage m to forget o. Essentially m is to act like a
minimal sufficient statistic of o for predicting û∗ [19].

Then specifically for each agent i, we intend to encourage assistive informationm−j from other
agents to agent j to memorize its ˆuj∗ when assistive information from agent i is conditioned on
observation oj , while we encourage assistive information mi from agent i to not depend directly on
its own observation oi.

To efficiently and effectively encode extra state information for individual value estimation, we
consider this information encoding problem as an information bottleneck problem [19], the objective
for each agent i can be written as:

JIB (θm) =

n∑
j=1

[
Iθm

(
û∗j ;mi|oj ,m−j

)
− βIθm

(mi; oi)
]

(9)

This object is appealing because it defines what is a good representation in terms of trade-off between
a succinct representation and inferencing ability. The main shortcoming is that the computation of the
mutual information is computationally challenging. Inspired by the recent advancement in Bayesian
inference and variational auto-encoder [40, 37, 11], we propose a novel way of representing it by
utilizing latent vectors from variational inference models using information theoretical regularization
method, and then derive the evidence lower bound (ELBO) of its objective.
Lemma 1. A lower bound of mutual information Iθm

(
û∗j ;mi|oj ,m−j

)
is

Eoi∼D,mj∼fm [−H(p(û∗j |o), qψ(û∗j |oj ,m))]

where qψ is a variational Gaussian distribution with parameters ψ to approximate the unknown
posterior p(û∗j |oj ,mj), o = {o1, o2, · · · , on}, m = {m1,m2, · · · ,mn}.

Proof.
Iθm

(
û∗j ;mi|oj ,m−j

)
=

∫
dû∗jdojdm−jp

(
û∗j , oj ,m−j

)
log

p
(
û∗j ,mi|oj ,m−j

)
p
(
û∗j |oj ,m−j

)
p (mi|oj ,m−j)

=

∫
dû∗jdojdm−jp

(
û∗j , oj ,m−j

)
log

p
(
û∗j |oj ,m−j

)
p
(
û∗j |oj ,m−j

)
where p(û∗j |oj ,m−j) is fully defined by our encoder and Markov Chain. Since this is intractable
in our case, let qψ(û∗j |τj ,m−j) be a variational approximation to p(û∗j |oj ,m−j), where this is our
decoder which we will take to another neural network with its own set of parameters ψ. Using the
fact that Kullback Leibler divergence is always positive, we have

KL[p(û∗j |oj ,m−j), qψ(û
∗
j |τj ,m−j)] ≥ 0

∫
dû∗jdojdm−jp(û

∗
j , oj ,m−j) log p(û

∗
j |oj ,m−j) ≥

∫
dû∗jdojdm−jp(û

∗
j , oj ,m−j) log qψ(û

∗
j |oj ,m−j)

14

and hence

Iθc
(
û∗j ;mi|oj ,mj

)
≥
∫
dû∗jdojdmjp

(
û∗j , oj ,mj

)
log

qψ
(
û∗j |oj ,mj

)
p
(
û∗j |oj ,m−j

)
=

∫
dû∗jdojdmjp

(
û∗j , oj ,mj

)
log qψ

(
û∗j |oj ,mj

)
−

∫
dû∗jdojdmjp

(
û∗j , oj ,mj

)
log p

(
û∗j |oj ,m−j

)
=

∫
dû∗jdojdmjp(oj)p(mj |oj)p(û∗j |oj) log qψ(û∗j |oj ,mj) +H(û∗j |oj ,mj)

=Eo∼D,mj∼fm(

∫
dû∗jp(û

∗
j |o) log qψ(û∗j |oj ,mj)) +H(û∗j |oj ,mj)

=Eo∼D,mj∼fm [−H[p(û∗j |o), qψ(û∗j |oj ,m)]] +H(û∗j |oj ,mj)

Notice that the entropy of labels H(û∗j |oj ,mj) is an positive term that is independent of our opti-
mization procedure and thus can be ignored. Then we have

Iθm(û∗j ;mi|oj ,mj) ≥ Eo∼D,mj∼fm [−H[p(û∗j |o), qψ(û∗j |oj ,m)]]

which is the lower bound of the first term in Eq.(2)

Lemma 2. A lower bound of mutual information Iθm
(mi; oi) is

ETi∼D,mj∼fm [βDKL(p(mi|oi)∥qϕ(mi))]

where DKL denotes Kullback-Leibler divergence operator and qϕ(mi) is a variational posterior
estimator of p(mi) with parameters ϕ.

Proof.

Iθm(Mi;Ti)

=

∫
dmidoip(mi|oi)p(oi) log

p(mi|oi)
p(mi)

=

∫
dmidoip(mi|oi)p(oi) log p(mi|oi)−

∫
dmidoip(mi|oi)p(oi) log p(mi)

Again, p(mi) is fully defined by our encoder and Markov Chain, and when it is fully defined,
computing the marginal distribution

∫
doip(mi|oi)P (oi) might be difficult. So we use qϕ(mi) as a

variational approximation to this marginal. Since KL[p(mi), qϕ(mi)] ≥ 0,

We have ∫
dmip(mi) log p(mi) ≥

∫
dmip(mi) log qϕ(mi)

Then
Iθm

(Mi;Ti)

≤
∫
dmidoip(mi|oi)p(oi) log p(mi|oi)−

∫
dmidoip(mi|oi)p(oi) log qϕ(mi)

=

∫
dmidoip(mi|oi)p(oi) log

p(mi|oi)
qϕ(mi)

= Eoi∼D,mj∼fm [DKL (p (mi|oi) ∥qϕ (mi))]

Combining Lemma 1 and Lemma 2, we have the ELBO for the message encoding objective, which
is to minimize

LIB (θm) = Eoi∼D,mj∼fm [−H[p(û∗j |o), qψ(û∗j |oj ,m)] + βDKL(p(mi|oi)∥qϕ(mi))] (10)

15

A.1.2 Factorized soft policy iteration

Recent works have shown that Boltzmann exploration policy iteration is guaranteed to improve the
policy and converge to optimal with unlimited iterations and full policy evaluation, within MARL
domain it can be defined as:

J(π) =
∑
t

E [r (st,ut) + αH (π (·|st))]

In section 4 we give the factorized soft policy gradients as:

LLP (π) = ED [α logπ (ut|τ t)−Qπtot (st, τt,ut,mt)]

= −qmix
(
st,Eπi

[
qi
(
τ it , u

i
t,m

i
t

)
− α log πi

(
uit|τ it

)]) (11)

We now derive it in detail, we use the aristocrat utility to perform credit assignment:

Let qmix be the operator of a one-layer mixing network with no activation functions in the end whose
parameters are generated from the hyper-network with input st, then

qmix(st, q(τt, at,mt)−α logπ(at|τt))

=
∑
i

[ki(s)Eπ[qi(τ it , ait,mi
t)]−

∑
i

[ki(s)αi log πi(at|τt)] + b(s)

(ki(s) and bi(s) are the corresponding weights and biases of qmix conditioned on s)

= Eπ[Qtot(τ ,a,m;θ)]−
∑
i

[ki(s)Eπ[αi log πi(at|τt)]

(qmix(st, q(τt, at,mt)) =
∑
i

[ki(s)Eπ[qi(τ it , ait,mi
t)] + b(s) = Eπ[Qtot(τ ,a,m;θ)])

(Eπ[Qtot(τ ,a,m;θ)] =
∑
a

πi(ait|τ it)Eπ[Qtot(τ ,a,m;θ)])

= Eπ[Qtot(τ ,a,m;θ)]−
∑
i

Eπ[α log πi(ait|τ it)]

(let αi =
α

ki(s)
)

= Eπ[Qtot(τ ,a,m;θ)]−
∑
i

∑
π

[απi(ait|τ it) log πi(ait|τ it)]

= Eπ[Qtot(τ ,a,m;θ)]−
∑
π

α logπ(at|τ t)

(Assume π =
∏

πi, then
∑
i

∑
π

[απi(ait|τ it) log πi(ait|τ it)] =
∑
π

α logπ(at|τ t))

= Eπ[Qπtot(st, τt,at)−α logπ(at|τ t)]
Which then complies to the original soft-actor-critic policy update policy.

We use the derivation above to show that directly using q(τt, at,mt)−α logπ(at|τt) as input to
feed in the mixing network to serve as soft-actor-critic policy update policy in a value decomposition
method. It holds when using a single-layer mixing network without activation function, but neverthe-
less it offers insights of the proposed design, and when using relu activation function, it can be served
as a lower bound object for optimization.

A.2 Environment Details

We use more recent baselines (i.e., FOP and DOP) that are known to outperform QTRAN [5] and
QPLEX [9] in the evaluation. In general, we tend to choose baselines that are more closely related to
our work and most recent. This motivated the choice of QMIX (baseline for value-based factorization

16

Algorithm 1 pseudocode for training PAC

1: for k = 0 to max_train_steps do
2: Initiate environment, critic network q, mixing network Q∗, Qtot, policy network π, message

encoder m
3: Initiate Replay buffer D
4: for t = 0 to max_episode_limits do
5: For each agent i, take action ai ∼ πi
6: Execute joint action a, observe reward r,

and observation τ , next state st+1

7: Store (τ , a, r, τ
′
) in replay buffer D

8: end for
9: for t = 1 to T do

10: Sample trajectory minibatch B from D
11: Generate peer-assisted information

mi∼N(fm(oi; θm), I)), for i = 0 to n
12: Calculate Loss

L(θ) = LLP + LCA + LIB + LQ̂∗ + LQtot

13: Update critic network and mixing network
θnn(q,Q

∗, Qtot)← η∇̂L(θ)
14: Update policy network

θ(π)← η∇̂L(π)
15: Update encoding network

θm(m)← η∇̂L(θ)
16: Update temperature parameter

α← η∇̂α
17: if t mod d = 0 then
18: Update target networks: θ− ← θ
19: end if
20: end for
21: end for
22: Return π

methods), WQMIX (close to our work that uses weighted projections so better joint actions can be
emphasized), NDQ [11] (which similarly uses common information to assist decision making but
as generating messages for agent-wise communication), VDAC [14], FOP [13], DOP [12] (SOTA
actor-critic based methods). Our code implementation is available at Github.

A.2.1 Multi-State Matrix Game

To highlight the importance of the extra state information for an assisted value function factorization,
we present a multi-state matrix game as inspired by the single-state matrix game proposed in [5] and
present how our method performs compared with the existing works.

The multi-state matrix game and the detailed mlearning results for more algorithms as shown in table
1 and table 2.

The multi-state matrix game can be considered the single state matrix game with the same goal of fac-
torizing the global value, consider an Markov decision process (MDP) consisting of 2 states with 0.5
transition probabilities between them and two payoff matrices shown in table 1(a). Suppose that agent
1 has the same partial observation o1 in states s(1) and s(2). Then, its per-agent value function q1(·, τ1)
computed from partial observation o1 are also the same in both states. Due to the monotonicity of the
mixing network (even though it is provided with complete joint state information), for any u1 and
u′1 with ordering q1(u1, τ1) ≥ q1(u

′
1, τ1) without loss of generality, we must simultaneously have

Qtot(u1, u2, s
(1)) ≥ Qtot(u′1, u2, s(1)) and Qtot(u1, u2, s(2)) ≥ Qtot(u′1, u2, s(2)) for any action u2

of agent 2 in both states.

17

x a1
2 a22 a11

a11 4 -2 -2
a21 -2 0 0
a31 -2 0 0

x a12 a22 a11
a11 -2 0 0
a21 4 -2 -2
a31 -2 0 0

(a) Payoff matrix for state s1 and s2

x 0.3 -1.2 -2.6
-0.2 0.1 -1.0 -1.0
0.3 1.1 -0.9 -1.0
-2.6 -1.0 -1.0 -1.0

x 0.4 -1.3 -2.2
-0.2 0.4 -1.0 -1.0
0.3 1.4 -0.9 -1.0
-2.6 -1.0 -1.0 -1.0

(b) QMIX: Qtot(s1), Qtot(s2)

x 1.0 0.2 0.2
1.0 4.0 -1.2 -1.2
0.0 -0.2 -1.6 -1.6
0.0 -0.2 -1.6 -1.6

x 0.0 0.5 0.5
1.0 -1.2 0.1 0.1
0.0 -1.6 -1.2 -1.2
0.0 -1.6 -1.2 -1.2

(c) WQMIX: Qtot(s1), Qtot(s2)

x 1.0 0.2 0.2
1.0 4.0 -1.8 -1.9
0.0 -1.9 0.0 0.1
0.0 -2.1 -0.1 0.0

x 0.0 0.5 0.5
1.0 -2.0 0.0 0.0
0.0 0.1 -2.0 -2.0
0.0 -2.2 -0.0 -0.0

(d) WQMIX: Q̂∗(s1), Q̂∗(s2)

x 0.7 -2.0 -2.1
0.7 4.0 -2.1 -2.4
-2.0 -2.1 -2.4 -2.4
-2.1 -2.1 -2.4 -2.4

x 0.6 -2.0 -2.0
-1.2 -1.8 -2.5 -2.5
1.6 4.0 -2.0 -2.0
-1.8 -2.1 -2.5 -2.5

(e) OURS: Qtot(s1), Qtot(s2)

x 0.7 -2.0 -2.1
0.7 4.0 -2.1 -2.1
-2.0 -2.1 -0.1 -0.1
-2.1 -2.1 -0.1 -0.1

x 0.7 -2.0 -2.1
-1.2 -2.1 -0.0 -0.0
1.6 4.0 -2.0 -2.0
-1.8 -2.1 -0.0 -0.0

(f) OURS: Q̂∗(s1), Q̂∗(s2)

Table 1: Payoff matrix of the one-step multi-state non-monotonic cooperative matrix game and
reconstructed results from corresponding baselines. State s1 and s2 are selectet randomly on equal
probability. Boldface indicates the local and joint optimal actions from local utilities and action-state
value function.

x 0.7 0.2 0.2
0.2 0.4 0.2 -0.2
0.7 0.7 0.4 -0.4
0.2 0.4 0.2 0.2

x 0.7 0.2 0.2
0.2 0.4 0.2 -0.2
0.7 0.7 0.4 -0.4
0.2 0.4 0.2 0.2

(a) DOP: Qtot(s1), Qtot(s2)

x 0.7 0.6 -0.2
1.1 1.7 -0.9 -0.1
0.0 -0.6 0.5 -0.5
0.0 -0.6 0.5 -0.5

x 0.7 0.6 -0.2
1.1 1.7 -0.9 -0.1
0.0 -0.6 0.5 -0.5
0.0 -0.6 0.5 -0.5

(b) FOP: Qtot(s1), Qtot(s2)

x 0.7 0.2 0.2
0.7 2.3 0.9 0.9
0.2 2.3 0.9 0.9
0.2 2.2 0.9 0.9

x 0.7 0.2 0.2
0.7 3.2 2.2 2.2
0.2 3.1 2.2 2.2
0.2 3.1 2.2 2.2

(c) VDAC: Qtot(s1), Qtot(s2)

x 0.5 0.3 0.2
0.3 1.2 -0.9 -1.2
1.2 1.2 -1.0 -0.5
0.2 -0.7 -0.9 -0.1

x 0.6 0.2 0.1
0.5 0.7 -1.2 -0.0
0.3 0.6 -1.1 -0.8
0.2 -2.1 -0.1 -1.0

(d) QTRAN: Qtot(s1), Qtot(s2)

Table 2: Matrix results for other Benchmarks.

A.2.2 Predator-Prey

A partially observable environment on a grid-world predator-prey task is used to model relative
overgeneralization problem [24] where 8 agents have to catch 8 prey in a 10 × 10 grid. Each agent
can either move in one of the 4 compass directions, remain still, or try to catch any adjacent prey.
Impossible actions, i.e., moves into an occupied target position or catching when there is no adjacent
prey, are treated as unavailable. If two adjacent agents execute the catch action, a prey is caught
and both the prey and the catching agents are removed from the grid. An agent’s observation is a 5
× 5 sub-grid centered around it, with one channel showing agents and another indicating prey. An
episode ends if all agents have been removed or after 200 time steps. Capturing a prey is rewarded
with r = 10, but unsuccessful attempts by single agents are punished by a negative reward p. In this
paper we consider two sets of experiments with p = 0 and p = -2. The task is similart to matrix game
proposed by [5] but significantly more complex, both in terms of the optimal policy and in the number
of agents.

18

map Ally Units Enemy Units

1c3s5z 1 Colossus, 3 Stalkers & 5 Zealots 1 Colossus, 3 Stalkers & 5 Zealots
3m 3 Marines 3 Marines

3s5z 3 Stalkers & 5 Zealots 3 Stalkers & 5 Zealots
8m 8 Marines 8 Marines

3s_vs_5z 3 Stalkers 5 Zealots
5m_vs_6m 5 Marines 6 Marines

MMM2 1 Medivac, 2 Marauders & 7 Marines 1 Medivac, 3 Marauders & 8 Marines
27m_vs_30m 27 Marines 30 Marines

6h_vs_8z 6 Hydralisks 8 Zealots
corridor 6 Zealots 24 Zerglings

Table 3: Brief Introduction of SMAC map scenarios used in experiments

0 25 50 75 100 125 150 175 200
T (10k)

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 w
in

 ra
te

 %

PAC
QMIX
WQMIX
VDAC
FOP
DOP

(a) 1c3s5z

0 20 40 60 80 100
T (10k)

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 w
in

 ra
te

 %

PAC
QMIX
NDQ
WQMIX
VDAC
FOP
DOP

(b) 3m

0 25 50 75 100 125 150 175 200
T (10k)

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 w
in

 ra
te

 %

PAC
QMIX
NDQ
WQMIX
VDAC
FOP
DOP

(c) 3s5z

0 25 50 75 100 125 150 175 200
T (10k)

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 w
in

 ra
te

 %

PAC
QMIX
NDQ
WQMIX
VDAC
FOP
DOP

(d) 8m

Figure 6: Additional results on SMAC benchmark

A.2.3 SMAC

For the experiments on StarCraft II micromanagement, we follow the setup of SMAC [8] with
open-source implementation including QMIX [4], WQMIX [6], NDQ [11], FOP [13], DOP [12] and
VDAC [14]. We consider combat scenarios where the enemy units are controlled by the StarCraft II
built-in AI and the friendly units are controlled by the algorithm-trained agent. The possible options
for built-in AI difficulties are Very Easy, Easy, Medium, Hard, Very Hard, and Insane, ranging from 0
to 7. We carry out the experiments with ally units controlled by a learning agent while built-in AI
controls the enemy units with difficulty = 7 (Insane). Depending on the specific scenarios(maps),
the units of the enemy and friendly can be symmetric or asymmetric. At each time step each agent
chooses one action from discrete action space, including noop, move[direction], attack[enemy_id]
and stop. Dead units can only choose noop action. Killing an enemy unit will result in a reward

19

of 10 while winning by eliminating all enemy units will result in a reward of 200. The global state
information are only available in the centralized critic. Each baseline algorithm is trained with 4
random seeds and evaluated every 10k training steps with 32 testing episodes for main results, and
with 3 random seeds for ablation results and additional results. We carried out our experiment on a
Nvidia GeForce RTX 2080 Ti workstation, on average it takes 3.5 hours to finish 3s5z map on SMAC
environment for one run.

Additional Results We present additional results on easier maps including 1c3s5z, 3m, 3s5z, and
8m in Fig. 1.

self-updating alpha Q * Network L_ca L_ib
PAC Y Y Y Y
PAC_no_info Y Y Y
PAC_fixed_alpha alpha = 1.0 Y Y Y
PAC_CE_Loss Y Y replace with CE Y
PAC_disabled* Y Y
PAC_No_Q Y

Table 4: Comparison of our method and its ablated versions

A.2.4 Implementation details and Hyper-parameters

In this section we introduce the implementation details and hyper-parameters we used in the experi-
ment. Recently [22] demonstrated that MARL algorithms are significantly influenced by code-level
optimization and other tricks, e.g. using TD-lambda, Adam optimizer and grid-searched hyper-
parameters (where many state-of-the-art are already adopted), and proposed fine-tuned QMIX and
WQMIX, which is demonstrated with significant improvements from their original implementation.
We implemented our algorithm based on its open-sourced codebase and acquired the results of QMIX
and WQMIX from it. We use one set of hyper-parameters for each environment, i.e., no tuned
hyper-para for individual maps. Unless otherwise mentioned, we keep the same setting for common
hyper-parameters shared by all algorithms, e.g. learning rate, and keep their unique hyper-parameters
to their default settings.

We use epsilon greedy for action selection with annealing from ϵ = 0.995 decreasing to ϵ = 0.05 in
100000 training steps in a linear way.

Batch size bs = 128, replay buffer size = 10000

Target network update interval: every 200 episodes

β = 0.001, since oi and û∗i are within similar dimensions and thus does not require very high
compression.

Weights w =0.5 in weighting functions.

learning rate lr = 0.001

td lambda λ = 0.6

initial entropy term logα = -0.07, with its learning rate lrα = 0.0003

performance for each algorithm is evaluated for 32 episodes every 1000 training steps.

A.2.5 Hyperparameter-tuning for ablation studies

To fully demonstrate the effectiveness of each components, we performed hyperparameter-tuning for
each ablated settings. Specifically, we choose exploration steps (epsilon anneal time = [50k, 100k],
where ϵ decays from 0.095 to 0.05 in ϵ- greedy), eligibility traces (λ = [0.3, 0.5, 0.6] in TD-λ), and
replay-buffer size (buffer = [5000, 10000]) and use the results with best performance to serve as
the ablated results. We show the optimal hyperparameter setting for each ablated versions and their
corresponding final winning rates on SMAC environment as in Table 4.

20

Setting Optimal Hyperparameter Setting Average Winning Rates
PAC λ=0.5 buffer_size=10000, episilon_anneal_time=100000 0.87

PAC_Fixed_alpha λ=0.6 buffer_size=5000, episilon_anneal_time=80000 0.80
PAC_no_info λ=0.6 buffer_size=10000, episilon_anneal_time=100000 0.51
PAC_CE_loss λ=0.5 buffer_size=10000, episilon_anneal_time=100000 0.61
PAC_disabled λ=0.5 buffer_size=5000, episilon_anneal_time=80000 0.49
PAC_No_Q* λ=0.6 buffer_size=10000, episilon_anneal_time=100000 0.25

Table 5: Optimal Hyperparameter Setting for ablated versions

21

