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ABSTRACT

Human body restoration is critical for a wide range of applications. Despite recent
advances in general image restoration using generative models, their performance
in human body restoration remains suboptimal, often resulting in noticeable ar-
tifacts, such as unnatural textures, misalignments that disrupt the structural in-
tegrity, and loss of fine body details. To address these challenges, we propose a
novel approach by introducing a human body-aware diffusion model that lever-
ages domain-specific knowledge to enhance restoration quality. Our method em-
ploys a two-stage diffusion-based image restoration model. In the first stage, we
generate human body preliminary predictions such as normal and depth map (pri-
ors) from degraded images using a multi-channel joint diffusion model accompa-
nied by a robust reconstruction paradigm. In the second stage, we reconstruct the
restored image based on the priors generated in the first stage, while balancing the
control strength of different priors to improve restoration quality. Extensive quan-
titative and qualitative experiments demonstrate the superiority of our approach in
generating perceptually high-quality human body restoration results.

1 INTRODUCTION

Blind image restoration (BIR) aims to enhance the quality of degraded images through processes like
denoising (Tian et al., 2020), sharpening (Wang et al., 2020), deblurring (Zhang et al., 2022), super-
resolution (Liu et al., 2022), etc., a domain that has seen significant progress with advancements
in the data-driven learning paradigm. Although general BIR has made substantial strides, users
often exhibit a greater interest in the specific effects of BIR on particular subjects, with the human
body being one of the key focuses. The restoration of the human body can have a profound impact
on various human-centric applications, such as improving portrait quality in social media apps and
aiding related downstream tasks like person re-identification (Ye et al., 2021), 3D reconstruction
(Wang et al., 2021a), etc.

Regarding the methodology of BIR, while the end-to-end reconstruction paradigm (Liang et al.,
2021; Wang et al., 2021c) has made great progress, it struggles to handle complicated combinatorial
and severe degradations. The generative paradigm offers a solution to this issue by harnessing the
power of generative models, such as Generative adversarial networks (GANs) (Karras et al., 2018)
and Diffusion models (Rombach et al., 2021). The priors of generative models possess a powerful
“imagination” learned from large amounts of data, which can be used to fill in reasonable details
to the degraded images. Thus, current diffusion-based image restoration models (Luo et al., 2023;
Lin et al., 2023; Yu et al., 2024) have notably enhanced the perceptual quality and adaptability of
restoration results, thereby expanding the applicability of image restoration in practical contexts.

Despite these advancements, the specific area of human body image restoration remains underdevel-
oped. It is worth noting that the theoretical upper bound of performance for human body restoration
is arguably higher than that for general restoration, since existing knowledge of the human body can
be utilized as priors to the restoration problem. However, current diffusion-based general restora-
tion models (Yang et al., 2023; Lin et al., 2023; Yu et al., 2024) are prone to produce artifacts for
low-quality human images, including unnatural textures and loss of fine body details, as illustrated
in Figs. 1 and 2. This problem can be analyzed using the perception-distortion tradeoff (Blau &
Michaeli, 2018): Although existing GANs and diffusion models successfully improve the image
quality such that the output distribution is closer to nice-looking natural images, since humans are
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Figure 1: Human body image restoration method is required to produce an image with minimal
distortion, high quality, and ensure viewer comfort, as humans are highly sensitive to distortions in
limbs and skin. Our DiffBody model shows superior performance compared to other methods (left),
particularly passing the viewer’s comfort threshold (right).

extremely sensitive to distortions in limbs and skin, they have not reached the viewer’s comfort
threshold, resulting in uncomfortable user experience.

Our goal is to push the performance of human body image restoration beyond the viewer’s comfort
threshold. To this end, we present DiffBody, a novel and specialized two-stage diffusion model de-
signed specifically for human body image restoration. The key idea is to smartly guide a pretrained
diffusion model to restore clear and realistic human bodies through extracted human priors. In Stage
1, we use SwinIR (Liang et al., 2021) to preprocess the degraded image, following the approach of
DiffBIR. This preprocessing generates a preliminary restoration, from which we extract key infor-
mation such as pose and text. These elements, along with the preliminary restoration, are used to
generate additional priors: a depth map, a normal map, and an improved preliminary restoration.
These outputs provide critical color, structural and spatial guidance for the next stages of restora-
tion. The depth map ensures structural alignment by accurately representing 3D shapes, while the
normal map preserves surface details and corrects unnatural textures. Pose information maintains
fine anatomical details and ensures overall human body visual coherence. In Stage 2, a detailed
restoration is performed, where integrating multiple priors becomes crucial. Due to the complexity
of inputs, an additional adapter is introduced to control color generation. Without it, inconsistencies
in color and artifacts could undermine structural corrections. By incorporating the color adapter,
we ensure consistent, accurate color, harmonizing structural and spatial details with precise color
restoration. This integration significantly enhances the realism and quality of the restored images.
While a formally-defined metric for quantifying the viewer’s comfort threshold is not available, our
user study show that the proposed method gives most viewer-comforting human body restoration as
compared to existing methods.

Our main contributions are as follows: (1) Rather than forcing the model to strictly fit the low-quality
distribution, we introduce a more flexible approach that allows the model’s freedom in generation
while guiding it to achieve the required viewer’s comfort threshold. This enables better overall
restoration performance, particularly in challenging human body restoration tasks; (2) We propose
a novel two-stage framework. In Stage 1, we generate various priors from low-quality images to
guide the restoration process. In Stage 2, these priors are leveraged to enhance human body image
generation and restoration, exploring the impact of different types of priors on the final output qual-
ity; (3) We introduce an adapter module specifically designed to address color inconsistencies in the
restoration process, ensuring accurate and realistic color reproduction in restored images.
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Figure 2: Our DiffBody model demonstrates superior performance on human body images compared
to other state-of-the-art methods, particularly in terms of limb details, skin textures. Zoom in for
better view.

2 RELATED WORK

Perception-distortion tradeoff and evaluation methods: (Blau & Michaeli, 2018) shows a trade-
off between perception and distortion: As the mean distortion (the dissimilarity to the ground truth
image) decreases, the perceptual quality (the consistency with natural image statistics) must de-
crease as well. This tradeoff can be visualized as a distortion-quality curve (Fig. 1): Restoration
results below this curve is impossible. Our goal is to push the performance below the viewer’s com-
fort threshold on the perceptual quality, manifested in better perceived images with better perceptual
metrics such as LPIPS (Zhang et al., 2018), ManIQA (Yang et al., 2022), ClipIQA (Wang et al.,
2023), and MUSIQ (Ke et al., 2021), at the cost of potential visual distortion and lower objective
metrics such as PSNR and SSIM. To assess viewer comfort, which cannot be measured by existing
methods, we introduce the comfort pass test and comfort scoring in our user study.
Blind image restoration: Blind Image Restoration (BIR) aims to restore images without prior
knowledge of the specific degradation model. Rather than relying on a known corruption process,
BIR algorithms must generalize across different types of degradation, making it a more challenging
task. Predominantly, existing literature (Bora et al., 2017; Menon et al., 2020; Daras et al., 2021;
Pan et al., 2021; Yang et al., 2021b; Wang et al., 2021b) has concentrated on discerning a latent code
situated in the latent space of a pre-trained GAN. Recent advancements in this domain (Ho et al.,
2020; Song & Ermon, 2019; Song et al., 2020; Rombach et al., 2022; Ramesh et al., 2022; Saharia
et al., 2022) have transitioned towards the utilization of DDPMs, marking a notable shift from con-
ventional approaches. Other novel approaches such as DDRM (Kawar et al., 2022) utilizes SVD
to address linear image restoration challenges, presenting an innovative and simplified approach.
DDNM (Wang et al., 2022a) delves into vector range-null space decomposition to develop a novel
sampling strategy, enhancing image restoration efficiency. DiffBIR (Lin et al., 2023) and SUPIR
(Yu et al., 2024) aims to exploit a pretrained powerful generative prior to solve the BIR problem. In
the realm of domain-specific image restoration models, a predominant emphasis has been placed on
blind face restoration, as evidenced by works such as (Liu et al., 2022; Wang et al., 2022b; Gu et al.,
2022). In contrast, the equally critical domain of human body restoration has not seen comparable
development, a gap that our DiffBody model seeks to address.
Controllable Human Image Generation: Traditional methods for generating controllable human
images mainly fall into two categories: those based on Generative Adversarial Networks (GANs)
(Zhu et al., 2017; Siarohin et al., 2019) and those using Variational Autoencoders (VAEs) (Ren et al.,
2020; Yang et al., 2021a), both leveraging reference images and specific conditions for input. Recent
studies have ventured into enabling the generation process through textual instructions, though these
tend to limit user input to basic pose or style adjustments (Roy et al., 2022; Jiang et al., 2022). State-
of-the-art methods enable detailed control over vocabulary and pose including ControlNet(Zhang
et al., 2023), T2I-Adapter(Mou et al., 2023), HumanSD(Ju et al., 2023), HyperHuman(Liu et al.,
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2023), and CosmicMan (Li et al., 2024). These works have shown that diffusion models are capable
to generate human images that contain rich detail and natural texture, which give us confidence that
they can be utilized for high-quality human body image restoration.

3 METHODOLOGY

3.1 PRELIMINARY: LATENT DIFFUSION MODEL & STABLE DIFFUSION

Our exploration begins with the foundational principles of Latent Diffusion Models (LDM) (Rom-
bach et al., 2022), which are pivotal in the generation of high-fidelity images from latent spaces. By
compressing images into a lower-dimensional latent space before performing the diffusion process,
LDMs achieve remarkable efficiency and detail in image synthesis. An autoencoder is used to tran-
sition between the image and its latent representation, effectively enabling the model to learn robust
feature distributions.
Following the encoding phase, the model initiates a reverse diffusion process starting from a distri-
bution of latent noise, gradually denoising this representation to reconstruct the image based on a
given textual prompt. This process is facilitated by a U-Net architecture, which iteratively refines
the latent features under the guidance of textual conditions embedded by a pre-trained text encoder
such as CLIP. The primary objective in training these models involves minimizing the difference
between the original and reconstructed images, formalized through a loss function that measures
fidelity across multiple stages of the generative process.

3.2 DEGRADED IMAGE-DRIVEN JOINT DIFFUSION FOR HUMAN-CENTRIC PRIOR

In stage 1, the framework leverages degraded images as an integral component for generating
human-centric priors in a diffusion process, as shown in Fig. 3 left. As illustrated in the model
structure, degraded image ILQ is preprocessed by a robust image restoration model SwinIR (Liang
et al., 2021) to produce preliminary restoration : Iir = SwinIR(ILQ). Iir is subsequently passed to
MMPose(Sengupta et al., 2020) and LLaVA(Liu et al., 2024) to extract the human pose Ipose and
the corresponding textual prompt p, respectively: Ipose = MMPose(Iir), p = LLaVA(Iir). The
prompt p is then input into CLIP to extract the textual features ct = CLIP(p). With these founda-
tional elements in place, we encode the latents of Iir and Ipose using a VAE, producing cr = E(Ires)
for the restored image and cp = E(Ipose) for the pose. zt and cp are then concatenated to form ẑt.

The initial training objective, guiding the first stage of model learning, is defined as:

LU = Ezt,t,ct,cp

[
∥ϵd − ϵθd(ẑt, t, ct)∥

2
2 + ∥ϵn − ϵθn(ẑt, t, ct)∥

2
2 + ∥ϵi − ϵθi(ẑt, t, ct)∥

2
2

]
. (1)

In this formulation, ϵd, ϵn, and ϵi represent three independently sampled Gaussian noise drawn
from N (0, 1), for the depth, normal, and RGB branches. The terms ϵθd , ϵθn , and ϵθi correspond
to the three branches of the diffusion model, each tasked with predicting noise for the respective
component. The multi-branch UNet is trained without the restored image latent cr, allowing it
to focus on generating the depth, normal, and RGB components based on the pose and textual
conditions ct and cp.

Once the UNet has been trained, we introduce the latent cr from the restored image and shift to
training ControlNet (Zhang et al., 2023) with the following objective:

LC1
= Ezt,t,ct,cr,cp

[
∥ϵd − ϵθc(ẑt, t, ct, cr)∥

2
2 + ∥ϵn − ϵθc(ẑt, t, ct, cr)∥

2
2 + ∥ϵi − ϵθc(ẑt, t, ct, cr)∥

2
2

]
.

(2)
In this phase, the ControlNet is trained with the full set of conditions including the restored image
latent cr, to refine the image restoration process by incorporating the prior from the higher-quality
image. Stage 1 outputs three separate channels: Ires, Idepth, Inormal = M1(Ipose, Iir, ct), which
are then used in Stage 2 to further enhance the overall performance of human image restoration. The
textual prompt is also updated in this stage, where p′ = llava(Ires) is generated based on the refined
image Ires.

3.3 ENHANCING HUMAN IMAGE RESTORATION THROUGH HUMAN-CENTRIC PRIOR

In Stage 2, with Ipose, Idepth, and Inormal obtained from Stage 1, we utilize feature-extraction
modules Fi, which is built using convolutional neural networks (CNNs) and a fusion layer that
combines these four priors, as shown in Fig. 3 right. The generative prior feature is computed as:
cg = α1F1(Iir) + α2F2(Ipose) + α3F3(Idepth) + α4F4(Inormal). The restored image Ires is first
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Figure 3: The workflow of the proposed DiffBody model.

encoded by CLIP and aligned using a projection module. After a cross-attention module, the prompt
and Ires are encoded as c′i and c′t, respectively.

To generate the high-quality image IHQ = M2(Iir, Ipose, Idepth, Inormal, c
′
t, c

′
i), the learning ob-

jective that guides our model training is defined as follows:

LC2
= Ezt,t,c′t,cr,cp

[∥∥ϵ− ϵθ′
c
(zt, t, c

′
t, cg)

∥∥2
2

]
. (3)

In this formulation, ϵ represents a Gaussian noise term randomly extracted from N (0, 1), where ϵθ′
c

corresponds to the model’s predicted noise for the given latent zt at time step t, conditioned on c′t
and the generative prior cg . Empirically, we find that providing Iir (the initial restoration) to the
model, rather than Ires (the further restored image), helps prevent the model from suffering from
potential artifacts that may be introduced during Stage 1’s restoration process, particularly when
depth and normal maps are not yet available.

Once ControlNet has been trained, we introduce the latent c′i and train the color adapter using the
full objective:

LA = Ezt,t,ct,ci,cg

[∥∥ϵ− ϵθ′
c
(zt, t, ct, ci, cg)

∥∥2
2

]
. (4)

In this training phase, fusing the Ires information with the CLIP embedding broadens the model’s
learning paradigm to better capture color information. This fusion enables the model to handle
color inconsistencies more effectively, resulting in more robust and higher-fidelity restoration. By
integrating the degraded image with textual descriptions, poses, depth maps, and normal maps, our
approach ensures a comprehensive restoration process, critical for recovering details lost to image
degradation. This synergy of diverse inputs allows the model to restore images with greater accuracy,
especially when critical information, such as color and fine details, has been obscured.

4 EXPERIMENTS

4.1 DATASETS

To address common challenges such as incomplete representations and variability in image quality,
we implemented a comprehensive dataset annotation process, annotating each of the 5 million high-
quality human images with MMPose, MiDaS depth (Ranftl et al., 2020), OmniNormal (Eftekhar
et al., 2021), and LLaVA caption to create a robust and reliable training set. Using a bucket-based
resizing strategy, similar to that in SDXL (Podell et al., 2023), we organized the dataset into five
resolution buckets: 512×512, 512×768, 512×1024, 768×512, and 1024×512, ensuring the accom-
modation of varying resolutions. To maintain consistent quality across diverse image resolutions,
we applied the degradation settings from Real-ESRGAN, simulating realistic image degradation.
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The final training set includes approximately four million human images extracted and refined from
the CosmicMan dataset (Li et al., 2024), which required croping and annotation to meet our training
requirement.. Additionally, one million human images were sourced from various web-based repos-
itories, providing broader diversity in poses and environments, with extensive filtering to meet our
strict standards. For evaluation, we leveraged the SHHQ (Fu et al., 2022) dataset, a high-quality set
of full-body human images, to serve as the test set in this paper, given its consistent image quality
and resolution, making it a reliable benchmark for testing our diffusion model’s capabilities.

4.2 EXPERIMENTAL DETAILS

For prior generation in stage 1, we employ Stable Diffusion 2.1-base as the foundational generative
model. The three-branch architecture is initialized using the HumanSD framework, with fine-tuning
applied only to the Stable Diffusion branch for 100,000 steps, using a batch size of 64. The model
is optimized with the Adam optimizer at a learning rate of 10−5 and is conducted for one week
on 8 NVIDIA A100 GPUs (80 GB). After this phase, the Stable Diffusion branch’s parameters are
frozen. The ControlNet branch, responsible for processing input Iir, is then fine-tuned for another
100,000 steps, also with a batch size of 64. This second stage focuses on image restoration rather
than general generation, and uses the same optimization settings and hardware.

For image restoration in stage 2, we use Stable Diffusion XL-1.0-base (SDXL) as the primary back-
bone. We initialize a trainable encoder block from SDXL and fine-tune it on features Iir, Ipose,
Idepth, and Inormal over 100,000 steps, with a batch size of 32 and gradient accumulation of 2. This
phase is optimized using Adam with a learning rate of 10−5 and takes approximately one week,
utilizing 8 NVIDIA A100 GPUs. Following this, we initialize the color adapter with IP-adapterXL
plus parameters and fine-tune it for an additional 200,000 steps with a batch size of 64. This final
phase uses Adam with a learning rate of 10−4 and is trained under the same conditions and duration
on 8 NVIDIA A100 GPUs. For inference, we utilize DDPM sampler (Ho et al., 2020) with 200
steps for both stage 1 and 2.

4.3 COMPARISONS WITH STATE-OF-THE-ART METHODS

Evaluation Metrics. In evaluating against ground truth, we utilize conventional metrics: PSNR,
SSIM, and LPIPS (Zhang et al., 2018). To more accurately assess image authenticity for the BIR
task, we incorporate non-reference image quality assessment (IQA) metrics: MANIQA (Yang et al.,
2022), CLIPIQA (Wang et al., 2023), and MUSIQ (Ke et al., 2021) to enhance our evaluation frame-
work. In the domain of human body restoration, we compare DiffBody with leading general image
restoration methods: BSRGAN (Zhang et al., 2021), Real-ESRGAN+ (Wang et al., 2021c), Diff-
BIR (Lin et al., 2023), PASD (Yang et al., 2023), and SUPIR (Yu et al., 2024). As shown in Table 1,
DiffBody achieves strong performance on non-reference IQA metrics such as MANIQA, CLIPIQA,
and MUSIQ. However, we observe relatively lower results on PSNR and SSIM. This aligns with
findings in (Yu et al., 2024), which emphasize that traditional metrics like PSNR and SSIM are not
highly indicative of true image quality in image restoration tasks. Fig. 6 and 5 show visual compar-
isons on the SHHQ dataset using the degradation method from the fifth row in Table 1. Additionally,
Figures 4 present comparisons on real-world images from the Market1501 dataset, where no manual
degradation was applied.

LQ

DiffBIR PASD

SUPIR DiffBody (ours) LQ

DiffBIR PASD

SUPIR DiffBody (ours)
Figure 4: Qualitative comparison on real-world LQ images. Diffbody successfully recovers the
human body details from 64×128 real-world LQ images.
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Table 1: Quantitative comparison. Comparison of various methods across different degradation
scenarios. green and blue represent the best and second-best performance, respectively. For metrics
marked with ↓, lower values are better, while for the other metrics, higher means better.

Degradation Method PSNR SSIM LPIPS↓ ManIQA ClipIQA MUSIQ

Mixture:
Blur (σ = 2)

SR (×4)

BSRGAN 32.42 0.7522 0.3604 0.3203 0.7329 58.0699
Real-ESRGAN 31.08 0.7741 0.4944 0.1364 0.6234 15.0379

DiffBIR 32.30 0.7368 0.3302 0.2918 0.7067 54.3575
PASD 32.52 0.7637 0.2793 0.4029 0.7142 72.1634
SUPIR 31.90 0.7143 0.2871 0.4475 0.7251 74.0450

DiffBody (ours) 28.69 0.6423 0.1986 0.4532 0.7621 73.2073

Mixture:
Noise (σ = 40)

SR (×4)

BSRGAN 33.78 0.8400 0.1734 0.4548 0.7306 71.0124
Real-ESRGAN 32.99 0.8428 0.1624 0.4235 0.5836 72.2913

DiffBIR 34.15 0.8369 0.1610 0.3427 0.7156 69.6695
PASD 33.31 0.7897 0.1733 0.4513 0.7224 75.6381
SUPIR 33.55 0.7977 0.1633 0.4741 0.7250 75.0670

DiffBody (ours) 29.36 0.6973 0.1973 0.4521 0.7421 76.3458

Mixture:
Blur (σ = 2)

Noise (σ = 40)

BSRGAN 31.04 0.7488 0.5071 0.2422 0.7120 18.7391
Real-ESRGAN 30.87 0.7633 0.5341 0.2094 0.5984 14.3554

DiffBIR 30.94 0.7104 0.4996 0.1794 0.6903 48.5516
PASD 31.23 0.6897 0.5171 0.2607 0.6737 34.2320
SUPIR 31.44 0.7028 0.3489 0.5103 0.7182 69.7255

DiffBody (ours) 29.48 0.6327 0.1598 0.4494 0.7366 70.0132

Mixture:
Blur (σ = 2)

Noise (σ = 40)
SR (×4)

BSRGAN 32.93 0.7997 0.2832 0.2355 0.7111 24.4447
Real-ESRGAN 30.88 0.7665 0.5162 0.1707 0.5436 14.3322

DiffBIR 31.65 0.7211 0.4493 0.2197 0.6960 60.2501
PASD 31.85 0.7544 0.3470 0.4001 0.7022 56.8926
SUPIR 31.50 0.7102 0.3474 0.4609 0.7131 66.0217

DiffBody (ours) 29.86 0.6360 0.1360 0.4690 0.7405 68.8292

Mixture:
Blur (σ = 2)

Noise (σ = 20)
SR (×4)

JPEG (q = 50)

BSRGAN 32.93 0.7997 0.4800 0.3331 0.7150 58.9186
Real-ESRGAN 31.55 0.7790 0.2719 0.3541 0.6011 61.0253

DiffBIR 33.03 0.7879 0.2622 0.3427 0.7043 62.4461
PASD 32.79 0.7854 0.2117 0.4019 0.7208 74.1890
SUPIR 32.37 0.7533 0.2334 0.4780 0.7231 74.4595

DiffBody (ours) 30.11 0.7202 0.1402 0.4861 0.7561 75.7115

LQ GT BSRGAN Real-ESRGAN DiffBIR PASD SUPIR DiffBody

Figure 5: Qualitative Comparison with different methods. Our model is more effective in generating
detailed limbs and natural skin texture.

LQ GT BSRGAN Real-ESRGAN DiffBIR PASD SUPIR DiffBody

Figure 6: Qualitative Comparison with different methods. Our model is more effective in generating
natural texture and maintaining overall human body visual quality.
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4.4 ABLATION STUDIES

Effectiveness of LQ-Image Arrangement in Joint Diffusion: We evaluate the effectiveness of
different ways of arranging the low-quality (LQ) image input within the joint diffusion framework
by comparing three methods. The first method, LQ Only, uses only the low-quality image as input to
ControlNet, without pose information, serving as a baseline to assess image restoration based solely
on the low-quality input. The second method, LQ+Pose, feeds both pose and low-quality signals
into ControlNet to explore how conditioning on both inputs affects restoration performance. In the
third method, LQ+Pose2U, the low-quality image is provided to ControlNet while the pose infor-
mation is fed directly into the UNet, allowing us to assess the impact of splitting the conditioning
between the ControlNet and the UNet. These methods are compared to determine the most effective
conditioning strategy for image restoration. For quantitative analysis, we calculate the L2 loss be-
tween the generated depth / normal maps with directly inferecing the depth / normal maps from the
ground truth high quality image as shown in Table 2 and 3. Visual examples can be seen in Fig. 7
and Fig. 8. The depth and normal maps generated by method 3 are the closest to the ground truth.
For clearer visualization, we also provide a relative heatmap that highlights the differences between
the generated maps and the ground truth.

Table 2: L2 loss com-
parison of depth map.

Method Ld
2

LQ Only 531.2
LQ+Pose 561.8

LQ+Pose2U 488.7

GT LQ Only LQ+Pose LQ+Pose2ULQ

Figure 7: Visual Comparison of depth map.

Table 3: L2 loss com-
parison of normal map.

Mode Ln
2

LQ Only 151.9
LQ+Pose 180.2

LQ+Pose2U 106.8

GT LQ Only LQ+Pose LQ+Pose2ULQ

Figure 8: Visual Comparison of normal map.

Effectiveness of Different Priors: Then we compare the effectiveness of the three generative pri-
ors—depth, normal, and pose—used in our model. To assess their individual contributions, we
trained three separate models, each excluding one of the priors (without pose, without depth, and
without normal), and compared their performance against our full model, which incorporates all
three priors. The results, as shown in Table 4, provide insight into how each prior affects the im-
age restoration quality across several metrics. Our full model, leveraging all three priors, achieves
the best overall performance, demonstrating the critical role of combining pose, depth, and normal
priors for improved restoration results. Visual comparisons of the different models are provided in
Figures 9, illustrating the qualitative impact of each prior on the restoration process.
Table 4: Quantitative comparisons. Notations follow those in Table 1. The model utilizing all priors
achieves the overall best results, demonstrating the effectiveness of incorporating multiple priors.

Depth Normal Pose PSNR SSIM LPIPS ↓ ManIQA ClipIQA MUSIQ
✓ ✓ 28.72 0.7265 0.1907 0.4394 0.7603 73.7625
✓ ✓ 30.25 0.7243 0.1986 0.4436 0.7498 71.0442

✓ ✓ 28.11 0.6924 0.2105 0.4332 0.7492 70.8363
✓ ✓ ✓ 30.11 0.7402 0.1402 0.4861 0.7561 75.7115
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LQ HQ w/o Pose w/ Pose LQ HQ w/o Pose w/ Pose

LQ HQ w/o Normal w/ Normal LQ HQ w/o Normal w/ Normal

LQ HQ w/o Depth w/ Depth LQ HQ w/o Depth w/ Depth

Figure 9: Qualitative comparisons: First Row: Comparison with and without pose information.
Incorporating pose leads to improved limb details. Second Row: Comparison with and without the
normal map. Incorporating the normal map improves human skin textures. Third Row: Comparison
with and without depth information. Incorporating depth improves 3D spatial relationships in the
generated images.

Effectiveness of Color-controlling Adapter: Finally, we evaluate the impact of incorporating
the color-controlling adapter (color-Ada) by comparing model performance with and without the
adapter. Since PSNR and SSIM are not well-suited for measuring color information in RGB images,
we instead use CPSNR (Color Peak Signal-to-Noise Ratio) and CSSIM (Color Structural Similar-
ity Index). CPSNR extends PSNR by accounting for color channels, allowing for a more accurate
assessment of color fidelity. Similarly, CSSIM is a variant of SSIM that measures structural simi-
larity across the color channels, providing a better evaluation of color consistency. The results, as
presented in Table 5, demonstrate a significant improvement in performance when the color adapter
is utilized. Visual examples of this comparison are provided in Fig. 10, further illustrating the
qualitative improvements introduced by the color-controlling adapter.

Table 5: Quantitative comparison. The color adapter improves all numerical metrics, demonstrating
its effectiveness in enhancing the image restoration process.

Method CPSNR CD-SSIM LPIPS ↓ ManIQA ClipIQA MUSIQ
w/o color-Ada 24.31 0.6423 0.1872 0.5160 0.7410 72.9950
w/ color-Ada 29.12 0.6821 0.1402 0.5380 0.7561 75.7115

LQ HQ w/o Color Adapter w/ Color Adapter LQ HQ w/o Color Adapter w/ Color Adapter

Figure 10: Qualitative comparison with and without the color adapter. The results show that incor-
porating the color adapter significantly enhances fidelity and overall visual quality.
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4.5 USER STUDY

We conducted a user study to assess whether a method passes the viewer comfort test, as metrics like
PSNR, LPIPS, or ManIQA cannot evaluate this aspect. We processed 50 low-quality human body
images using six methods, including ours, and presented them to 10 volunteers. They answered
three questions: (1) ”Do you feel comfortable looking at this image?” (a yes/no comfort test), (2)
”Can you rate your comfort level from 0 to 10?” (a continuous scale), and (3) ”Select the best output
from the six methods by evaluating each one based on its fidelity to the input image, overall quality,
and viewer’s comfort level.” (a performance selection question). The results are shown in Fig. 11.

Since GAN artifacts (e.g., poor quality, lack of detail) differ from diffusion models, we only present
results from four diffusion-based methods for the first two questions. Our method achieved the
highest comfort pass rate (81.25%) and comfort score (7.53), outperforming other models. For the
performance selection question, our method was preferred by users, with a selection rate of 58.32%.

Question 1: Do you feel 
comfortable looking at this
image?

Question 2: Can you rate your comfort level from 0 to 10, like the
examples by one user in the following?

Question 3: Select the best output from the six methods by evaluating 
each one based on its fidelity to the input image, overall quality, and 
viewer's comfort level.

Mostly
No.

Mostly
Yes.

0 2 104 6 8

Figure 11: User study. Questions and example answers are shown on the top, while the results are
shown on the bottom, including the viewer comfort pass test, comfort level scoring, and overall
preference. The results clearly demonstrate that our method significantly outperforms the others.

5 CONCLUSIONS

DiffBody introduces a novel framework for human body restoration, achieving realistic outcomes
by incorporating human-centric guidance into the pre-trained Stable Diffusion model. By leveraging
various human-specific conditions, we surpass the capabilities of existing general image restoration
models in addressing artifacts. A key aspect of our approach is balancing different priors, such
as pose, depth, and normal maps, to strike a balance between the viewer’s comfort threshold and
fidelity to the low-quality (LQ) image. However, there are still areas for improvement, such as
exploring advanced techniques like mesh modeling for precise body structure manipulation and
ensuring the preservation of personal identity throughout restoration. Future work will focus on
handling more challenging scenarios, including complex poses, multi-human images, and cases
where subjects are partially occluded by objects. These extensions, along with better body control
and identity preservation, will further enhance the robustness and applicability of human image
restoration models.
Ethical concerns: While DiffBody offers significant advancements in human body restoration,
it raises ethical concerns related to privacy, consent, and image counterfeiting. The ability to ma-
nipulate and restore human images could lead to unwanted alterations of an individual’s likeness,
potentially infringing on personal rights. Misuse of this technology may result in unauthorized mod-
ifications or counterfeit images. It is essential that this model is applied responsibly, with explicit
consent, and that strong safeguards are in place to prevent misuse. Developers and researchers must
remain vigilant in addressing these ethical challenges.
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