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1 INTRODUCTION
The content of our supplementary material is organized as follows:

(i.) In Section 2, we present a detailed derivation of the formulas
pertaining to the loss (i.e. L𝐴𝐶𝐶 ) associated with Evidential Deep
Learning as discussed in the main text.

(ii.) In Section 3, we provide detailed statistics analysis for at-
tributes to illustrate the attribute distribution imbalance and co-
occurrence in real world.

(iii.) In Section 4, we provide a brief introduction to each of
the 17 compared baselines and conduct a detailed analysis of the
competitive ones.

2 THE DERIVATIONS OF L𝐴𝐶𝐶
As defined in the main document, we have:

L𝐴𝐶𝐶
(
𝜶𝒎
𝒏
)
= L𝐴𝐶𝐸

(
𝜶𝒎
𝒏
)
+ 𝜆𝑡L𝐾𝐿

(
𝜶𝒎
𝒏
)
. (1)

Next, the derivations of L𝐴𝐶𝐸 and L𝐾𝐿 will be given in detail
respectively.

2.1 The Derivations of L𝐴𝐶𝐸
In this section, we provide a detailed derivation of the unimodal
adaptive cross-entropy loss, L𝐴𝐶𝐸 , employed in our CREST. Con-
sidering a parametrized Dirichlet distribution 𝜶𝒎

𝒏 associated with
a unimodal output from Visual Grounding Transformer (VGT) or
Attribute Grounding Transformer (AGT), namely 𝜶𝑽

𝒏 or 𝜶𝑨
𝒏 , the

ground truth 𝒚𝑛 , and the density function 𝐷 (𝒑𝑛 | 𝜶𝒎
𝒏 ) referenced

in the text, we elucidate the derivation as follows:

L𝐴𝐶𝐸
(
𝜶𝒎
𝒏
)
=
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(2)

where 𝑆𝑚𝑛 represents the sum of Dirichlet parameters with respect
to a specific modality for instance 𝑛. For the expected value of

log 𝑝𝑚
𝑛𝑗
, [14] provides:
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(3)

2.2 The derivation of L𝐾𝐿
As defined in the main document, the two density functions defined
for calculating the Kullback-Leibler (KL) divergence are as follows:

𝐷
(
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Consequently, the KL divergence loss, L𝐾𝐿 , is derived as:
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(4)
where 𝜶̃𝒎

𝒏 = 𝒚𝑛 + (1−𝒚𝑛) ⊙𝜶𝒎
𝒏 represents the Dirichlet param-

eters after excluding unreliable evidence from 𝜶𝒎
𝒏 . The functions

Γ(·) and 𝜓 (·) correspond to the gamma and digamma functions,
respectively.
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Figure 1: Statistical analysis of attribute distribution imbal-
ance and co-occurrence on SUN and AWA2 benchmarks

3 STATISTICS ANALYSIS OF ATTRIBUTES IN
REAL WORLD

From Figure 1, we can observe data pertaining to the co-occurrence
of features as well as the imbalanced distribution of features. We
define the frequency of occurrence of these features in a manner
consistent with the metric established by [7]:

𝐹𝑟𝑒𝑞(𝑎) =

∑
𝑐′∈C I

[
𝑎 ∈ A𝑐′

]
|C| × 100% , (5)

where I[𝑎 ∈ A𝑐′ ] is 1 if 𝑎 ∈ A𝑐′ , and 0 otherwise.
To quantify the extent of attribute co-occurrence, we establish

the following parameter, aligning with [7]:

𝑅𝑐𝑜−𝑜𝑐𝑐
(
𝑎𝑖 ← 𝑎 𝑗

)
=

∑
𝑐′∈C I

[
𝑎𝑖 ∈ A𝑐

′
&𝑎 𝑗 ∈ A𝑐′

]
∑
𝑐′∈C I

[
𝑎𝑖 ∉ A𝑐′&𝑎 𝑗 ∈ A𝑐′

] . (6)

Consider the SUN2012 dataset, where the attributes "hotel" and
"room" are observed to co-occur 109 times, while the attribute
"hotel" appears independently merely 12 times. Employing the for-
mula introduced earlier, we deduce that 𝑅𝑐𝑜−𝑜𝑐𝑐 (𝑟𝑜𝑜𝑚 ← ℎ𝑜𝑡𝑒𝑙) =
9.08, and the frequency of "hotel" is calculated as 𝐹𝑟𝑒𝑞(ℎ𝑜𝑡𝑒𝑙) =
121/1224 × 100% ≈ 9.89%. This outcome underscores the pro-
nounced variance in the distribution of attribute types within the
dataset.

4 BASELINES
In our comparative analysis, we select 17 representative or state-
of-the-art models from the period of 2020-2023, predominantly
introduced at top-tier conferences. A brief introduction as well as a
detailed competitive analysis will be given in this section.

4.1 Brief Introduction
The brief introduction of baselines is shown as follows:

TF-VAEGAN [15]: Introduces a feedback mechanism to iter-
atively refine feature synthesis and ensure semantic consistency
across training, generation, and classification stages in zero-shot
learning (ZSL).

Composer [10]:Agenerativemodel that constructs fine-grained
features for unseen classes by compositing attributes from seen
classes, increasing feature diversity and specificity.

APN [18]: Enhances ZSL by fusing global and local image fea-
tures and integrating attribute localization to facilitate knowledge
transfer to unseen classes.

DVBE [13]: Addresses biased recognition in generalized ZSL
by developing dual visual representations: a semantic-free for seen
classes and a semantic-aligned for robust transfer to unseen classes.

DAZLE [11]: A fine-grained generalized ZSL framework that
utilizes dense attribute-based attention to align attribute features
with semantic vectors, enhancing classification of unseen classes.

RGEN [17]: Incorporates region-based relation reasoning into
ZSL to capture local image region relationships, enhancing perfor-
mance through joint training of attention and reasoning branches.

CE-GZSL [9]: Combines a feature generation model with an
embedding model, leveraging class-wise and instance-wise super-
vision to improve zero-shot classification performance.

GCM-CF [19]: A counterfactual method in generalized ZSL that
generates counterfactual samples to balance the classification of
seen and unseen classes, enhancing decision boundary accuracy.

FREE [5] : Employs a Feature Refinement module with a self-
adaptive margin center loss and semantic cycle-consistency loss to
enhance visual features and reduce cross-dataset bias in generalized
ZSL.

HSVA [6]: A hierarchical approach that aligns semantic and
visual domains through structured and distributional adaptation,
significantly outperforming common space learning methods in
zero-shot tasks.

AGZSL [8]: Introduces Image-Adaptive Semantics (IAS) and
generative meta-learning with virtual classes to mitigate intra-class
variations and adapt semantic features for classifying unseen classes
in ZSL.

GEM-ZSL [12]: Introduces a gaze estimation module to mimic
human gaze for focusing on discriminative attributes in ZSL, opti-
mizing attribute localization and feature representation.

MSDN [3]: Utilizes mutually reinforcing attention sub-networks
for distilling intrinsic semantic representations between visual and
attribute features, enhancing knowledge transfer to unseen classes.

TransZero [2] : An attribute-guided Transformer network that
refines visual features and localizes discriminative attributes, en-
hancing the learning of visual-semantic interactions for ZSL.

TransZero++ [1]: Employs an attribute→visual Transformer
(AVT) and a visual→attribute Transformer (VAT) to learn attribute-
based visual features and visual-based attribute features to enhance
ZSL with a cross attribute-guided Transformer network, refining
visual features and accurately localizing object attributes for robust
semantic knowledge representation.

DUET [7]: A ViT-based framework that first integrates pre-
trained language models to address attribute imbalances and co-
occurrences in ZSL with an end-to-end multi-modal learning para-
digm.

DSP [4]: A general method that tackles the visual-semantic do-
main shift in generative ZSL by evolving semantic prototypes to
match real prototypes, enhancing classifier training and perfor-
mance.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supplementary Materials: CREST: Cross-modal Resonance through Evidential Deep Learning for Enhanced Zero-Shot Learning ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

4.2 Competitive Baselines Analysis
As the proposed method is non-generative and involves learning
bidirectional cross-modal features, we select methods with similar
learning frameworks and competitive capabilities for the subse-
quent analysis.

TransZero++: This method not only enhances feature extraction
through a geometry-aware attention module but also employs AVT
and VAT to learn attribute-based visual features and visual-based
attribute features, respectively. It uses fine-grained features supple-
mented with feature-level and prediction-level semantical collabo-
rative losses to achieve synergy in a dual Transformer framework.
Nevertheless, this approach neglects the fact that the fine-grained
regional feature space does not necessarily align with the label
space. Actually, the imbalanced distribution and co-occurrence of
attributes often intensify the vision variability at the instance level
due to objective conditions. This exacerbation further impacts the
alignment between the latent space learned by the model and the
label space. Additionally, this approach lacks an straightforward
uncertainty quantifying method that directly measures the model’s
epistemic uncertainty, which limits its interpretability.

DUET: The method introduces a cross-modal semantic ground-
ing network that allows fine-grained semantic mapping between
images and textual attributes and undergo classification in an end-
to-end manner. Additionally, an attribute-level contrastive learn-
ing strategy is employed to effectively address issues of attribute
imbalance and co-occurrence, sharpening the model’s ability to
discriminate subtle visual differences. However, it overlooks the
instance-level vision variability and lacks an explicit uncertainty
quantifying method that directly reflects the model’s epistemic
uncertainty. This limitation increases the challenge of recognizing
hard negatives in open world.

CREST: The proposed method begins by extracting representa-
tions with a bidirectional grounding transformer without geometry
enhanced attention module in TransZero++ and employs Eviden-
tial Deep Learning (EDL) [16] to directly quantify underlying epis-
temic uncertainty, thereby enhancing the model’s resilience against
hard negatives. Compared to TransZero++, this method incorpo-
rates dual learning pathways focusing on both visual-category
and attribute-category alignments to better ensure a robust cor-
relation between latent and label spaces. In contrast to DUET, it
addresses the biases introduced by instance-level vision variability
through Visual Instance-level Contrastive Learning (VICL), as well
as the critical alignment between feature spaces and label spaces.
Moreover, unlike the aforementioned methods, it can self-refine
with the proposed uncertainty-informed cross-modal fusion tech-
nique, which showcase great robustness and explainability when
confronted with hard negative in open world.
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