
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ONE MODEL TO TRAIN THEM ALL: A UNIFIED DIF-
FUSION FRAMEWORK FOR MULTI-CONTEXT NEURAL
POPULATION FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent research has revealed shared neural patterns among animals performing
similar tasks and within individual animals across different tasks. This has led to
a growing interest in replacing single-session latent variable models with a uni-
fied model that allows us to align recordings across different animals, sessions,
and tasks, despite the challenge of distinct neuron identities in each recording.
In this work, we present a conditioned diffusion framework to model population
dynamics of neural activity across multiple contexts. The quality of the learned
dynamics is evaluated through the model’s forecasting ability, which predicts mul-
tiple timesteps of both neural activity and behavior. Additionally, we introduce a
benchmark dataset spanning six electrophysiology datasets, seven tasks, 19 ani-
mals, and 261 sessions, providing a standardized framework for multi-task neural
population models. Our results demonstrate that the pretrained model can be effi-
ciently adapted to novel, unseen sessions without requiring explicit neuron corre-
spondence. This enables few-shot learning with minimal labeled data, as well as
competitive performance in zero-shot learning.

A INTRODUCTION

Recent advances in neural recording technologies have enabled the simultaneous capture of large
populations of neurons, revealing complex spatiotemporal activity. To address this, computational
models have been developed to infer latent structures from high-dimensional neural data. Dowl-
ing et al. (2023); Pandarinath et al. (2018a); Duncker et al. (2019) Deep generative models, such
as variational autoencoders (VAEs) Kingma & Welling (2014) and sequential VAEs, have been
widely adopted to extract these latent processes, typically mapping neural or behavioral data to
low-dimensional representations Schulz et al. (2024).

Despite the increasing availability of large-scale electrophysiological recordings, current research
in neural coding and computation predominantly focuses on single tasks or individual experimen-
tal sessions. This current approach misses the opportunity to utilize the structure across individual
datasets. Mounting evidence for such possibility, especially in the brain areas related to motor con-
trol showed common representation of latent trajectories for stereotypical behavior Gallego et al.
(2020); Safaie et al. (2022); Dabagia et al. (2023) and generalizability of dynamical cortical behav-
ior Karpowicz et al. (2022a); Vermani et al. (2024b).

Fitting a single model to a collection of neural data with expected shared features can increase data
usage efficiency and enhance our understanding of common neural computation structures that are
generalizable. Moreover, this approach can enable efficient scientific progress in new experiments
through few-shot learning Ye et al. (2023), where novel experiments could benefit from pre-existing
knowledge, reducing the need for extensive new data collection.

Motivated by the success of pre-trained models in machine learning and the growing interest in
unified/large scale models for neuroscience Azabou et al. (2023) Ye et al. (2023), we explore the
potential of building a foundation model for forecasting neural population data. However, there is
a challenge of inherent statistical heterogeneities across datasets such as differences in the number
and tuning properties of recorded neurons or variations in recording modalities. Thus, previous
approaches uses alignment process to transform new data so that it matches the statistical properties
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of the data used to train the model. Aligning neural datasets typically rely on access to the original
data used to train the model and/or the existence of paired samples between datasets Pandarinath
et al. (2018b); Williams et al. (2021). These paired samples are usually constructed by arbitrarily
matching stimulus-conditioned neural activity across datasets, which ignores trial-to-trial variability
and is unsuitable for naturalistic tasks. Furthermore, many alignment methods fail to model the
temporal structure of neural data, which can lead to suboptimal learning outcomes Wang et al.
(2023). Some recent approaches aim to train alignment networks for transferring models across
sessions Vermani et al. (2024b), but they remain limited in scope.

In this work, we propose a novel approach that avoids explicit alignment by leveraging the power-
ful implicit alignment capabilities of conditional diffusion models, a Multi-X Denoising Diffusion
Model (Multi-X DDM). Diffusion models have gained significant attention in recent years, origi-
nally introduced in the context of image generation condition on a text prompt, has shown remark-
able flexibility and effectiveness in wide array of domains, especially in the presence of large and
diverse datasets Yang et al. (2023). This work aims to explore the application of these models within
the context of neural data analysis.

Diffusion models have demonstrated considerable success in aligning images with textual descrip-
tions through conditioning on contextual information Rombach et al. (2022). We adapt this principle
to neural recordings by leveraging the implicit alignment mechanism of diffusion models, allowing
for the transfer of pre-trained models across different datasets/tasks without the need for paired sam-
ples or explicit alignment procedures. By conditioning our models on relevant context features, we
enable zero-shot learning for forecasting neural data, thereby effectively addressing the limitations
associated with traditional few-shot learning approaches. Our conditional diffusion model is capable
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Figure 1: Multi-X Denoising Diffusion Model overview. The neural and behavioral data, x, are
transformed through a diffusion process to xt with a causal mask enabling causal predictions. The
Denoising U-Net, with cross-attention blocks, reconstructs the data conditioned on session embed-
dings. The model supports both sequence-to-sequence forecasting and filtering.

of forecasting both behavioral and neuronal spike activity from neural data. This integrated approach
allows us to capture the complex dynamics between the different modalities of neural information,
providing a more comprehensive framework for understanding and predicting neural processes.

Nevertheless, despite these exciting research directions, neuroscience lags behind fields like as com-
puter vision (e.g., ImageNet Deng et al. (2009)) and natural language processing (e.g.,GLUE Wang
et al. (2019)) in terms of large-scale benchmark datasets for multi-task,multi-animal, multi-session
analysis. This type of analysis involves a unified examination across sessions, subjects, and experi-
mental tasks. Such comprehensive approaches are crucial for achieving a holistic understanding of
neuroscience Urai et al. (2022).

Main Contributions The key contributions of this work are as follows: (1) We present a novel
conditional diffusion model that exhibits improved performance on real-world neural data compared
to existing methods. (2) The model is trained on behavioral and neural activity, thereby alleviating
the need to treat behavioral prediction as a downstream task. (3) This work introduces the first foun-
dation model for neuroscience that can forecast multiple time steps and perform zero-shot learning.
(4) We also introduce a comprehensive benchmark dataset that consolidates six datasets from motor
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and sensory cortical areas, encompassing seven tasks across 19 subjects. This dataset is available in
Parquet format for faster performance and in NWB format to facilitate integration with other tools
commonly used in neuroscience. (5) Furthermore, we provide an API designed to streamline data
loading and preprocessing, enhancing accessibility for researchers in the field.

B RELATED WORK

Generative Models for Neural Data Forecasting One of the key objectives of computational
neuroscience is to build a model capable of reproduce the dynamics of the neural recording. The
assessment of this is made by the accurate forecasting capacities of such model.

Classical models, such as Latent Factor Analysis via Dynamical Systems (LFADS) Pandarinath et al.
(2018a), use nonlinear recurrent neural networks to infer latent dynamics by modeling neural activ-
ity as a dynamical system, generating denoised firing rates from an RNN generator. Similarly, the
Structured Variational Autoencoder (SVAE) Johnson et al. (2016); Zhao & Linderman (2023) pre-
serves temporal structure by constraining the prior to a linear dynamical system but faces limitations
with nonlinear dynamics. The Deep Kalman Filter (dKF) Krishnan et al. (2016) employs black-box
inference networks for joint posterior sampling but encounters difficulties in learning generative dy-
namics due to issues with gradient propagation. The Deep Variational Bayes Filter (dVBF) Karl
et al. (2017) handles state-space graphical models by sampling from the approximate posterior, mit-
igating the complexity of directly parameterizing dynamics. The eXponential Family Dynamical
Systems (XFADS) Dowling et al. (2024) approach extends these ideas to nonlinear Gaussian state-
space models, leveraging low-rank approximations and efficient message passing for scalable infer-
ence. Although these models are specifically designed to forecast dynamics within a single session,
our foundation model is capable of generalizing across multiple sessions and subjects. To evaluate
its robustness and effectiveness, we compared its performance against these classical approaches
tailored for single-session dynamics.

Multi-Session Forecasting Previous research on multi-session training and alignment has primar-
ily focused on fitting models to data recorded from the same subject, in the same brain region, often
with the same chronic implant, and typically assumes a single, stereotyped task structure. Many
of these studies do not train on multiple sessions simultaneously, but instead rely on post-training
alignment strategies to transfer models trained on one session to other recording days. Pre-trained
sequential VAEs (seqVAEs) Vermani et al. (2024a) represent one such approach, introducing an un-
supervised alignment mechanism where new neural time series data is aligned with latent dynamics
learned from an original dataset. This method transforms the new data to conform to pre-trained
latent trajectories without requiring paired samples or the original training data. Another method,
ERDiff Wang et al. (2023), enhances this alignment by combining a pre-trained seqVAE with a
diffusion model that estimates the density of latent trajectories using spatio-temporal transformers,
optimizing the alignment via Sinkhorn divergence. NoMAD Karpowicz et al. (2022b) similarly
leverages a pre-trained seqVAE, but fits a multivariate Gaussian to the inferred latent states of the
original dataset, training the alignment function to match these states to the new dataset using a
KL-divergence loss. In contrast, Cycle-GAN Ma et al. (2023) uses adversarial training to align
new sessions with the original data via generative adversarial networks. Finally, Orthogonal Pro-
crustes Schoenemann (1966) aligns datasets by learning a transformation based on paired samples,
though it requires access to both the original and new datasets.

Foundation Models for Neuroscience Recently, Azabou et al. (2023) and Ye et al. (2023) showed
that training not only across subjects but on data from different tasks and laboratories, is possible.
However, these models were specifically designed for decoding in brain-machine interface (BMI)
applications and lack demonstrated forecasting capabilities, or such capabilities have not been thor-
oughly explored. It is important to note that NDT2 Ye et al. (2023) has established the potential for
zero-shot learning within this context. A comprehensive comparison with our approach is provided
in Appendix A.

Tools for Foundation Models: Benchmark Datasets Recent advancements in neuroscience have
led to the emergence of large datasets and a focus on data sharing through initiatives like Neurodata
Without Borders (NWB) Teeters et al. (2015); Rübel et al. (2022), which enhance reproducibility.
It is a growing ecosystem around NWB format hosted on Dandi archive1. Which makes the data

1https://www.dandiarchive.org/
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preprocessing easier with tools like Pynapple Viejo et al. (2023) or easy to visualize with Neurosift2.
However, integrating diverse datasets remains challenging due to varying file structures, and also
data formats Pierré et al. (2024). The Neural Latent Benchmark (NLB) Pei et al. (2021) provides
a standardized framework for evaluating latent variable models on neural data, focusing on single-
session models across four curated datasets. In contrast, our dataset expands on this by addressing
multi-session, multi-task, and multi-subject neural data, offering a more comprehensive perspective
on neural population dynamics for foundation model development.

C METHODS

This study utilizes a diffusion model conditioned on session identifiers. The diffusion process trans-
forms each training sample into a Gaussian distribution through an iterative noise corruption process,
as described in Ho et al. (2020); Rombach et al. (2022). Subsequently, a deep neural network is
trained to invert this transformation, enabling the generation of new samples starting from Gaussian
noise inputs.

C.1 CONDITIONAL DENOISING DIFFUSION MODELS

LetD denote a dataset comprising M trials of neural and behavioral recordings, represented asD =
{xi | i = 1, 2, . . . ,M}, where xi corresponds to the data for the i-th trial. Each trial includes the
smoothed spiking activity of n neurons over t1 neural activity time steps, represented as s ∈ Rn×t1 ,
along with m behavioral covariates, represented as b ∈ Rm×t1 . Thus, a sample xi is given by
xi = {si, bi}. To jointly generate neural activity and behavior from a shared latent representation,
as introduced in Schulz et al. (2024), we eliminate the assumption that behavior is linearly decoded
from spiking activity, enabling improved modeling capabilities.

Forward Process: The forward noising process q is defined as a Markovian Gaussian noise addition,
with noise applied at each diffusion time step t = 1, 2, . . . , T according to a variance schedule βt:

q(xt|xt−1) = N (xt;
√

1− βt xt−1, βtI), (1)

where N (·) denotes a Gaussian distribution, and I is the identity matrix. The variance schedule
βt is chosen using a cosine scheduler as proposed in Nichol & Dhariwal (2021), which opti-
mizes training efficiency. The joint distribution over all time steps is given by q(x1, . . . ,xT |x0) =∏T

t=1 q(xt|xt−1). For any timestep t, the forward process q(xt|x0) can be expressed in closed form
as q(xt|x0) = N (xt;

√
ᾱt x0, (1− ᾱt)I), where αt = 1− βt and ᾱt =

∏t
i=1 αi. Consequently, xt

can be sampled directly as xt =
√
ᾱt x0 +

√
1− ᾱt ϵ, where ϵ ∼ N (0, I). For sufficiently large T ,

it holds that xT ∼ N (0, I), corresponding to pure Gaussian noise.

Training Objective: Let θ denote the parameters of the neural network used to approximate the
reverse diffusion process. The loss function is defined as:

Lθ = (1−λ)
∥∥ϵs − ϵθ,s

(√
ᾱts0 +

√
1− ᾱtϵs, y, t

)∥∥2+λ
∥∥ϵb − ϵθ,b

(√
ᾱtb0 +

√
1− ᾱtϵb, y, t

)∥∥2 ,
(2)

where ϵs ∈ Rn×T and ϵb ∈ Rm×T denote the noise terms for spiking activity and behavioral
covariates, respectively. The conditioning variable y encodes the session embedding, while λ ∈
[0, 1] balances the terms.

Sampling Procedure: The sampling process begins with xT ∼ N (0, I), and iteratively refines this
through the reverse process:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱt ϵ

(t)
θ (xt, y, t)√

ᾱt

)
+
√

1− ᾱt−1 − σ2
t ϵ

(t)
θ (xt, y, t) + σtz, (3)

where σt is a constant specific to t, and z ∼ N (0, I). For efficient sampling, we employ Denois-
ing Diffusion Implicit Models (DDIM) as described in Song et al. (2022), which offer superior
performance compared to traditional samplers.

2https://neurosift.app/?p=/dandi
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C.2 NETWORK ARCHITECTURE

The proposed network ϵθ(xt, session id, t) processes noisy inputs xt = {st,bt}, embedding diffu-
sion temporal information through ϕt(t) and incorporating session-specific context.

Temporal Embedding: t is embedded into a high-dimensional vector ϕt(t) using sinusoidal po-
sitional encodings followed by a learnable projection via an MLP. This embedding is projected to
match the feature dimensions and is applied to reweight feature maps after convolutional processing.

Convolutional Layers: The network consists of L stacked convolutional blocks, where intermedi-
ate feature maps hl−1 are processed as: hl = ReLU

(
BatchNorm

(
W l

conv ∗ hl−1 + blconv

))
, where

W l
conv is the convolution kernel, blconv is the bias term, and ∗ denotes the convolution operation.

Residual Connections: Residual connections enhance feature reuse and gradient flow, defined as:
hres = hin + g(hin, ϕt(t)), where g(·) consists of group normalization, nonlinear activation, and L
convolution operations.

Self-Attention: To capture global dependencies across all neurons, self-attention is applied after
the ResNet block: hatt ← Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V, where Q,K, V are linear

projections of hres, and dk is the scaling factor. This enables neurons to attend to one another
effectively.

Session Embedding and Guidance: Variability in experimental setups, as well as the fact that
each session corresponds to a distinct population of neurons, is accounted for by assigning a unique
d-dimensional embedding to each session: yi = SessionEmbed(session id of the i-th trial), where
yi ∈ Rd is integrated into the network via cross-attention. The cross-attention mechanism is defined
as: Attention(Q,K, V ) = softmax

(
QK⊤
√
d

)
V, with Q = W

(i)
Q · hatt, K = W

(i)
K · y(i), V =

W
(i)
V · y(i). Here,W (i)

Q ,W
(i)
K ,W

(i)
V are learnable projection matrices.

Multi-Resolution Processing: After each hierarchical block (comprising L convolution layers,
ResNet, self-attention and cross-attention), the spatial and temporal dimensions are reduced using
stride-2 convolutions. The network performs multi-resolution processing by hierarchically down-
sampling across H blocks and then upsampling with stride-2 transposed convolutions.

Intuition. Each hierarchical block captures information at a specific resolution, enabling the model
to effectively represent both long- and short-term dependencies. Compared to dilated convolutions
used in WaveNet, stride-2 convolutions are computationally efficient and avoid exponential growth
in receptive field sizes. Residual connections ensure critical information is preserved during down-
sampling, while self-attention mechanisms optimize dimensionality reduction without losing key
relationships. Cross-attention mechanisms guide the generation process, adapting it to each session.

C.3 CAUSAL FORECASTING MASKING

Building on the foundation of the multi-task masking approaches proposed in Zhang et al. (2023),
we employed a causal mask where we only corrupt the input after a specific time bin to enable
causal prediction. This means that the model can only utilize information up to the current time step
to forecast the future, which aligns with the requirements of real-world applications.

C.4 STRATEGIES FOR SESSION TRANSFER

Inspired by classifier-free guidance, our model incorporates both unconditional and conditional
components. For each session, 20% of the trials are randomly designated as unconditional. This
involves assigning a session ID that is shared across all sessions. During sampling, we can ap-
ply the strategy introduced by Ho & Salimans (2022), expressed as ϵθ(xt, y, t) = ϵθ(xt, t) +
g (ϵθ(xt, y, t)− ϵθ(xt, t)) , where ϵθ(xt, y, t) is the noise prediction from the model conditioned
on y, ϵθ(xt, t) is the noise prediction from the unconditioned model, g is the guidance scale that
determines the strength of the conditioning.

To generalize to new sessions, we can use the unconditional model with three strategies:

- Zero-shot learning: The unconditional model, i.e. conditioned on the shared session ID, predicts
held-out sessions without requiring test data alignment, unlike previous methods. However, this may
lead to poorer performance since the model has not been adapted to the new session data.

5
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- Fine-tuning: The pre-trained model’s weights are fine-tuned using a few samples from the new
sessions to adapt to their data distributions.

- Session identification: Following the unit identification strategy of Azabou et al. (2023), we adapt
session embeddings using gradient descent, initializing new embeddings with the unconditional
session embedding to avoid poor performance from random initialization. This approach maps new
sessions into the embedding space by freezing the model’s weights and adding rows to the session
embedding lookup table, allowing rapid transfer to new sessions. In our model, this strategy closely
parallels the fine-tuning of the alignment networks in Vermani et al. (2024b).

C.5 FORECASTING AND FILTERING

Full-sequence diffusion, widely used in video generation, trains models to denoise entire sequences
in a seq2seq manner, allowing for globally optimal predictions within a specified length. This ap-
proach supports flexible-length sequence generation by autoregressively using the output without
the need for beam search, as required by next-token prediction models like transformers. To enable
direct comparison with such models, we trained our approach to predict the next time step (filtering)
from a ground-truth sequence using teacher forcing.

D EXPERIMENTS AND RESULTS

In this section, we showcase the potential of our approach for large-scale training and explore the
advantages of scaling to multi-contexts in neural population forecasting.

D.1 BENCHMARK DATASET AND EXPERIMENT SETUP

One of the key advantages of our approach is its ability to scale to handle large amounts of neural
data, including sessions from different numbers of neurons, across different tasks and recording
setups, and from different animals. Thus we set out to build a diverse dataset large enough to
test our approach. We curated a multi-lab dataset with electrophysiological recordings from motor
cortical regions, where neural population activity has been extensively studied, and deep learning
tools and benchmarks have recently been established.

A core innovation of our dataset is the new schema that allows to efficiently managing data from
different sessions at the same data frame. The dataset was curated from various sources and data

Figure 2: Proposed benchmark dataset schema, comprising indexes, neurophysiological data, be-
havior covariates, and events time indications. Each row represents a single time step.

formats (MATLAB, NWB) into a unified format. We offer two formats for this dataset: Parquet,
which will be made available on Kaggle, and NWB, which will be accessible via the Dandi Archive.
The Parquet format is optimized for deep learning applications, enabling fast performance, while
the NWB format ensures interoperability with a wide range of tools within the NWB ecosystem
commonly used in neuroscience research. The dataset comprises six sub-datasets, comprising 261
sessions from 19 monkeys engaged in seven distinct tasks. These sub-datasets collectively enables
the evaluation of models which are capable of align between these different scenarios. A detailed
description of the full dataset suite is provided in Appendix C.

Experiment setup. In all experiments, the datasets were binned at 20 ms, except for Dataset 3,
which has a default bin size of 30 ms that was not adjusted. The data were aligned to movement

6
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onset, and the binned spikes were subsequently smoothed using a 50 ms Gaussian kernel. We use
the ADAM optimizer, and employ a cosine decay of the learning rate at the end of training. We use
1-GPU setup with 48GB. All details can be found in Appendix B.

D.2 TESTING THE MODEL ON SINGLE SESSIONS

We evaluated our model on neural recordings collected during a maze task, assessing its ability to
forecast both neural spiking and behavioral covariates. The Maze datasets consist of recordings from
the primary motor (M1) and dorsal premotor cortices while a monkey performed reaches with an
instructed delay to visually presented targets, navigating a virtual maze Churchland et al. (2010). For
baseline comparisons, we used the nlb-maze dataset Churchland & Kaufman (2022) for forecasting
and filtering modes (Figure 3).
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Figure 3: Validation of the single session model for forecasting and filtering. (A) Example of x
and y hand velocities for 1s.(B) R2 comparison of predicted hand velocity across methods, using
a 250 ms context window and a 500 ms forecasting window, with our model using only spiking
activity data + linear decoder. And the bits-per-spike (bps) using inferred spike-train rate. (C)
Behavior decoding and neural activity prediction results in filtering mode. (D) Predicted x (top) and
y (bottom) velocities. The black trace denotes the ground truth, while colored traces represent the
model’s predictions. The bar charts on the right display neuron selectivity: neurons selective for vx
(red), vy (blue), both (lighter shades), or non-selective (orange/cyan) for each velocity component.
(E) Example of neural activity forecasting in two trials for each neuron.

Our model consistently outperformed existing neural forecasting methods such as LFADS, DKF,
SVAE, DVBF and NDT2, with performance comparable to XFADS, Fig. 3B. The poor performance
of NDT2 with a causal mask was expected, since recent work on transformer architectures has shown
that learning global dependencies in temporal tokens leads to poor prediction results on multivariate
time series datasets Liu et al. (2024). Thus, this model is not competitive in terms of forecasting
and, in fact, that was not its original purpose, nor does POYO’s architecture allow for forecasting,
so our model is the only unified model proven to be able to so competitively with state-of-the-art
neural data forecasting models. To test whether the improved performance is due to our architecture
or the training strategy, we trained the model without it (see Appendix B.2). We found that the
architecture itself is better and that training with diffusion improves it. We also show that our model
is competitive in filtering, Fig. 3C.

The advantage of joint prediction lies in its ability to analyze neuron selectivity for behavior covari-
ates and the timing of this selectivity, both through occlusion sensitivity, Fig. 3D3. We observed
selectivity primarily 200-250 ms before movement onset, consistent with our Ablation Studies.

7
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D.3 TRANSFERRING TO NEW SESSIONS

We validate our framework on held-out sessions from a different animal. The datasets used for
these experiments consist of neural recordings obtained from M1 in two monkeys during a center-
out (CO) reaching task. One dataset was used for training or pretraining, while the other was used
for testing, with both monkeys performing the same task in the same experimental setup. The task
required the animals to repeatedly reach toward one of eight predefined targets upon receiving a cue
and then return to the center. Each trial began with the subject positioning its hand at the center of
the workspace, followed by a random delay before one of the eight peripheral targets was displayed.

We compare the proposed approach against state-of-the-art explicit alignment methods (Table 1).
For the single-session experiments, we trained the models using session 4 from Monkey 1 in dataset
5 of our benchmark. To evaluate alignment performance on held-out subjects and sessions, we
used session 2 from Monkey 1 and sessions 1 and 2 from Monkey 2 as the test set. For the ”all

Table 1: Forecasting performance comparison between methods of 100 ms. The values indicate the
median and standard error over the observations from new sessions.

Method R2

O
ne

Se
ss

io
n

ERDiff -0.23 ±0.55
NoMAD 0.15± 0.10
Cycle-GAN −0.81± 0.12
Procrustes 0.07 ±0.14
SeqVAE 0.39 ±0.07
Multi-x DDM + 0-shot 0.38 ±0.05
Multi-x DDM + Session ID 0.35 ±0.07
Multi-x DDM + Fine-tune 0.42 ±0.03

A
ll

Se
ss

io
ns Multi-x DDM + 0-shot 0.46 ±0.03

Multi-x DDM + Session ID 0.51 ±0.04
Multi-x DDM + Fine-tune 0.55 ±0.05

sessions” experiments, we trained our Multi-x DDM with all sessions of subject 1 except session
2. In this scenario, there is no correspondence between units in the training and testing conditions.
The prediction window for these experiments was set to 100 ms. After pretraining, our model can
be tested on new sessions with unknown neurons using either (i) a session identification approach
(ii) zero-shot learning or (iii) full fine-tuning, as described in Section C.4.

The results indicate that only SeqVAE and our method achieve good forecasting performance, while
other approaches struggle. By training with additional sessions, we can further enhance accuracy,
surpassing the performance of single-session models. This underscores the robustness of our model
and its flexibility to incorporate new data, whether through a simple input mapping (session identi-
fication) or without seeing any data of the test set.

Interestingly, when trained with only one session, zero-shot learning outperforms session identi-
fication; however, this trend reverses when more data is available. Our transfer strategies aim to
learn shared features while capturing session-specific styles through embeddings. Training on one
small session, however, is insufficient to build a noise-robust model, and few-shot examples from
another animal fail to separate shared and session-specific features, pushing the model further from
the data manifold and amplifying noise in the learned representation. As noted by Vermani et al.
(2024b), the present training session itself is highly informative about the testing sessions, which we
hypothesize explains why zero-shot learning performs better in this scenario. With sufficient data,
the model learns robust shared features, and few-shot examples capture session-specific styles, im-
proving performance. This emphasizes the importance of adequate data for robust representations.
While Azabou et al. (2023) showed that large-scale pretraining enables session identification to
adapt effectively, our results highlight that without robust pretraining, this does not hold true.

In Fig. 4, we trained a multi-session version of our model using data from all sessions of the same
monkey, showing improved neural spiking prediction over the single-session model. Session em-
beddings clustered by behavioral strategy, despite no explicit training on this. We hypothesize that
the clustering makes sense, as faster responses, linked to automatic movements via basal ganglia
pathways, differ from slower behaviors, suggesting distinct neural patterns in M1. Notably, the
shared ID (0) is positioned between the two clusters.
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Figure 4: (A) Comparison of neural spiking prediction performance between the single-session and
multi-session models. (B) MDS projection of the learned session embeddings for the benchmark
dataset 6 and corresponding cosine similarity matrix. Two strategies were identified: 1: fast reaction
time with higher failed trials, and 2: slower reaction time with higher task success.

D.4 A MULTI-SESSION, MULTI-ANIMAL, MULTI-TASK AND MULTI-LAB MODEL

In light with the good transfer results of Multi-X DDM for forecasting held-out sessions, we explore
the development of a model that spans a even more broader range of recording setups. Thus, to
build the multi-task model, we trained it with all sessions from the benchmark dataset, reserving
the same held-out sessions as in Section D.3 for testing: one session from one of the animals in the
training set (Cross Session analysis) and two sessions from a different animal (Cross Subject anal-
ysis), see Figure5. Despite the considerable variability among the different datasets that constitute
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Figure 5: Scaling up to more tasks and diverse neural and behavioral recording conditions.
(A) Overview of our benchmark dataset used to train the Multi-task model. It combines recordings
from multiple monkeys performing various tasks from various labs. (B) Forecasting behavior per-
formance on 500 ms window. Tested one a held-out monkey for transfer testing. Trained with one
session, all sessions of the subject,multi session, and with the full dataset, multi-task. (C) Cross-
subject Scaling Analysis. (D) Comparison between foundation models for filtering on dataset 1
trained from scratch and with the full dataset. (E) Compute efficiency for training and session iden-
tification approaches across subjects.
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our benchmark, multi-X DDM provides consistent improvements over the single-session version,
as confirmed by our scaling analysis. When comparing multi-session with multi-task, we see that
the multi-task generalizes better across different subjects, while the multi-session one excels on the
dataset sourced from the same animal. It has been confirmed that in filtering mode, our model is
competitive with previous foundation models. These models are effective tools for brain-machine
interfaces due to their strong decoding performance and adaptability to real-time settings. How-
ever, our model has a different goal: to forecast neural activity and behavior, offering interpretable
insights into an animal’s strategies and the role of specific neurons in behavior.

E ABLATIONS

In order to evaluate the effects of training with both spiking activity and behavior data, as well as the
impact of data preprocessing and forecasting capabilities, we run a number of ablation experiments,
as shown in Fig. 6.
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0.6
0.8
1.0

5 10 20 30
0.0

0.1

0.2

0.3

0.4

0.5

0.6

20 30 50 80
0.0

0.1

0.2

0.3

0.4

0.5

0.6

-700 -500 -200 -100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

700 500 200 100
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.3 0.5 0.7
0.0
0.2
0.4
0.6
0.8
1.0

behavior prediction
firing rate prediction

behavior prediction
firing rate prediction

Forecasting
 Window (ms)

History Forecasting
Window (ms)

Smoothing Gaussian
Filter (ms)

Time bins (ms)

+ Linear

(loss function)

R  2

Filtering

A B C D E F

Figure 6: Ablation studies. (A) Training with spikes vs. spikes+behavior. (B-E) Effects of time bin
size, smoothing filter, history window, and forecasting window on R2 for behavior forecasting. (F)
Balance between behavior and neural activity terms in the loss function (λ).

Panel A of Fig. 6 provides a direct comparison between our joint model and the two-step model,
where behavior is predicted using ridge regression based on the next-step spiking activity prediction
(filtering). The results show that the joint model outperforms the two-step model in behavior predic-
tion, while maintaining the quality of spiking activity prediction. Thus the joint model effectively
learns the relationship between spiking and behavior in an integrated manner, optimizing for both
simultaneously. Unlike the two-step model, which separates the tasks of spikes and behavior predic-
tion, the joint model captures the interactions between neural activity and behavior more effectively,
leading to improved overall performance. Importantly, the joint model does not sacrifice the accu-
racy of spike predictions, suggesting that it can handle multiple objectives without degradation.

Additionally, the model demonstrated robustness to different preprocessing methods, including time
binning and Gaussian smoothing filters. The analysis of the history forecasting window is consis-
tent with our occlusion analysis, which suggests that the majority of the behavioral signals (hand
velocity) occur around 200-250 ms prior to movement onset. Given that we tested forecasting after
movement onset in a stereotypical task, we did not observe significant performance degradation as
the forecast horizon was extended during the motion phase.

Finally, the lambda term in the loss function significantly influences model performance. In our
benchmarks, we found that a value of 0.5 worked well for both behavior and spiking activity. How-
ever, this may vary depending on the specific brain area or task being studied.

F CONCLUSIONS

We present a novel framework for training diffusion models on large, multi-context neural activ-
ity datasets, capable of zero-shot learning and providing interpretable embeddings, supported by a
benchmark dataset and API for community use. Our findings show that larger training datasets im-
prove the model’s ability to predict behavioral outcomes and neural spiking activity, capturing brain
dynamics more precisely. Robust zero-shot performance on held-out sessions highlights the model’s
capacity to learn shared dynamics across sessions and animals. Future work will focus on leverag-
ing explainable machine learning to analyze neural mechanisms, explore population dynamics, and
investigate inter-session variability through the session embedding space.
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