
Under review as a conference paper at ICLR 2022

APPENDIX

A CLARIFICATION ON PRIVACY

As indicated in Sec. 2, the projection matrix is public information, and hence FED-χ2 does not take
the differential privacy guarantee into account. We would want to provide more information in order
to eliminate any potential misunderstandings.

To begin, we would want to emphasize that “privacy” in our paper refers to MPC-style privacy, not
DP-style privacy. In general, MPC-style privacy is orthogonal to DP-style privacy: in MPC, privacy
is obtained against a semi-honest server in such a way that the server cannot witness individual
client’s updates but only an aggregate of them, e.g. SecAgg (Bonawitz et al., 2017). In DP, privacy
is accomplished by including random noise in each client’s update, such that the distribution of the
output result does not reveal the clients’ private information and the server cannot infer the clients’
identification from the output result.

Second, we would like to emphasize that our work proposes a novel secure aggregation scheme
particularly for the χ2-test. Existing standard secure aggregation schemes are inapplicable to the
χ2-test, which will reveal much more information than FED-χ2, as we have clarified in Sec. 1. Again,
this work requires guaranteeing MPC-style privacy, not DP.

Third, to quantify MPC-style privacy, we prove in Theorem 2 that the clients’ updates in FED-χ2 are
hidden inside a space with exponential size. This is weaker than hiding users’ updates in the whole
space, but still gives meaningful privacy guarantees (consider attempting to guess the output of an
exponential-sided dice, which is practically infeasible).

Finally, while DP is orthogonal to this research, we would want to emphasize that our protocol can
achieve DP by introducing calibrated discrete Gaussian noise to the users’ local updates.

B COMPARISON WITH POOLING χ2-TEST

We also compare the performance of FED-χ2 with pooling χ2-test. That is, the clients compute the
χ2-test with their local observations and then they aggregate their test results by pooling. The result of
the pooling χ2-test is determined by the majority of the clients’ local results. Fig. 6 shows the result
of pooling χ2-test on the real-world datasets. The details of the datasets are presented in Appendix I.
We observe that pooling χ2-test cannot give meaningful results and it tends to give judgement that
the data is independent since that the numbers of the local observations are not sufficient to make
correct judgement. The results further demonstrate the effectiveness and the necessity of FED-χ2.

C PERFORMANCE OF FED-χ2 WHEN ORIGINAL χ2-TEST ACHIEVES LOW
POWER

We have computed the multiplicative error and accuracy of FED-χ2 with the original centralized
χ2-test as the baseline. To further demonstrate the effectiveness of FED-χ2, we also set up the
experiment to evaluate the performance of FED-χ2 on the synthesized dataset when the accuracy of
the original centralized χ2-test is lower. More specifically, we synthesize the random independent,
linearly correlated, quadratically correlated, and logistically correlated datasets with the same hyper-
parameters for 20 times. We then compute the accuracy of the original centralized χ2-test over these
20 datasets. We report the results in Fig. 7. The results show that FED-χ2 can still achieve good
performance on the datasets when the original centralized χ2-test’s accuracy is lower. Consistent
with our results in Sec. 4.1, the multiplicative error becomes lower with the increase of the encoding
size l. Thus, we conclude that FED-χ2’s performance is comparable to that of the original centralized
χ2-test with an appropriate encoding size l and is not dependent on the datasets.

D FURTHER RESULTS FOR ONLINE FDR CONTROL

13

Under review as a conference paper at ICLR 2022

Error of FED-χ2 ACC of FED-χ2 ACC of pooling χ2-test

50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(a) Data 1.
20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(b) Data 2.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(c) Data 3.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(d) Data 4.

50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(e) Data 5.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(f) Data 6.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(g) Data 7.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(h) Data 8.

50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(i) Data 9.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(j) Data 10.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(k) Data 11.
10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(l) Data 12.

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Encoding size `

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(m) Data 13.

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Encoding size `

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(n) Data 14.

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Encoding size `

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(o) Data 15.

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Encoding size `

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C
(p) Data 16.

Figure 6: Comparison between FED-χ2 and pooling χ2-test.

Error of FED-χ2 ACC of FED-χ2 ACC of centralized χ2-test

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Encoding size `

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(a) Synthetic Data 1.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Encoding size `

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(b) Synthetic Data 2.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Encoding size `

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(c) Synthetic Data 3.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Encoding size `

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(d) Synthetic Data 4.

Figure 7: Performance of FED-χ2 when original χ2-test achieves low accuracy.

10 50 100 150 200 250 300
0

20

40

60

80

100

Encoding Size `

FD
R

/T
D

R
(%

)

FDR of FED-χ2

TDR of FED-χ2

FDR of centralized χ2-test
TDR of centralized χ2-test

Figure 8: Results of FDR & TDR.

In this section, we provide further results for online FDR control.
As we have shown in Fig. 5, FED-χ2 achieves good performance
(FDR lower than 5%) when the encoding size l is larger than 200. In
Fig. 8, we provide the FDR result of the original χ2-test as well as
the true discovery rate (TDR, i.e., #correct reject / #should reject). In
addition, we provide statistics for each encoding size l that was eval-
uated in Table 1. These results demonstrate that FED-χ2 performs
well and is comparable to the centralized χ2-test when the encoding
size l is increased. More importantly, as we have shown in Sec. 4.1
and Appendix C, the performance of FED-χ2 is independent from
the data.

14

Under review as a conference paper at ICLR 2022

#should reject #should accept #correct reject #false reject
FED-χ2, l = 10 5,900 4,100 5,544 1,132
FED-χ2, l = 25 5,900 4,100 5,871 1,022
FED-χ2, l = 50 5,900 4,100 5,899 856
FED-χ2, l = 100 5,900 4,100 5,900 606
FED-χ2, l = 150 5,900 4,100 5,900 411
FED-χ2, l = 200 5,900 4,100 5,900 335
FED-χ2, l = 250 5,900 4,100 5,900 270
FED-χ2, l = 300 5,900 4,100 5,900 202
centralized χ2-test 5,900 4,100 5,900 0

Table 1: Detailed results of online FDR control.

E INCORPORATE GAUSSIAN MECHANISM IN FED-χ2

As we have mentioned in Appendix A, FED-χ2 can achieve differential privacy easily by incorporating
well-studied differentially private mechanisms. To further demonstrate this point, we utilize Gaussian
Mechanism to provide (ε, δ)-DP guarantee. We clipped the local clients’ data such that the encoding
function’s sensitivity, which is the L2-norm of the clients’ local data is bounded by ∆f . Before
encoding their local data, each client add Gaussian noise N d(0, σ2) to their local data vector µi. We
can calculate σ2 = 2 ln(1.25/δ)(∆f)2

n(ε/l)2 . After encoding and decoding with the computed vector, FED-χ2

provides (ε, δ)−DP guarantee.

We evaluate the performance of differentially private FED-χ2 on four of the real-world datasets as
shown in Fig. 9. The results show that the performance our algorithm becomes better with the increase
of privacy budget ε. When the privacy budget ε is small, the protocol tends to give the judgement
that the data is independent because that the independent noise is too large and it dominates the
test. When the privacy budget ε is large enough, our protocol can achieve 0.92, 0.68, 0.70, and 0.80
accuracy on these datasets accordingly, and its performance is comparable to the original FED-χ2.

Again, our work is orthogonal to differential privacy, thus we leave it as future work to further study
saving privacy budget, and boosting the algorithm’s performance on lower ε.

10−1 100 101 102

10−1
100
101
102
103
104
105
106

Privacy budget ε

M
ul

tip
lic

at
iv

e
E

rr
or

ε

(a) Data 1.

10−1 100 101 102

100

101

102

103

104

105

106

Privacy budget ε

M
ul

tip
lic

at
iv

e
E

rr
or

ε

(b) Data 2.

10−1 100 101 102

10−1
100
101
102
103
104
105
106

Privacy budget ε

M
ul

tip
lic

at
iv

e
E

rr
or

ε

(c) Data 3.

10−1 100 101 102
10−2

100

102

104

106

Privacy budget ε

M
ul

tip
lic

at
iv

e
E

rr
or

ε

(d) Data 4.

Figure 9: Performance of FED-χ2 when incorporate with Gaussian Mechanism.

F FURTHER RESULTS ON FED-χ2 WITH DROPOUTS

We present the results of 10%, 15%, and 20% clients dropout in Fig. 10. The results further show that
FED-χ2 can tolerate a considerable portion of clients dropout in Round 2 of Alg. 2.

G SECURE AGGREGATION

The secure aggregation protocol from Bell et al. (2020) is presented in Alg. 4. The first step of the
protocol is to generate a k-regular graph G, where the n vertices are the clients participating in the
protocol. The server runs a randomized graph generation algorithm INITSECUREAGG presented
in Alg. 3 that takes the number of clients n and samples output (G, t, k) from a distribution D. In
Alg. 3, we uniformly rename the nodes of a graph known as a Harary graph defined in Definition 3
with n nodes and k degrees. The graph G is constructed by sampling k neighbours uniformly and
without replacement from the set of remaining n− 1 clients. We choose k = O(log(n)), which is
large enough to hide the updates inside the masks. t is the threshold of the Shamir’s Secret Sharing.

15

Under review as a conference paper at ICLR 2022

Error of 10% dropout Error of 15% dropout Error of 20% dropout ACC of 10% dropout ACC of 15% dropout ACC of 20% dropout

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(a) Synthetic Data 1.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(b) Synthetic Data 2.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(c) Synthetic Data 3.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(d) Synthetic Data 4.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(e) Data 1.
20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(f) Data 2.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(g) Data 3.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(h) Data 4.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(i) Data 5.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(j) Data 6.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(k) Data 7.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(l) Data 8.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(m) Data 9.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(n) Data 10.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(o) Data 11.
10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(p) Data 12.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Encoding size `

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(q) Data 13.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Encoding size `

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(r) Data 14.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Encoding size `

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(s) Data 15.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Encoding size `

M
ul

tip
lic

at
iv

e
E

rr
or
ε

/A
C

C

(t) Data 16.

Figure 10: Multiplicative error and accuracy of FED-χ2 w.r.t. encoding size ` w/ and w/o dropout.

In the second step, the edges of the graph determine pairs of clients, each of which runs key agreement
protocols to share random keys. The random keys will be used by each party to derive a mask for her
input and enable dropouts.

In the third step, each client ci, i ∈ A1 sends secret share to its neighbors. In the fourth step, the
server checks whether the clients dropout exceeds the threshold δ, and lets the clients know their
neighbors who didn’t dropout.

In the fifth step, each pair (i, j) of connected clients in G runs a λ-secure key agreement protocol
si,j = KA.Agree(sk1

i , pk
1
j) which uses the key exchange in the previous step to derive a shared

random key si,j . The pairwise masks mi,j = F (si,j) can be computed, where F is the pseudorandom
generator (PRG). If the semi-honest server announces dropouts and later some masked inputs of
the claimed dropouts arrive, the server can recover the inputs. To prevent this happening, another
level of masks, called self masks, ri is added to the input. Thus, the input of client ci is: yi =
ei + ri −

∑
j∈NG(i),j<i mi,j +

∑
j∈NG(i),j>i mi,j .

Steps 6–8 deal with the clients dropout by recovering the self masks ri of clients who are still
active and pairwise masks mi,j of the clients who have dropped out. Finally, the server can

16

Under review as a conference paper at ICLR 2022

cancel out the pairwise masks and subtract the self masks in the final sum:
∑
i∈A′

2
(yi − ri +∑

j∈NG(i)∩(A′
1\A′

2),0<j<i mi,j −
∑
j∈NG(i)∩(A′

1\A′
2),i<j≤n mi,j).

Definition 3 (HARARY(n, k) Graph). Let HARARY(n, k) denotes a graph with n nodes and degree
k. This graph has vertices V = [n] and an edge between two distinct vertices i and j if and only if
j − i (mod n) ≤ (k + 1)/2 or j − i (mod n) ≥ n− k/2.

Algorithm 3: INITSECUREAGG: Generate Initial Graph for SECUREAGG.
1 Function INITSECUREAGG(n):
2 . n: Number of nodes.
3 . t: Threshold of Shamir’s Secret Sharing.
4 k = O(log(n)).
5 Let H = HARARY(n, k).
6 Sample a random permutation π : [n]→ [n].
7 Let G be the set of edges {(π(i), π(j))|(i, j) ∈ H}.
8 return (G, t, k)

H PROOF FOR COMMUNICATION & COMPUTATION COST

We provide the proof for Theorem 4 and Theorem 5 in the following.

Theorem 4 (Communication Cost). Let Π be an instantiation of Alg. 2 with secure aggregation
protocol from Bell et al. (2020), then (1) the client-side communication cost isO(log n+mx+my+`);
(2) the server-side communication cost O(n log n+ nmx + nmy + n`).

Proof sketch for Theorem 4. Each client performs k key agreements (O(k) messages, line 9 in Alg. 4)
and sends 3 masked inputs (O(mx + my + `) complexity, lines 3, 4, 15 in Alg. 2 and line 10 in
Alg. 4). Thus, the client communication cost is O(log n+mx +my + `).

The server receives or sends O(log n + mx + my + `) messages to each client, so the server
communication cost is O(n log n+ nmx + nmy + n`).

Theorem 5 (Computation Cost). Let Π be an instantiation of Alg. 2 with secure aggregation protocol
from Bell et al. (2020), then (1) the client-side computation cost isO(mx log n+my log n+` log n+
m`); (2) the server-side computation cost is O(mx +my + `).

Proof sketch for Theorem 5. Each client computation can be broken up as k key agreements (O(k)
complexity, line 9 in Alg. 4), generating masks mi,j for all neighbors cj (O(k(mx + my + `))
complexity, lines 3, 4, 15 in Alg. 2 and line 10 in Alg. 4), and encoding computation cost O(m`)
(line 14 in Alg. 2). Thus, the client computation cost is O(mx log n+my log n+ ` log n+m`).

The server-side follows directly from the semi-honest computation analysis in Bell et al. (2020). The
extra O(`) term is the complexity of the geometric mean estimator.

I DETAILS OF DATASETS

The details for the real-world datasets used in Sec. 4.1 are provided in Table 2. The license of
Credit Risk Classification (Govindaraj, Praveen) is CC BY-SA 4.0, the license of German Traffic
Sign (Houben et al., 2013) is CC0: Public Domain. Other datasets without a license are from UCI
Machine Learning Repository (Dua & Graff, 2017).

J DETAILS OF REGRESSION MODELS

The details of the regression models trained in feature selection in Sec. 4.2 is reported in Table 3. The
training and testing splits are the same for FED-χ2, centralized χ2-test and model without feature

17

Under review as a conference paper at ICLR 2022

Algorithm 4: SECUREAGG: Secure Aggregation Protocol. (Algorithm 2 from Bell et al. (2020))
1 Function SECUREAGG({ei}i∈[n]):
2 . Parties: Clients c1, · · · , cn, and Server.
3 . l: Vector length.
4 . Xl: Input domain, ei ∈ Xl.
5 . F : {0, 1}λ → Xl: PRG.
6 . We denote by A1, A2, A3 the sets of clients that reach certain points without dropping out.

Specifically A1 consists of the clients who finish step (3), A2 those who finish step (5), and
A3 those who finish step (7). For each Ai, A′i is the set of clients for which the server sees
they have completed that step on time.

7 (1) The server runs (G, t, k) = INITSECUREAGG(n), where G is a regular degree-k
undirected graph with n nodes. By NG(i) we denote the set of k nodes adjacent to ci (its
neighbors).

8 (2) Client ci, i ∈ [n], generates key pairs (sk1
i , pk

1
i), (sk2

i , pk
2
i) and sends (pk1

i , pk
2
i) to the

server who forwards the message to NG(i).
9 (3) for each Client ci, i ∈ A1 do

• Generates a random PRG seed bi.
• Computes two sets of shares:

Hb
i = {hbi,1, · · · , hbi,k} = ShamirSS(t, k, bi)

Hs
i = {hsi,1, · · · , hsi,k} = ShamirSS(t, k, sk1

i)

• Sends to the server a message m = (j, ci,j), where ci,j = Eauth.Enc(ki,j , (i||j||hbi,j ||hsi,j)) and
ki,j = KA.Agree(sk2

i , pk
2
j), for each j ∈ NG(i).

10 (4) The server aborts if |A′1| < (1− δ)n and otherwise forwards (j, ci,j) to client cj who
deduces A′1 ∩NG(j).

11 (5) for each Client ci, i ∈ A2 do

• Computes a shared random PRG seed si,j as si,j = KA.Agree(sk1
i , pk

1
j).

• Computes masks mi,j = F (si,j) and ri = F (bi).
• Sends to the server their masked input

yi = ei + ri −
∑

j∈[n],j<i

mi,j +
∑

j∈[n],j>i

mi,j

12 (6) The server collects masked inputs. It aborts if |A′2| < (1− δ)n and otherwise sends
(A′2 ∪NG(i), (A1\A′2) ∪NG(i)) to every client ci, i ∈ A′2.

13 (7) Client cj , j ∈ A3 receives (R1, R2) from the server and sends
{(i, hbi,j)}i∈R1

∪ {(i, hsi,j)}i∈R2
obtained by decrypting the ci,j received in Step (3).

14 (8) The server aborts if |A′3| < (1− δ)n and otherwise:

• Collects, for each client ci, i ∈ A′2, the set Bi of all shares in Hb
i sent by clients in A3. Then

aborts if |Bi| < t and otherwise recovers bi and ri using the t shares received which came from
the lowest client IDs.

• Collects, for each client ci, i ∈ (A1\A′2), the set Si of all shares in Hs
i sent by clients in A3.

Then aborts if |Si| < t and otherwise recovers sk1
i and mi,j .

• return
∑
i∈A′

2
(yi − ri +

∑
j∈NG(i)∩(A′

1\A′
2),0<j<i mi,j −

∑
j∈NG(i)∩(A′

1\A′
2),i<j≤n mi,j).

selection (i.e. there are 17,262 training and 4,316 test documents). We use the same learning rate;
random seed and all other settings are also the same to make the comparison fair. We get the result of
Fig. 3 and the models are all trained on NVIDIA GeForce RTX 3090.

18

Under review as a conference paper at ICLR 2022

Table 2: Dataset details.
ID Data Attr #1 A#1 Cat Attr #2 A#2 Cat
1 Adult Income (Kohavi, 1996; Kohavi, Ronny and Becker, Barry) Occupation 14 Native Country 41
2 Credit Risk Classification (Govindaraj, Praveen) Feature 6 14 Feature 7 11
3 Credit Risk Classification (Govindaraj, Praveen) Credit Product Type 28 Overdue Type I 35
4 Credit Risk Classification (Govindaraj, Praveen) Credit Product Type 28 Overdue Type II 35
5 Credit Risk Classification (Govindaraj, Praveen) Credit Product Type 28 Overdue Type III 36
6 German Traffic Sign (Houben et al., 2013) Image Width 219 Traffic Sign 43
7 German Traffic Sign (Houben et al., 2013) Image Height 201 Traffic Sign 43
8 German Traffic Sign (Houben et al., 2013) Upper left X coordinate 21 Traffic Sign 43
9 German Traffic Sign (Houben et al., 2013) Upper left Y coordinate 16 Traffic Sign 43

10 German Traffic Sign (Houben et al., 2013) Lower right X coordinate 204 Traffic Sign 43
11 German Traffic Sign (Houben et al., 2013) Lower right Y coordinate 186 Traffic Sign 43
12 Mushroom (Schlimmer, Jeff) Cap color 10 Odor 9
13 Mushroom (Schlimmer, Jeff) Gill color 12 Stalk color above ring 9
14 Mushroom (Schlimmer, Jeff) Stalk color below ring 9 Ring Type 8
15 Mushroom (Schlimmer, Jeff) Spore print color 9 Habitat 7
16 Lymphography (Kononenko, Igor and Cestnik, Bojan) Structure Change 8 No. of nodes 8

Table 3: Model details.
Task Model Size Learning Rate Random Seed

FED-χ2 40000× 20 0.1 0
Centralized χ2-test 40000× 20 0.1 0

Without Feature Selection 167135× 20 0.1 0

K SAFFRON PROCEDURE

In Sec. 4.2, we adopt the SAFFRON procedure (Ramdas et al., 2018) to perform online FDR control.
SAFFRON procedure is currently the state of the arts for multiple hypothesis testing. In Alg. 5, we
formally present the SAFFRON algorithm.

Algorithm 5: SAFFRON Procedure.
1 Function SAFFRONPROCEDURE({p1, p2, · · · }, α, W0, {γj}∞j=0):
2 . {p1, p2, · · · }: Stream of p-values.
3 . α: Target FDR level.
4 . W0: Initial wealth.
5 . {γj}∞j=0: Positive non-increasing sequence summing to one.
6 i← 0 // Set rejection number.
7 for each p-value pt ∈ {p1, p2, · · · } do
8 λt ← gt(R1:t−1, C1:t−1)
9 Ct ← I(pt < λt) // Set the indicator for candidacy Ct.

10 Cj+ ←
∑t−1
i=τj+1 Ci // Set the candidates after the jth

rejection.
11 if t = 1 then
12 α1 ← (1− λ1)γ1W0

13 else
14 αt ← (1− λt)(W0γt−C0+

+ (α−W0)γt−τ1−C1+
+
∑
j≥2 αγt−τj−Cj+)

15 Rt ← I(pt ≤ αt) // Output Rt.
16 if Rt = 1 then
17 i← i+ 1 // Update rejection number.
18 τi ← t // Set the ith rejection time.
19 return {R0, R1, · · · }

The initial error budget for SAFFRON is (1 − λ1W0) < (1 − λ1α), and this will be allocated to
different tests over time. The sequence {λj}∞j=1 is defined by gt and λj serves as a weak estimation of
αj . gt can be any coordinate wise non-decreasing function (line 8 in Alg. 5). Rj := I(pj < αj) is the
indicator for rejection, while Cj := I(pj < λj) is the indicator for candidacy. τj is the jth rejection
time. For each pt, if pt < λt, SAFFRON adds it to the candidate set Ct and sets the candidates after
the jth rejection (lines 9-10 in Alg. 5). Further, the αt is updated by several parameters like current

19

Under review as a conference paper at ICLR 2022

wealth, current total rejection numbers, the current size of the candidate set, and so on (lines 11-14 in
Alg. 5). Then, the decision Rt is made according to the updated αt (line 15 in Alg. 5).

The hyper-parameters we use for the SAFFRON procedure in online false discovery rate control
of Sec. 4 are aligned with the setting in Ramdas et al. (2018). In particular, the target FDR level
is α = 0.05, the initial wealth is W0 = 0.0125, and γj is calculated in the following way: γj =

1/(j+1)1.6∑10000
j=0 1/(j+1)1.6

.

20

	a46ec19a584a372e8708f1d0abf7b23925b791dd0ac0bb4963ada25f6a7e5ad8.pdf
	Clarification on Privacy
	Comparison with Pooling 2-test
	Performance of Fed-2 When Original 2-test Achieves Low Power
	Further Results for Online FDR Control
	Incorporate Gaussian Mechanism in Fed-2
	Further Results on Fed-2 with Dropouts
	Secure Aggregation
	Proof for Communication & Computation Cost
	Details of Datasets
	Details of Regression Models
	SAFFRON Procedure

