
Supplementary material440

A Additional Motivating Examples441

The bilevel optimization problem in (1) provides a versatile framework that covers a broad class of442

optimization problems. In addition to the motivating examples provided in the main body of the443

paper, here we also provide a generic example of stochastic convex constrained optimization that can444

be formulated as (1). We further present a more general form of the examples covered in the main445

body.446

Generic Example: Stochastic convex optimization with many conic constraints. Consider the follow-447

ing convex optimization problem448

min
x2Rd

E[f̃(x, ✓)] s.t. h(x, ⇠) 2 �K, 8⇠ 2 ⌦,

where K ✓ Rd is a closed convex cone. This problem can be formulated as a special case of (1)449

by letting g̃(x, ⇠) = 1
2d

2
�K

(h(x, ⇠)) where d�K(·) , k · �P�K(·)k denotes the distance function450

and P�K(·) denotes the projection map. Our proposed framework provides an efficient method for451

solving this class of problems when the projections onto K can be computed efficiently, while the452

projection onto the preimage h�1(�K, ⇠) is not practical, e.g., when K is the positive semidefinite453

cone, computing a projection onto the preimage set requires solving a nonlinear SDP.454

A.1 Lexicographic optimization455

Example 1 (over-parameterized regression) can be generalized as a broader class of problem, which456

is known as lexicographic optimization [13] and uses the secondary loss to improve generalization.457

The problem can be formulated as the following stochastic simple bilevel optimization problem,458

min
�2Rd

L(�) s.t. � 2 argmin
✓2Z

`tr(✓) = EDtr [`(y, ŷ✓(x))] (17)

In general, the lower-level problem could have multiple optimal solutions and be very sensitive to459

small perturbations. To tackle the issue, we use a secondary criterion L() to select some of the460

optimal solutions with our desired properties. For instance, we can find the optimal solutions with461

minimal `2-norm by letting L(�) = k�k2, which is also known as Lexicographic `2 Regularization.462

A.2 Lifelong learning463

Example 2 (dictionary learning) is an instance of a popular framework known as lifelong learning,464

which can be formulated as follows,465

min
�

1

n0

n0X

i=1

` (hx0

i,�i , y
0

i) s.t.
X

(xi,yi)2M

`(hxi,�i, yi) 
X

(xi,yi)2M

`(hxi,�
(t�1)

i, yi) (18)

In this problem, the objective is the training loss on the current tasks Dt = {(x0

i, y
0

i)}
n0

i=1. While the466

constraint enforces that the model parameterized by � performs no worse than the previous one on467

the episodic memory M (i.e., data samples from all the past tasks).468

In the paper, we discuss a variant of the problem above, where we slightly change the constraint and469

ensure that the current model also minimizes the error on the past tasks. It can be formulated as the470

following finite-sum/stochastic simple bilevel optimization problem [12],471

min
�

1

n0

n0X

i=1

` (hx0

i,�i , y
0

i) s.t. � 2 argmin
z

X

(xi,yi)2M

` (hxi, zi , yi) . (19)

B Supporting lemmas472

B.1 Proof of Lemma 4.1473

Before we proceed to the proof for Lemma 4.1, we present the following technical lemma, which474

gives us an upper bound for a complex term appearing in the following analysis.475
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Lemma B.1. Define ⇢t = 1/(t + 1)! where ! 2 (0, 1] and t � 1. For all t � 2, let {st} be a476

sequence of real numbers given by477

st =
tX

⌧=2

✓
⇢⌧

tY

k=⌧

(1� ⇢k)

◆2

.

Then it holds that478

st 
1

(t+ 1)!
. (20)

Proof. We prove the result by induction. For t = 2, we can verify that479

S =

✓
1

3!
·
3! � 1

3!

◆2


1

32!


1

3!
.

Now we suppose that the inequality in (20) holds when t = T for some T � 2, i.e.,480

sT =
TX

⌧=2

✓
⇢⌧

TY

k=⌧

(1� ⇢k)

◆2


1

(t+ 1)!
.

First note that the sequence {st} satisfies the following recurrence relation:481

sT+1 =
T+1X

⌧=2

✓
⇢⌧

T+1Y

k=⌧

(1� ⇢k)

◆2

= (1� ⇢T+1)
2
T+1X

⌧=2

✓
⇢⌧

TY

k=⌧

(1� ⇢k)

◆2

= (1� ⇢T+1)
2

"
TX

⌧=2

✓
⇢⌧

TY

k=⌧

(1� ⇢k)

◆2

+ ⇢2T+1

#

= (1� ⇢T+1)
2(sT + ⇢2T+1).

Moreover, since ↵ 2 (0, 1], we have (T + 2)! � 1  (t+ 1)! . Therefore, we obtain482

sT+1 

✓
(T + 2)! � 1

(T + 2)!

◆2✓ 1

(t+ 1)!
+

1

(T + 2)2!

◆


((T + 2)! � 1)(t+ 1)!

(T + 2)2!

✓
1

(t+ 1)!
+

1

(T + 1)2!

◆

=
(T + 2)! � 1

(T + 2)2!
(T + 1)! + 1

(T + 1)!

=
(T + 2)!(t+ 1)! + (T + 2)! � 1� (t+ 1)!

(T + 2)2!(t+ 1)!


(T + 2)!(t+ 1)!

(T + 2)2!(t+ 1)!
=

1

(T + 2)!
.

By induction, the inequality in (20) holds for all t � 2.483

Now we proceed to prove Lemma 4.1.484

Proof of Lemma 4.1. We show the proof of part (i) here. The proof of part (ii) is very similar to485

part (i). The first step is to reformulate et = crgt �rg(xt) as the sum of a martingale difference486

sequence. For t � 1, by unrolling the reucurrence we have487

et = (1� �t)et�1 + �t(rg̃(xt, ⇠t)�rg(xt))

+ (1� �t)(rg̃(xt, ⇠t)�rg̃(xt�1, ⇠t)� (rg(xt)�rg(xt�1))

=
tY

k=2

(1� �k)e1 +
tX

⌧=2

tY

k=⌧

(1� �k)(rg̃(x⌧ , ⇠⌧ )�rg̃(x⌧�1, ⇠⌧ )� (rg(x⌧ )�rg(x⌧�1))

+
tX

⌧=2

�⌧

tY

k=⌧+1

(1� �k)(rg̃(x⌧ , ⇠⌧ )�rg(x⌧ )).

(21)
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Thus, we can write et as the sum et =
Pt

⌧=1 ⇣⌧ , where we define ⇣1 =
Qt

k=2(1� �k)e1 and488

⇣⌧ =
tY

k=⌧

(1� �k)(rg̃(x⌧ , ⇠⌧ )�rg̃(x⌧�1, ⇠⌧ )� (rg(x⌧ )�rg(x⌧�1)) (22)

+ �⌧

tY

k=⌧+1

(1� �k)(rg̃(x⌧ , ⇠⌧ )�rg(x⌧ )) (23)

for ⌧ > 1. Recall that e1 = rg̃(xt, ⇣1) �rg(x1). We observe that E[⇣⌧ |F⌧�1] = 0 where F⌧�1489

is the �-field generated by {x1, ⇠1, . . . ,x⌧�1, ⇠⌧�1}. Therefore, {⇣⌧}t⌧=1 is a martingale difference490

sequence.491

Next, we derive upper bounds of k⇣⌧k. To begin with, we observe that for any ⌧ = 1, 2, . . . , t,492

tY

k=⌧

(1� �k) =
tY

k=⌧

✓
1�

1

(k + 1)!

◆
=

tY

k=⌧

(k + 1)! � 1

(k + 1)!


tY

k=⌧

k↵

(k + 1)!
=

⌧!

(t+ 1)!
, (24)

where we used the fact that (k + 1)! � 1  k! in the last inequality. By using the above inequality,493

we can bound k⇣1k as follows:494

k⇣1k =
tY

k=2

(1��k)ke1k 
2!

(t+ 1)!
krg̃(x1, ⇠1)�rg(x1)k =

2!�1

(t+ 1)!
krg̃(x1, ⇠1)�rg(x1)k

�1
.

Define c1 = 2!�g

(T+1)! , then by Assumption 2.3(ii) we have E[exp (k⇣1k2/c21)]  exp (1). Moreover,495

for ⌧ > 1, by triangle inequality, k⇣⌧k can be bounded by496

k⇣⌧k 

tY

k=⌧

(1� �k)(krg̃(x⌧ , ⇠⌧ )�rg̃(x⌧�1, ⇠⌧ )k+ k(rg(x⌧ )�rg(x⌧�1)k)

+ �⌧

tY

k=⌧+1

(1� �k)krg̃(x⌧ , ⇠⌧ )�rg(x⌧ )k

 2Lgkx⌧ � x⌧�1k

tY

k=⌧

(1� �k) + krg̃(x⌧ , ⇠⌧ )�rg(x⌧ )k�⌧

tY

k=⌧+1

(1� �k)

= 2Lg�⌧D
tY

k=⌧

(1� �k) + krg̃(x⌧ , ⇠⌧ )�rg(x⌧ )k�⌧

tY

k=⌧+1

(1� �k)

 2LgD�⌧

tY

k=⌧

(1� �k) +
3!

3! � 1
krg̃(x⌧ , ⇠⌧ )�rg(x⌧ )k�⌧

tY

k=⌧

(1� �k)

=

✓
2LgD +

3!

3! � 1
krg̃(x⌧ , ⇠⌧ )�rg(x⌧ )k

◆
�⌧

tY

k=⌧

(1� �k)

=

✓
2LgD +

3!�g

3! � 1

krg̃(x⌧ , ⇠⌧ )�rg(x⌧ )k

�g

◆
�⌧

tY

k=⌧

(1� �k)

(25)

Define c⌧ = (2LgD + 3!�g

3!�1 )�⌧
Qt

k=⌧ (1 � �k). Note that if we have E[exp(X2
1/c

2
1)]  1 and497

E[exp(X2
2/c

2
2)]  1, then we have E[exp((X1 + X2)2/(c1 + c2)2)]  1 [39]. Thus, we have498

E[exp (k⇣⌧k2/c2⌧ )]  exp (1) for all 1  ⌧  t. Hence by proposition E.2, with probability 1� �
0

499

ketk  c ·

vuut
tX

⌧=1

c2⌧ log
2d

�0 (26)
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where c is an absolute constant, d is the number of dimension, and
PT

⌧=1 c
2
⌧ can be bounded by500

Lemma B.1 as follows,501

tX

⌧=1

c2⌧ = c21 +
tX

⌧=2

c2⌧ =
22!�2

g

(T + 1)2!
+ (2LgD +

3!

3! � 1
�g)

2
TX

⌧=2

(�⌧

TY

k=⌧

(1� �k))
2


22!�2

g

(T + 1)2!
+

(2LgD + 3!

3!�1�g)2

(t+ 1)!


((
p
2)!�g)2

(t+ 1)!
+

(2LgD + 3!

3!�1�g)2

(t+ 1)!


2(2LgD + 3!

3!�1�g)2

(t+ 1)!

(27)

where the last inequality follows from the fact that (
p
2)!  3!/(3! � 1) for any ! 2 (0, 1].502

Combining (26) and (27), we have with probability at least 1� �
0
,503

krg(xt)� crgtk  c
p
2(2LgD +

3!

3! � 1
�g)(t+ 1)�!/2

q
log(2d/�0)

def
= K1,t (28)

Similarly with probability at least 1� �
0
,504

|g(xt)� ĝt|  c
p
2(2LlD +

3!

3! � 1
�l)(t+ 1)�!/2

q
log(2d/�0)

def
= K0,t (29)

and with probability at least 1� �
0
,505

krf(xt)� crf tk  c
p
2(2LfD +

3!

3! � 1
�f )(t+ 1)�!/2

q
log(2d/�0)

def
= K2,t (30)

where c is an absolute constant and d is the dimension of vectors. We can use union bound to obtain506

that these three inequalities hold for at least probability 1� 3�
0
= 1� �. For simplicity, we define507

constant A↵
1 and A↵

0 such that,508

A↵
1 (t+ 1)�!/2

p
log(6d/�) = K1,t and A↵

0 (t+ 1)�!/2
p

log(6d/�) = K0,t (31)

and similarly A↵
2 (t+ 1)�!/2

p
log(6d/�) = K2,t.509

B.2 Proof of Lemma 4.3510

Proof. When t = bt/qcq, we have crgt = rg(xt), since we take the full batch.511

When t 6= bt/qcq, set t0 = bt/qcq, and512

✏j,i =
1

S
(rgS(i)(xj)�rgS(i)(xj�1)�rg(xj) +rg(xj�1)) (32)

where i is the index with S(i) denoting the i-th random component function selected at iteration t.513

Furthermore, from the update rule, we have kxj � xj�1k = �jksj�1 � xj�1k  D�. And we have,514

k✏j,ik 
1

S
(krgi(xj)�rgi(xj�1)k+ krg(xj)�rg(xj�1)k)


2Lg

S
kxj � xj�1k 

2LgD�

S

(33)

for all t0  j  t and 1  i  S. On the other hand, we have,515

kcrgt �rg(xt)k = krgS(xk)�rgS(xk�1)�rg(xk) +rg(xk�1) + (rgk�1 �rg(xk�1))k

= k

TX

j=t0+1

(rgS(xj)�rgS(xj�1)�rg(xj) +rg(xj�1))

+ (rgS1(xt0)�rg(xt0))k

= k

TX

j=t0+1

SX

i=1

✏j,i +
SX

i=1

✏t0,ik = k

TX

j=t0+1

SX

i=1

✏j,ik

(34)
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Then by Proposition E.1, we have516

P(kcrgt �rg(xt)k � �)  4 exp(�
�2

4S(t� t0)
4L2

gD
2�2

S2

)  4 exp(�
�2

16L2
gD

2�2
) (35)

where the last inequality follows from the fact S =
p
n and t � t0  q =

p
n. By setting517

� = (4LgD�
p
log(4/�0)) for some �

0
2 (0, 1), we have with probability at least 1� �

0
,518

kcrgt �rg(xt)k  4LgD�
q
log(4/�0) (36)

Similarly, with probability at least 1� �
0
,519

kĝt � g(xt)k  4LlD�
q

log(4/�0) (37)

and with probability 1� �
0
,520

kcrf t �rf(xt)k  4LfD�
q

log(4/�0) (38)

Then by union bound and � = 3�
0
, we show these three equalities hold with probability 1� �.521

522

B.3 Proof of Lemma 4.2523

Proof. Let x⇤
g be any point in X

⇤
g , i.e., any optimal solution of the lower-level problem. By definition,524

we have g
�
x⇤
g

�
= g⇤. Since g is convex and g⇤  g (x0), we have525

g (x0)� g (xt) � g⇤ � g (xt) = g
�
x⇤

g

�
� g (xt) �

⌦
rg (xt) ,x

⇤

g � xt

↵
(39)

Add and subtract terms in (47), we have,526

hcrgt,x
⇤

g � xti+ ĝt � g(x0)  |hcrgt �rg(xt),x
⇤

g � xti|+ |ĝt � g(xt)| (40)

Considering the random hyperplane we used in (9), we want to prove the following inequality holds527

with high probability,528

hcrgt,x
⇤

g � xti+ ĝt � g(x0)  Kt (41)

Recall Kt = K0,t +DK1,t. And K0,t and K1,t were set as the high probability bounds of kcrgt �529

rg(xt)k and |ĝt � g(xt)| in Lemma 4.1 for Algorithm 1 or Lemma 4.3 for Algorithm 2. Then530

compare the two inequalities above and use Jensen’s inequality, |hcrgt,x
⇤
g�xti|+ |ĝt�g(x0)|  Kt531

holds with high probability 1� � for all t � 0. Hence, Lemma 4.2 holds with probability 1� � for532

all t � 0.533

B.4 Improvement in one step534

The following lemma characterizes the improvement of both the upper-level and lower-level objective535

values after one step of the algorithms.536

Lemma B.2. If Assumptions 2.1, 2.2, 2.3 are satisfied,537

(i) For all t � 0, assume that X ⇤
g ⇢ Xt. Then we have538

�t+1G(xt)  f(xt)� f(xt+1) + �t+1Dkrf(xt)� crf tk+
LfD2�2

t+1

2
(42)

As a corollary, if f is convex, we further have539

f(xt+1)� f⇤
 (1� �t+1)(f(xt)� f⇤)) + �t+1Dkrf(xt)� crf tk+

LfD2�2
t+1

2
. (43)
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(ii) We have540

g(xt+1)� g(x0)  (1� �t+1)(g(xt)� g(x0)) +D�t+1(krg(xt)� crgtk+K1,t)

+ �t+1(kg(xt)� ĝtk+K0,t) +
LgD2�2

t+1

2
. (44)

Proof. (i) Based on the Lf -smoothness of the expected function f we show that f(xt+1) is bounded541

by542

f(xt+1)  f(xt) +rf(xt)
>(xt+1 � xt) +

Lf

2
kxt+1 � xtk

2 (45)

Replace the terms xt+1 � xt by �t+1(st � xt) and add and subtract the term �t+1
crf

T

t (st � xt) to543

the right hand side to obtain,544

f(xt+1)  f(xt)+�t+1(rf(xt)� crf t)
>(st�xt)+�t+1

crf
>

t (st�xt)+
Lf

2
kxt+1�xtk

2 (46)

By Lemma 4.2, X ⇤
g ✓ Xt with high probability 1 � �, for all t = 1, . . . , T . Note that if we define545

s0t = argmaxs2Xt
{hrf(xt),xt � si}. Recall that FW gap is G(x̂) = maxs2X⇤

g
{hrf(x̂), x̂� si}.546

We can replace the inner product hcrf t, sti by its upper bound hcrf t, s
0
ti. Applying this substitution547

leads to548

f(xt+1)  f(xt) + �t+1(rf(xt)� crf t)
>(st � xt) + �t+1

crf
>

t (s
0

t � xt) +
Lf

2
kxt+1 � xtk

2

= f(xt) + �t+1(rf(xt)� crf t)
>(st � xt) + �t+1(crf t �rf(xt))

>(s0t � xt)

� �t+1rf(xt)
>(xt � s0t) +

Lf

2
kxt+1 � xtk

2

 f(xt) + �t+1(rf(xt)� crf t)
>(st � s0t)� �t+1G(xt) +

Lf

2
kxt+1 � xtk

2

 f(xt) + �t+1Dkrf(xt)� crf tk � �t+1G(xt) +
Lf�2

t+1D
2

2
(47)

Rearrange the terms for the inequality above, we can obtain,549

�t+1G(xt)  f(xt)� f(xt+1) + �t+1Dkrf(xt)� crf t)k+
Lf�2

t+1D
2

2
(48)

As a simple corollary, since G(xt) � f(xt)� f⇤ when f is convex, we have,550

f(xt+1)� f⇤
 (1� �t+1)(f(xt)� f⇤)) + �t+1Dkrf(xt)� crf tk+

LfD2�2
t+1

2
(49)

(ii) Based on the Lg-smoothness of the expected function g we show that g(xt+1) is bounded by551

g(xt+1)  g(xt) +rg(xt)
>(xt+1 � xt) +

Lg

2
kxt+1 � xtk

2 (50)

Replace the terms xt+1 � xt by �t+1(st � xt) and add and subtract the term �t+1
crg

>

t (st � xt) to552

the right-hand side to obtain,553

g(xt+1)  g(xt)+�t+1(rg(xt)� crgt)
>(st�xt)+�t+1

crg
>

t (st�xt)+
Lg

2
kxt+1�xtk

2 (51)

Now by definition of the set Xt, using hcrgt, st � xti  g(x0) � ĝt +K0,t +DK1,t. In addition,554

we could use Cauchy–Schwarz inequality to upper bound the second term. Then add and subtract555

�t+1g(x0) on the right hand side to obtain,556

g(xt+1)  g(xt) + �t+1(g(x0)� g(xt)) + �t+1Dkrg(xt)� crgtk

+ �t+1(g(xt)� ĝt) + �t+1(K0t +DK1t) +
Lg

2
kxt+1 � xtk

2
(52)

Then subtract g(x0) on both sides,557

g(xt+1)� g(x0)  (1� �t+1)(g(xt)� g(x0))

+ �t+1(Dkrg(xt)� crgtk+ kg(xt)� ĝtk+K0,t +DK1,t) +
Lg

2
kxt+1 � xtk

2

(53)
and the claim in the lemma follows.558
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C Proof of Theorem for Algorithm 1559

C.1 Proof of Theorem 4.4560

Proof. For lower-level, by Lemma B.2, we have561

g(xt+1)� g(x0)  (1� �t+1)(g(xt)� g(x0)) +D�t+1(krg(xt)� crgtk+K1,t)

+ �t+1(kg(xt)� ĝtk+K0,t) +
LgD2�2

t+1

2

(54)

By Lemma 4.1, we have krg(xt)� crgtk  K1,t and kg(xt)� ĝtk  K0,t with probability 1� �
0
.562

Plug them in the inequality above to obtain,563

g(xt+1)� g(x0)  (1� �t+1)(g(xt)� g(x0)) + 2�t+1(DK1,t +K0,t) +
LgD2�2

t+1

2

 (1�
1

t+ 1
)g(xt)� g(x0)

+
2(DA1

1

p
log(6d/�0) +A1

0

p
log(6/�0))

(t+ 1)3/2
+

LgD2

2(t+ 1)2

(55)

with probability 1 � �
0

for all t. Let C1 = 4(DA1
1 + A1

0) and � = t�
0
. Then we can sum all the564

inequality up for all t to obtain,565

g(xt+1)� g(x0)  (1�
1

t+ 1
)g(xt)� g(x0) +

C1/2
p
log (6d/�0)

(t+ 1)3/2
+

LgD2

2(t+ 1)2

=
tY

i=1

(1�
1

i+ 1
)(g(x0)� g(x0)) +

tX

k=1

C1/2
p
log (6d/�0)

(k + 1)3/2

tY

i=k+1

(1�
1

i+ 1
)

+
tX

k=1

LgD2

2(k + 1)2

tY

i=k+1

(1�
1

i+ 1
)

 0 +
C1/2

p
log (6d/�0)

t+ 1

tX

k=1

1
p
k + 1

+
LgD2

2(t+ 1)

tX

k=1

1

k + 1


C1

p
log (6d/�0)
p
t+ 1

+
LgD2

2(t+ 1)
(1 + log t)


C1

p
log (6td/�)
p
t+ 1

+
LgD2 log t

t+ 1
(56)

with probability 1� �.566

For upper-level, by Lemma B.2, we have567

f(xt+1)� f⇤
 (1� �t+1)(f(xt)� f⇤) +D�t+1(krf(xt)� crf tk) +

LgD2�2
t+1

2
(57)

By Lemma 4.1, we have krf(xt)� crf tk 
A1

2

p
log(6d/�0 )

(t+1)1/2
with probability 1� �

0
. Plug it in the568

inequality above to obtain,569

f(xt+1)� f⇤
 (1�

1

t+ 1
)(f(xt)� f⇤) +

DA1
2

p
log(6d/�0)

(t+ 1)3/2
+

LgD2

2(t+ 1)2
(58)
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with probability 1� �
0

for all t. Then we can sum all the inequality up for all t to obtain,570

f(xt+1)� f⇤
 (1�

1

t+ 1
)(f(xt)� f⇤) +

DA1
2

p
log(6d/�0)

(t+ 1)3/2
+

LgD2

2(t+ 1)2

=
tY

i=1

(1�
1

i+ 1
)(f(x0)� f⇤) +

tX

k=1

DA1
2

p
log(6d/�0)

(k + 1)3/2

tY

i=k+1

(1�
1

i+ 1
)

+
TX

k=1

LgD2

2(k + 1)2

TY

i=k+1

(1�
1

i+ 1
)


f(x0)� f⇤

t+ 1
+

DA1
2

p
log(d/�0)

t+ 1

TX

k=1

1
p
k + 1

+
LgD2

2(t+ 1)

TX

k=1

1

k + 1


f(x0)� f⇤

t+ 1
+

2DA1
2

p
log(6d/�0)

p
t+ 1

+
LgD2

2(t+ 1)
(1 + log t)


f(x0)� f⇤

t+ 1
+

2DA1
2

p
log(6td/�)

p
t+ 1

+
LgD2 log t

(t+ 1)

(59)

with probability 1� � = 1� t�
0
. Let C2 = 2DA1

2. The theorem is obtained.571

572

C.2 Proof of Theorem 4.5573

Proof. For lower-level, by Lemma B.2, we have574

g(xt+1)� g(x0)  (1� �t+1)(g(xt)� g(x0)) +D�t+1(krg(xt)� crgtk+K1,t)

+ �t+1(kg(xt)� ĝtk+K0,t) +
LgD2�2

t+1

2

(60)

By Lemma 4.1, we have krg(xt)� crgtk  K1,t and kg(xt)� ĝtk  K0,t with probability 1� �
0
.575

Plug them in the inequality above to obtain,576

g(xt+1)� g(x0)  (1� �t+1)(g(xt)� g(x0)) + 2�T+1(DK1,t +K0,t) +
LgD2�2

t+1

2

 (1�
1

(T + 1)2/3
)g(xt)� g(x0)

+
2D(A2/3

1

p
log(6d/�0) +A2/3

0

p
log(6d/�0))

(t+ 1)1/3(T + 1)2/3
+

LgD2

2(T + 1)4/3

(61)

with probability 1� �
0

for all t. Let C3 = 2(DA2/3
1 +A2/3

0 ).Then we can sum all the inequality up577

for all t to obtain,578

g(xt+1)� g(x0)  (1�
1

(T + 1)2/3
)(g(xt)� g(x0)) +

C3

p
log(6d/�0)

(t+ 1)1/3(T + 1)2/3
+

LgD2

2(T + 1)4/3

 (1�
1

(T + 1)2/3
)(g(xt)� g(x0)) +

C3

p
log(6Td/�) + LgD2/2

(t+ 1)1/3(T + 1)2/3
(62)

By induction, we have for all t � 1,579

g(xt+1)� g(x0) 
C3

p
log(6Td/�) + LgD2/2

(T + 1)1/3
(63)

with probability 1� �, where � = T �
0
.580

For upper-level, by Lemma B.2, we have581

�t+1G(xt)  f(xt)� f(xt+1) + �t+1Dkrf(xt)� crf tk+
Lf�2

t+1D
2

2
(64)
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By Lemma 4.1, we have krf(xt)� crf tk 
A2/3

2

p
log(6d/�0 )

(t+1)1/3
with probability 1� �

0
. Plug it and582

�t+1 = 1/(T + 1)2/3 in inequality above to obtain,583

T�1X

t=0

�t+1G(xt)  f(x0)� f(xT ) +D
T�1X

t=0

�t+1krf(xt)� crf tk+
LfD2

2

T�1X

t=0

�2
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T�1X

t=0

A2/3
2

p
log(6d/�0)

(t+ 1)1/3(T + 1)2/3
+

LfD2

2

T�1X

t=0

1

(T + 1)4/3

 f(x0)� f(xT ) +
3

2
DA2/3

2

q
log(6d/�0) +

LfD2

2

1

(T + 1)1/3

(65)

Let t⇤ = argmin1tT G(xt), then584

G(xt⇤) 
1

PT�1
t=0 �t+1

T�1X

t=0

�t+1G(xt)


1

(T + 1)1/3
(f(x0)� f(xT ) +

3

2
DA2/3

2

p
log(6Td/�) +

LfD2

2

1

(T + 1)1/3
)


1

(T + 1)1/3
(f(x0)� f +

3

2
DA2/3

2

p
log(6Td/�) +

LfD2

2

1

(T + 1)1/3
)

(66)

with probability 1� �, where � = T �
0
. By letting C4 = 3

2DA2/3
2 , the theorem is obtained.585

D Proof of Theorem for Algorithm 2586

D.1 Proof of Theorem 4.6587

Proof. For lower-level By Lemma B.2, we have588

g(xt+1)� g(x0)  (1� �t+1)(g(xt)� g(x0)) +D�t+1(krg(xt)� crgtk+K1,t)

+ �t+1(kg(xt)� ĝtk+K0,t) +
LgD2�2

t+1

2

(67)

By Lemma 4.3, we have krg(xt) � crgtk  4LgD�
p

log(12/�0) and kg(xt) � ĝtk 589

4LlD�
p
log(12/�0) with probability 1 � �

0
. Let C5 = 8D(DLg + Ll) and � = T �

0
. Plug590

them in inequality above and let �t = � = log T/T to obtain,591

g(xT+1)� g(x0)  (1� �)(g(xT )� g(x0)) + (C5

q
log(12/�0) + LgD

2/2)�2 (68)

with probability 1� �/T . Sum up the inequalities for all 1  t  T to get,592

g(xT+1)� g(x0) = (1� �)T (g(x0)� g(x0)) + (C5

q
log(12/�0) + LgD

2/2)�2
TX

k=1

(1� �)k

 0 + (C5

q
log(12/�0) + LgD

2/2)� 
(C5

p
log(12T/�) + LgD2/2) log T

T
(69)

with probability 1� �.593

For upper-level, by Lemma B.2, we have,594

f(xT )� f⇤
 (1� �T )f(xT�1)� f⇤ +D�T krf(xT�1)� crf t�1k+

LfD2�2
T

2
(70)

Now we proceed by replacing the terms krf(xt)� crf tk by its upper bounds from Lemma 4.3, i.e.595

krf(xt)� crf tk  4LfD�
p

log (12/�0),596

f(xT )� f⇤
 (1� �)(f(xT�1)� f⇤) + LfD

2�2(4
q
log (12/�0) + 1/2) (71)
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with probability (1� �
0
). And we can choose � = 3T �

0
Then by telescope, with � = log T

T , we can597

obtain,598

f(xT )� f⇤
 (1� �)T (f(x0)� f⇤) + (4

q
log (12/�0) + 1/2)LfD

2�2
TX

i=1

(1� �)i

 (1� �)T (f(x0)� f⇤) + (4
q

log (12/�0) + 1/2)LfD
2�

 exp (��T )(f(x0)� f⇤) + (4
q
log (12/�0) + 1/2)LfD

2�

 (f(x0)� f⇤)/T + (4
p
log (12T/�) + 1/2)LfD

2 log T/T

(72)

with probability 1� �. Note that without loss of generality, we can assume f(x0)� f⇤
� 0. If it is599

less than 0, we can bound it by 0. By letting C6 = 5LfD2, the theorem is obtained.600

601

D.2 Proof of Theorem 4.7602

Proof. For lower-level, by Lemma B.2, we have603

g(xt+1)� g(x0)  (1� �t+1)(g(xt)� g(x0)) +D�t+1(krg(xt)� crgtk+K1,t)

+ �t+1(kg(xt)� ĝtk+K0,t) +
LgD2�2

t+1

2

(73)

By Lemma 4.3, we have krg(xt) � crgtk  4LgD�
p

log(12/�0) and kg(xt) � ĝtk 604

4LlD�
p
log(12/�0) with probability 1 � �

0
. Let C7 = 8D(DLg + Ll) and � = T �

0
. Plug605

them in inequality above and let �t = 1/
p
T to obtain,606

g(xt+1)� g(x0)  (1�
1

T 1/2
)(g(xt)� g(x0)) +

C7

p
log(12/�0)

T
+

LgD2

2T

 (1�
1

T 1/2
)(g(xt)� g(x0)) +

C7

p
log(12/�0) + LgD2/2

T

(74)

with probability 1� �/T . Sum up the inequalities for all t � 1 to get,607

g(xt+1)� g(x0) = (1�
1

T 1/2
)tE[g(x0)� g(x0)] +

(C7

p
log(12/�0) + LgD2/2)

T

tX

k=1

(1�
1

T 1/2
)k


C7

p
log(12T/�) + LgD2/2

T 1/2

(75)

with probability 1� �.608

For upper-level, by Lemma B.2, we have609

�t+1G(xt)  f(xt)� f(xt+1) + �t+1Dkrf(xt)� crf tk+
Lf�2

t+1D
2

2
(76)

By Lemma 4.3, we have krf(xt)� crf tk  4LfD�
p
log(12/�0) with probability 1� �

0
. Plug it610

and �t+1 = 1/
p
T in inequality above to obtain,611

1
p
T

T�1X

t=0

G(xt)  f(x0)� f(xT ) +D
T�1X

t=0

�t+1krf(xt)� crf tk+
LfD2

2

T�1X

t=0

�2
t+1

 f(x0)� f(xT ) + LfD
2(4

q
log(12�0) + 1/2)

(77)

Divide both sides by
p
T , we can get, Let xo = argmin1tT G(xt), then612

G(xo) 
1

T

T�1X

t=0

G(xt) 
f(x0)� f + LfD2(4

p
log(12T/�) + 1/2)

T 1/2
(78)
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with probability 1� �. By letting C8 = 5LfD2, the theorem is obtained.613

E Azuma-Hoeffding-type inequalities614

In this section, we present two useful vector versions of Azuma-Hoeffding-type concentration615

inequalities with uniform bound assumption or sub-gaussian assumption. They are crucial in our high616

probability analysis.617

Proposition E.1. (Pinelis and other 1994 [40], Theorem 3.5) Let ⇣1, . . . , ⇣t 2 Rd be a vector-618

valued martingale difference sequence w.r.t. a filtration {Ft}, i.e. for each ⌧ 2 1, . . . , t, we have619

E[⇣⌧ |F⌧�1] = 0. Suppose that k⇣⌧k  c⌧ almost surely. Then 8t � 1,620

P (k
TX

⌧=1

⇣⌧k � �)  4 exp(�
�2

4
PT

⌧=1 c
2
⌧

) (79)

Proposition E.2. (Jin et al. [41], Corollary 7) Let ⇣1, . . . , ⇣t 2 Rd be a vector-valued martingale621

difference sequence w.r.t. a filtration {Ft}, i.e. for each ⌧ 2 1, . . . , t, we have E[⇣⌧ |F⌧�1] = 0.622

Suppose that E[exp(k⇣⌧k2/c2⌧ )]  exp(1). Then there exists a absolute constant c such that, for any623

� > 0, with probability at least 1� �,624

k

TX

⌧=1

⇣⌧k  c ·

vuut
TX

⌧=1

c2⌧ log
2d

�
(80)

This proposition was also used in previous literature including [42] and [33]. It is common to use625

such martingale inequality to obtain some high-probability results recently.626

F Experiment details627

In this section, we include more details about the numerical experiments in Section 5. For complete-628

ness, we briefly introduce the update rules of aR-IP-SeG in [16] and DBGD in [13]. In the following,629

we use the notation ⇧Z(·) to denote the Euclidean projection onto the set Z .630

The aR-IP-SeG algorithm is given by,631

yt+1 = ⇧Z(xt � �t(rf̃(xt, ✓t)) + ⇢trg̃(xt, ⇠t))

xt+1 = ⇧Z(xt � �t(rf̃(yt, ✓
0

t)) + ⇢trg̃(yt, ⇠
0

t))

�t+1 = �t + (�t⇢t)
r

ȳt+1 =
�tȳt + (�t⇢t)ryt+1

�t+1

(81)

where �t is the stepsize, ⇢t is the regularization parameter, and ȳT is the output of the algorithm. In632

this experiment, we choose �t = �0/(t+ 1)3/4 and ⇢t = ⇢0(t+ 1)1/4 for some constants �0 and ⇢0.633

The DBGD-sto is a stochastic version of DBGD, which simply replaces the gradients in DBGD with634

stochastic gradients. Although the stochastic version of DBGD does not have a theoretical guarantee,635

it has been used to solve stochastic simple bilevel optimization problems in [13], which worked pretty636

well empirically. Hence, we use it as a baseline for solving stochastic simple bilevel problems and637

compare it with our proposed algorithms. The DBGD algorithm is given by638

xk+1 = xk � �k (rf (xk) + �krg (xk))

where �k is the stepsize and we set �k as639

�k = max

(
� (xk)� hrf (xk) ,rg (xk)i

krg (xk)k
2 , 0

)
and �(x) = min

�
↵(g(x)� ĝ),�krg(x)k2

 

where ↵ and � are hyperparameters and ĝ is a lower bound of g⇤. In this experiment, we choose640

ĝ = 0. We also note that [13] only considered unconstrained simple bilevel optimization, i.e. Z = Rd.641

We further project xt onto Z for each iteration to ensure the constraints are satisfied.642
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F.1 Over-parameterized regression643

Dataset generation. The original Wikipedia Math Essential dataset [26] composes of a data matrix644

of size 1068⇥ 731. We randomly select one of the columns as the outcome vector b 2 R1068 and645

the rest to be a new matrix A 2 R1068⇥731. We set constraint parameter � = 10 in this experiment.646

Initialization. We run the algorithm, SPIDER-FW [36], with stepsize chosen as �t = 0.1/(t+ 1) on647

the lower-level problem in (1). We terminate the process to get x0 as the initial point for both SBCGI648

1 and SBCGF 2 after 105 stochastic oracle queries.649

Implementation details. We query stochastic oracle 9⇥ 105 times with stepsize �t = 0.01/(t+ 1)650

and � = 10�5 for SBCGI 1 and SBCGF 2 with Kt = 10�4/
p
t+ 1, respectively. In each iteration,651

we need to solve the following subproblem induced by the methods,652

min
s

hrf (�k) , si s.t. ksk1  �, hrg (�k) , s� �ki  g (�0)� g (�k) . (82)

Introduce s+, s� � 0 such that s = s+� s�. Then we can reformulate the problem above as follows,653

min
s+,s�

⌦
rf (�k) , s

+
� s�

↵

s.t. s+, s� � 0,
⌦
s+,1

↵
+
⌦
s�,1

↵
 �,

⌦
rg (�k) , s

+
� s� � �k

↵
 g (�0)� g (�k) ,

(83)

where 1 2 Rd is the all-one vector.654

For aR-IP-SeG, we choose �0 = 10�7 and ⇢0 = 103. For DBGD, we set ↵ = � = 1 and �t = 10�6.655

F.2 Dictionary learning656

Dataset generation. We generate 500 sparse coefficient vectors {xi}
250
i=1 and {x0

k}
250
k=1 with 5 random657

nonzero entries, whose absolute values are drawn uniformly from [0.2, 1]. The entries of the random658

noise vectors {ni}
250
i=1 and {n0

k}
250
k=1 are drawn from i.i.d. Gaussian distribution with mean 0 and659

standard deviation 0.01.660

Initialization. We use a similar initialization procedure as [12], which consists of two phases. In661

the first phase, we run the standard Frank-Wolfe algorithm on both the variables D 2 R25⇥40 and662

X 2 R40⇥250 for 104 iterations with the stepsize �t = 1/
p
t+ 1. Next, in the second phase, we663

fix the variable X and only update D using the Frank-Wolfe algorithm with exact line search for664

additional 104 iterations to obtain D̂ and X̂ as the initial point for the full bilevel problem.665

Implementation Details. We choose � = 3 in both problems (5). To be fair, all four algorithms666

start from the same initial point. We slightly modify the initial point by letting D̃ 2 R25⇥50 be667

the concatenation of D̂ 2 R25⇥40 and 10 columns of all zeros vectors. Furthermore, we initialize668

another variable X̃ randomly by choosing its entries from a standard Gaussian distribution and then669

normalizing each column to have a `1-norm of �. We choose the stepsize as �t = 0.1/(t+ 1)2/3 and670

� = 10�3 for our SBCGI 1 and SBCGF2 with Kt = 0.01/(t+ 1)1/3, respectively. Empirically, we671

observe that taking one sample per iteration leads to a very unstable process in this problem. In this672

case, we choose a mini-batch of size 8 for SBCGI, aR-IP-SeG, and the stochastic version of DBGD.673

For each iteration, we will solve the following subproblem,674

min
D̃

D
rfD̃

⇣
D̃k, X̃k

⌘
, D̃

E
s.t.

���d̃i

���
2
 1,

D
rg

⇣
D̃k

⌘
, D̃� D̃k

E
 g

⇣
D̃0

⌘
� g

⇣
D̃k

⌘

(84)
The above problem can be reformulated by using the KKT condition, which is equivalent to get a675

root of the following one-dimensional nonlinear equation involving � � 0 :676

D̃ = ⇧Z

⇣
rfD̃

⇣
D̃k, X̃k

⌘
+ �rg

⇣
D̃k

⌘⌘
,

D
rg

⇣
D̃k

⌘
, D̃� D̃k

E
= g

⇣
D̃0

⌘
�g

⇣
D̃k

⌘
(85)

where the projection onto Z =
n
D̃ 2 R25⇥40 :

���d̃i

���
2
 1, i = 1, . . . , 40

o
is equivalent to project677

each column on the Euclidean ball. In practice, the reformulated problem can be solved efficiently by678

MATLAB’s root-finding solver.679

For aR-IP-SeG, we choose �0 = 10�4 and ⇢0 = 1. For the stochastic version of DBGD, we set680

↵ = � = 100 and �t = 5⇥ 10�3.681

24



(a) Lower-level gap (b) Upper-level gap (c) Test error

Figure 3: Comparison of SBCGI, SBCGF, aR-IP-SeG, and DBGD-Sto for solving Problem (3) with
10 different random seeds

(a) Lower-level gap (b) Upper-level gap (c) Recovery rate

Figure 4: Comparison of SBCGI, SBCGF, aR-IP-SeG, and DBGD-Sto for solving Problem (5) with
10 different random seeds
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Figure 5: Comparison of SBCGI, SBCGF, SBCGI-M, SBCGF-M, STORM-FW, and SPIDER-FW
for solving Problem (5).

F.3 Experiments with different random seeds682

We further repeat the experiment 10 times with different random seeds to see more realizations of the683

stochastic algorithms. The results are reported in Figure 3 and Figure 4. The solid lines denote the684

average statistics over 10 trials of the algorithms. While the shaded regions surrounding each line685

reflect the span of all the random instances involved. Figure 3 and Figure 4 present similar results as686

Figure 1 and Figure 2, which eliminates the possibility of choosing a particularly good instance.687

F.4 Importance of the right cutting plane688

In this section, we numerically illustrate the importance of choosing the right cutting plane on689

Example 2 (dictionary learning). Specifically, we compare our proposed methods with the ones690

without a cutting plane and with an unregularized cutting plane (without additional term Kt).691

If we replace the stochastic cutting plane (9) with the unregularized cutting plane (8) in SBCGI 1 and692

SBCGF 2, then the algorithm usually fail at some point in the process, depending on the datasets and693

parameters chosen, based on our experimental observations. More specifically, algorithms’ failure694

means that the subproblem of dictionary learning (85) is infeasible. So we slightly modify it by695

adding a checkpoint before solving the subproblem. If the subproblem is infeasible at the current696
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iteration, then we choose the update direction st = crgt. This adjustment prevents unnecessary697

interruptions during the process and enforce the algorithms to focus only on the lower-level problem698

when the subproblem is infeasible. We denote the modified algorithms SBCGI-M and SBCGF-M.699

Moreover, we also take SBCGI and SBCGF without cutting planes into consideration, denoted as700

STORM-FW and SPIDER-FW. In fact, in this case, the bilevel algorithms degenerate to single-level701

projection-free algorithms similar to algorithms in [33] and [36].702

Figure 5 (a) indicates that SBCGI-M and SBCGF-M focus more on the lower-level problem due703

to the design of the algorithms and extremely unstable as we can see in Figure 5 (b)(c). While704

STORM-FW and SPIDER-FW only focus on the upper-level problem, which leads to terrible results705

on the lower-level gap and recovery rate.706
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