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Abstract1

Single-cell RNA sequencing (scRNA-seq) data, annotated by cell type, is useful in2

a variety of downstream biological applications, such as profiling gene expression3

at the single-cell level. However, manually assigning these annotations with4

known marker genes is both time-consuming and subjective. We present a Graph5

Convolutional Network (GCN) based approach to automate the annotation process.6

Our process builds upon existing labelling approaches, using state-of-the-art tools7

to find highly-confident cells through consensus and spreading these confident8

labels with a semi-supervised GCN. Using simulated data and two scRNA-seq9

datasets from different tissues, we show that our method improves accuracy over10

a simple consensus algorithm and the average of the underlying tools. We also11

demonstrate that our GCN method allows for feature interpretation, pulling out12

important genes for cell type classification. We present our completed pipeline,13

written in Pytorch, as an end-to-end tool for automating and interpreting the14

classification of scRNA-seq data.15

1 Introduction16

Single-cell RNA sequencing (scRNA-seq) measures the RNA from each gene present in an individual17

cell, serving as a proxy for gene expression. High-quality labels of cell type based on the tran-18

scriptional profile produced by scRNA-seq have proven valuable for characterizing gene expression19

of cells, and for discovering cell types and genetic drivers of disease. Traditionally, these labels20

are produced by unsupervised clustering followed by labelling clusters with known marker genes.21

However, unsupervised clustering is limited by issues such as the size of scRNA-seq datasets as well22

as subjectivity in reclustering and biological interpretation of clusters [1].23

The limitations of traditional cell type annotation methods have necessitated the development of24

automated methods for cell labelling. Three main categories of tools have emerged: marker gene25

based, correlation based, and supervised classification based [2]. Marker based approaches employ26

known marker genes for labelling, while correlation and supervised learning based approaches require27

manually labelled scRNA-seq data sets with the cell types of interest. Within these broad categories,28

the performance of individual tools varies widely across data sets [3]. As a result, using the consensus29

of multiple classification tools could yield higher accuracy. However, there currently exist no tools30

for researchers to easily apply multiple classification algorithms to their scRNA-seq data.31

We address these issues in two ways. First, we provide a pipeline for annotation of scRNA-seq data32

with multiple state-of-the-art annotation algorithms. Second, we implement and test a semi-supervised33

Graph Convolutional Network (GCN) as a mechanism to propagate labels from confidently labelled34

cells to unconfidently labelled cells. We show our method improves overall classification accuracy35

(and, more specifically, classification accuracy on unconfidently labelled cells) compared to taking36

the consensus of the labels from the underlying tools. We also demonstrate the use of DeepLIFT[4]37

as an effective interpretation tool for our GCN model, allowing researchers insight into classification38

decisions and important cell type gene markers.39
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Figure 1: Starting from an scRNA-seq dataset, a user can apply any number of tools which classify
cell types (for example, classification from raw genetic data or from reference genetic markers). If a
majority of these underlying tools assign the same label to a cell, we say the ensemble is confident in
this label. Our GCN learns to propagate labels from confidently labelled cells to the rest of the cells
("unconfident cells") via message passing in a K-nearest neighbor graph.

2 Our Model40

Picking Confident Labels via Consensus. Our method first involves picking confident labels for41

a subset of cells in a given data set. Our pipeline currently includes five different state-of-the-art42

annotation methods: SCINA [5], ScType [6], ScSorter [7], SingleR [8], and ScPred [9]. These43

methods classify cells via clustering, specific marker genes, similarity to a reference dataset, or a44

mix of all three - see Appendix D for an in-depth discussion of these tools. Our pipeline also allows45

researchers to upload their own predictions and utilize other tools. We designate a cell as being46

confidently labelled (and keep that cell’s label) if a majority of tools agree on that label. We also47

compare all methods to a non-parametric label proagation approach (described in Appendix G).48

Semi-supervised GCN. We construct a GCN with l EdgeConv [10] layers with SiLU activation49

function and summation aggregation. Each layer propagates embedding vectors between each node50

(featurized in PCA space) and its k nearest neighbors (including itself). A final linear layer projects51

node embeddings into label space (whose dimension is the number of cell types in our dataset). For52

architecture details see Appendix A. We train our GCN for 150 epochs, with the Adam optimizer[11]53

at a learning rate of 0.0001. Our training loss is Cross-Entropy loss on the set of confidently labelled54

cells. Nearest neighbors are generated separately for each batch of each epoch.55

Interpretation with DeepLIFT. We employ DeepLIFT[4] with the Rescale rule as implemented56

by Captum[12]. We use the same hyperparameters batch size b, neighbors k, number of message57

passing steps l, and final embedding layer size e as used during training. DeepLIFT uses the gradient58

of a neural network’s outputs with respect to inputs to determine how much a given classification59

depended on a given input variable (in our case, how much classification as a given cell type depends60

on each gene). Calculating these attribution scores is only possible for a differentiable model, like61

our GCN - not possible for any of the underlying tools. We note here that the pipeline we analyzed62

with DeepLift included the PCA step, resulting in attribution scores per gene for each cell.63

3 Data Sets64

Preprocessing Data. The initial input to our pipeline is a scRNA-seq count matrix X where Xng65

corresponds to observed gene counts for gene g in cell n. Cells expressing < 200 genes and genes66

expressed in < 3 cells are removed, and X is row-normalized according to xi = log(1 + ((xi ∗67

10000)/Σxi). Both of these steps are common scRNA-seq preprocessing steps[13][14]. Finally, we68

use Principal Components Analysis (PCA) to project X down to 500 features per cell.69

Simulated Data. We generated our simulated data sets with Splatter[15] and parameters estimated70

from 4000 Pan T Cells from a healthy donor [16]. Each simulated dataset contains 1000 cells,71

evenly split between four cell types with different transcriptomic profiles. To demonstrate that our72
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Table 1: Accuracy percent scores for all datasets for both all cells and “unconfident cells”: cells for
which the underlying methods did not have consensus. GCN accuracies are the mean ± standard
deviation of accuracies from five randomly initialized trials.

Method
Simulation 0.7 Simulation 0.8 Testis PBMC

All Unconf . All Unconf . All Unconf . All Unconf .

Ours (GCN) 90.0 ± .61 66.0 ± 3.9 96.1 ± .22 83.3 ± 2.6 86.2 ± .12 80.9 ± 1.8 93.1 ± .05 70.6 ± 1.5
Max Consensus 86.4 42.9 91.2 25.9 80.8 0.0 91.2 6.8

Tool Avg. 69.3 ± 14 33.1 ± 32 76.7 ± 12 34.6 ± 28 72.1 ± 16 21.7 ± 36 75.0 ± 6.1 36.9 ± 34
ScType 64.8 13.5 79.9 29.4 84.8 63.0 85.5 81.8
ScSorter 85.8 51.3 88.7 38.8 77.5 2.2 71.5 65.9
SCINA 53.7 7.7 58.7 2.4 53.9 0.0 73.3 6.2
SingleR 83.1 80.1 85.2 77.6 NA NA 70.3 13.4
ScPred 59.2 12.8 71.0 24.7 NA NA 74.4 17.1

Non-Parametric 30.6 16.7 37.4 15.3 87.4 84.8 87.9 70.8

pipeline can also incorporate reference-based tools (like SingleR and ScPred), We also generated73

1000 reference cells for each dataset with the same gene profiles (separated from the original data74

with a batch.facScale of 0.5 to simulate batch effects). Simulated data sets vary by the de.facScale75

parameter which determines the magnitude of variation in gene expression profile of between cell76

type groups. Five markers were selected randomly from the top ten differentially expressed genes77

from each cell type. The 0.7 de.facScale and 0.8 de.facScale simulated data sets had 156 and 8578

unconfidently labelled cells respectively.79

Real Data. It is not usually feasible to acquire ground truth labels for scRNA-seq data. An80

alternative gold standard is Fluorescence-activated Cell Sorting (FACS), which pre-sorts cells by81

markers prior to conduction of scRNA-seq [17]. We test our model on two FACS-labelled datasets.82

First, we use a scRNA-seq data set generated from mouse testis cells[18]. This data contains three83

cell types: 292 Spermatogonia, 244 Spermatocytes, and 156 Spermatids after filtering. Cell type84

markers were selected from relevant literature[19] and no reference data set was used for this data.85

There were 46 unconfidently labelled cells after prediction tool voting on the data set.86

Second, we use an scRNA-seq data set generated from Human peripheral blood mononuclear cells87

(PBMCs)[20]. This data contains ten cell types, however, we removed cell types not purely sorted by88

FACS, combined CD4+ positive T cells, and combined CD8+ positive T Cells. This resulted in five89

cell types: 9,106 B Cells, 2,341 Monocytes, 7,572 Natural killer (NK) Cells, 38,006 CD4+ T Cells,90

and 19,856 CD8+ T Cells. We used the same markers as ScSorter[7] and used the 10X PBMC 3k91

data set as a reference as in [21]. This dataset contained 2,310 unconfidently labelled cells.92

4 Results93

4.1 Accuracy on Test Sets94

Experiment Settings. For each data set, 20 percent of confidently labelled cells were masked and95

held out as a validation set. We performed hyperparameter optimization search (see Appendix A96

for details) for options of batch size b, neighbors k, layers l, and embedding layer size e, selecting97

the GCN architecture with the highest validation accuracy. Each GCN used EdgeConv feature98

propagation between each node and its k closest neighbors, with distance determined dynamically99

between node features (including the PCA features at the first layer). Five random initializations100

of the optimal model were then trained for 150 epochs as described above and mean accuracy was101

recorded. We use max consensus and other tool accuracies as baselines for our model. Max consensus102

simply chooses the cell type with the most votes. In the event of a tie, this method returns "unknown".103

We report total accuracy and unconfident cell accuracy for each data set. “Unconfident cell accuracy"104

refers to the accuracy on only the cells where the underlying tools did not find consensus.105

Simulated Data Sets. For both simulated datasets, the optimal model has batch size 20, 2 nearest106

neighbors, and 2 EdgeConv layers. For the simulation with 0.7 de.facScale, 25-dimensional em-107

bedding space was optimal, whereas for the simulation with 0.8 de.facScale the optimal value was108

40. Table 1 shows our model outperforms all other methods for total accuracy and slightly under109

performs SingleR for unconfident cell accuracy on the 0.7 de.facScale data.110
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Figure 2: Heatmap of scaled DeepLIFT attribution scores and heatmap of average log normalized
gene expression scaled by gene. a. Top five most important genes for testis data set. b. Top three
most important genes for PBMC data set. See Appendix B for extended versions of these plots.

Testis Data Set. Only marker based prediction tools were used for this data set as no labelled111

reference was available. The optimal model for this data set used batch size 20, 2 nearest neighbors,112

2 EdgeConv layers, and embedding layer size of 25. Table 1 shows accuracy results, demonstrating113

our GCN model outperforms all other methods for both total and unconfident cell accuracy, except114

for the non-parametric approach.115

PBMC Data Set. The optimal model for this data set used batch size 50, 2 nearest neighbors, 2116

EdgeConv layers, and embedding layer size of 25. Table 1 shows accuracy results. For accuracy on117

unconfident cells, the GCN model places third behind ScType and the non-parametric approach. Our118

model still outperforms all other methods for overall accuracy.119

4.2 Feature Interpretation120

Figure 2A shows the five most important (as discovered by DeepLift) genes by cell type for the testis121

data set. Interestingly, all of these top genes have uniquely high attribution in their important cell type.122

The highly attributed genes for a cell type also have relatively high gene expression in that cell type.123

We also observe high expression of Spermatocyte genes in Spermatid cells. DeepLIFT also indicates124

genes like Tnp1 that are differentially expressed in those cell types, but not explicitly included as125

marker genes. Figure 2B shows the scaled gene expression for the top three most important genes126

by cell type for the PBMC data. For B Cells, Monocytes, and NK Cells we see a clear connection127

between the genes picked out as important by DeepLIFT and the genes expressed by those cell types.128

However, for CD4 and CD8 T Cells, the expression is not clearly higher for all genes. Importantly,129

we do observe CD8B as the most important gene for CD8 T Cell classification, a key marker for the130

cell type. We also observe CD3E (another important marker for all T Cells) as an important gene for131

both sub types of T Cells. One potential reason for less informative DeepLIFT scores for CD4 and132

CD8 T Cells is that the GCN often misclassifies CD8 T Cells as CD4 T Cells. Importantly, the GCN133

is the only one of our tested methods that can be interpreted using DeepLIFT.134

5 Discussion135

In this work we propose a novel framework for scRNA-seq cell type annotation. Building upon136

existing annotation tools, we implement an EdgeConv based GCN model to propagate consensus137

based confident labels to the remaining unlabelled cells. We show an improvement in accuracy over a138

baseline max consensus algorithm and the average tool accuracy. We also demonstrate the ability139

to identify important genes for classification via model interpretation with DeepLIFT. The model140

interpretation is especially valuable for researchers as it has the potential to uncover novel gene141

markers and provide insight into the model’s decisions.142
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a b

c d

Figure 3: Spread of validation accuracy scores as a function of various hyperparameters. The
hyperparameters included are number of neighbors, batch size, GCN layers, and final embedding
layer size. a. Testis data set. b. PBMC data set. c. Simulation 0.7 data set. d. Simulation 0.8 data set

A Hyperparameter Search Details203

See Figure 3 for details of hyperparameter search on validation set of each data set.204

Our model architecture consists of l EdgeConv layers. Each EdgeConv layer consists of one round205

of message passing along edges of the graph, followed by a dense neural network model that maps206

from one layer’s embedding space to the next layer’s. Each node aggregates information using the207

sum of its received messages (from neighbors and itself). In all of our model architectures, the first208

layer takes input embedding size 500 and outputs embedding size 1000. The middle layers accept209

embedding size 1000 and output embeddings of the same size. The final layer accepts embedding210

size 1000 and outputs final embedding size e. Both hyperparameters number of layers l and final211

embedding size e are included in the hyperparameter search.212

B Extended DeepLIFT Plots213

See Figure 4 for specific gene expression of each highly important gene for all cell types in testis and214

PBMC data sets.215

C Anonymized Github Link216

The code for our pipeline used to generate results in this paper is available at217

https://anonymous.4open.science/r/scSHARP-DA63.218
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Figure 4: Heatmap of DeepLIFT attribution scores after absolute value and scaling by cell type for
top five most important features by cell type and violin plot of log normalized expression for each
gene. a. Attribution heatmap for testis data set. b. Expression plots for testis data set. c. Attribution
heatmap for PBMC data set. d. Expression plots for PBMC data.
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accuracy. ScType, SCINA, ScSorter, SingleR, and ScPred were included as component tools.

D Discussion of Methods219

ScType employs a clustering-based approach that inputs the scRNA-seq cells by genes matrix along220

with cell type gene markers, and outputs predictions [6]. ScSorter is another clustering-based221

approach that inputs the scRNA-seq cells by genes matrix along with cell type gene markers. This222

method recognizes that over-expression of certain marker genes is not present in populations of many223

cell types and attempts to address this problem [7]. SCINA is another state-of-the-art approach that224

inputs the same information as ScType and ScSorter, with the added benefit of being much faster.225

SCINA uses an expectation-maximization algorithm to assign labels [5]. SingleR requires both the226

input scRNA-seq cells by genes matrix and a labeled reference cells by genes matrix. This method227

uses correlation between the reference and query sets to extend labels [8]. ScPred requires the same228

information as SingleR. This method uses feature space reduction to pull out important cell type229

features and then a machine learning probability-based prediction algorithm [9].230

E de.facScale Simulation Parameter231

See Figure 5 for details on how the de.facScale parameter affects classification difficulty. With232

de.facScale ≤ 0.5, the generated data is too difficult for any of the component tools to analyze -233

all of the component tools do poorly. On the other hand, de.facScale ≥ 0.9 is too easy - the cell234

types are well-separated enough in gene space that all component methods are able to classify them235

correctly. We generated simulated data with de.facScale values of 0.7 and 0.8, as these values produce236

a challenging, but still attainable, benchmark for classification.237

F GCN Confusion Matrices238

See Figure 6 for confusion matrices from GCN predictions on all data sets. We note that nearly all of239

these confusion matrices are characterized by a single cell type being the majority of unconfident cells.240

It is unclear why this is the case for the PBMC and Testis data. In the synthetic data, one possible241

explanation is the way we choose marker genes. We randomly select five of the top ten differentially242

expressed genes in the simulated data of each cell type as markers (this is standard practice for using243
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Figure 6: Confusion matrices for GCN predictions in all and unconfidently labeled cells. a. Simula-
tion 0.7 b. Simluation 0.8 c. Testis d. PBMC

Table 2: Accuracy percent scores for all datasets for both all cells and “unconfident cells”: cells for
which the underlying methods did not have consensus.

Method
Simulation 0.7 Simulation 0.8 Testis PBMC

All Unconf . All Unconf . All Unconf . All Unconf .

Table 1 Best 90.0 ± .61 80.1 96.1 ± .22 83.3 ± 2.6 86.2 ± .12 80.9 ± 1.8 93.1 ± .05 81.8
Non-Parametric 30.6 16.7 37.4 15.3 87.4 84.8 87.9 70.8

Splatter). It is possible this method results in some cell types with better markers than others. This244

was intentional, as in real-world data not all cell types will always have the same strength of cell type245

marker. For the actual data sets, this is likely because certain cell types (such as CD4 and CD8 T246

Cells) are more transcriptionally similar and likely to be misclassified. A common theme in both of247

these cases is that within each dataset, some cell types are inherently easier to classify than others.248

G Non-parametric Neighbor Majority Label Propagation249

We implemented a non-parametric neighbor majority approach as an additional baseline to test our250

GCN model. This method operates on the 500D vectors produced as the principal components of the251

gene expression matrices for each data set. We use similarity in this vector space to propagate labels252

from confident nodes to the remainder of the population. This is similar to the message passing step in253

our GCN model, with the difference that this method does not use a neural network to encode/decode254

messages. Each round of message passing, each node’s label is updated as the majority label of its k255

nearest neighbors (only considering those neighbors who have been labelled thus far). We test three256

strategies:257

• one round of label propagation;258

• iterating until less than 5 percent of labels change between epochs; and259

• iterating until all cells are labeled or 50 epochs have gone by.260

For this experiment, we updated cells in batches of 1000, as constructing full k-NN graphs for our261

PBMC data set proved computationally intractable. It is important to note batch size 1000 leaves262

both the simulated and testis data sets fully intact without batching.263
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Figure 7: Number for neighbors vs accuracy percent for different convergence methods and data sets.
a. Simulation 0.7 b. Simulation 0.8 c. Testis d. PBMC

The results for this method across a variety of k values are shown in Figure 7. We then compared264

this approach to the best methods from Table 1 in Table 2. To select k, we did a grid search of the265

same k values and convergence approaches used in Figure 7 and selected the optimal configuration266

based on a held-out validation set of 20 percent of the confidently labeled cells. For the Simulation267

0.7, Simulation 0.8, and PBMC data set, running for one epoch with 300, 10, and 200 neighbors268

respectively was optimal. For the testis data set, running until convergence with 200 neighbors was269

optimal. These results show the non-parametric approach far under performs our method in the270

simulated data sets. However, this approach slightly out performs our GCN method in the testis data271

set. Additionally, it slightly out performs our GCN method in the PBMC unconfidently labeled cells.272

Although this non-parametric neighbor majority approach does slightly out performs ours in the testis273

data set and in the PBMC unconfident cells, this method is not differentiable and so does not allow for274

gene-level model interpretation via DeepLift, as our method does. Additionally this method of label275

propagation is not guaranteed to label all of the cells in the dataset - for PBMC, the best performing276

variant of this method left 31 cells unlabeled.277
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