
Under review as a conference paper at ICLR 2024

A PROOF

A.1 PROOF OF EQUATION 22

Let us rewrite∇Dt log pt(Dt|Ratm,G) and∇Dt log pt(Dt|Ratm,Raux,G) using Baye’s rule:

∇Dt log pG(D|Ratm) = ∇Dt log pG(Ratm|Dt) +∇Dt log pG(Dt)

∇Dt
log pG(Dt|{Ratm,Raux}) = ∇Dt

log pG({Ratm,Raux}|Dt) +∇Dt
log pG(Dt)

= ∇Dt
log pG(Ratm|Dt)

+∇Dt log pG(Raux|{Ratm,Dt})
+∇Dt

log pG(Dt),

(25)

and we complete the proof.

A.2 PROOF OF PROPOSITION 1.

Proposition 1. Our training target p(C|Ratm,G) is SE(3)-equivariant, i.e.,p(C|Ratm,G) =
p(Tg(C)|Tg(Ratm),G), then for all diffusion time t, the time-dependent score function is SE(3)-
equivariant:

∇C log pt(C|Ratm,G) = ∇C log pt(T (C)|T (Ratm),G)
= S(∇C log pt(S(C)|S(Ratm),G))

(26)

for translation T and rotation S.

Proof. In VP-SDE, the perturbation kernel can be written as:

pt|0(C(t) | C(0)) = N
(
C(t); C(0)e− 1

2

∫ t
0
β(s)ds, I− Ie−

∫ t
0
β(s)ds

)
, (27)

which is SE(3) equivariant. We can link the perturbation kernel under translation and rotation:

pt(C|Ratm,G) =
∫
p0(C′|Ratm,G)pt|0(C|C′)dC′

=

∫
p0(Tg(C′)|Tg(Ratm),G)pt|0(Tg(C)|Tg(C′))dTg(C′)

= pt(Tg(C)|Tg(Ratm),G).

(28)

For T being translational transformation, we have:

∇C log pt(C|Ratm,G) = ∇C log pt(T (C)|T (Ratm),G)

=
∂T (C)
∂C

∇T (C) log pt(T (C)|T (Ratm),G)

= ∇T (C) log pt(T (C)|T (Ratm),G).

(29)

Similarly, for S being rotational transformation, we have

∇C log pt(C|Ratm,G) = ∇C log pt(S(C)|S(Ratm),G)

=
∂S(C)
∂C

∇S(C) log pt(S(C)|S(Ratm),G)

= S(∇S(C) log pt(S(C)|S(Ratm),G)),

(30)

and we complete the proof.

B DETAILS OF DENOISING DIFFUSION PROBABILISTIC MODELS
AND SCORE-BASED DIFFUSION MODEL

The forward diffusion process with T iterations of a DDPM model is defined as a fixed posterior
distribution p(x1:T |x0). Given a list of fixed variance schedule β1, ..., βT , we can define a Markov
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chain process:

p(x1:T |x0) =

T∏
t=1

p(xt|xt−1)

p(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI).

(31)

We have the following property:

Property 1. The marginal distribution of the forward diffusion process p(xt|x0) can be written as:

p(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (32)

This can be obtained by the following proof:

Proof. Using p(xt|xt−1) from equation 31, we can obtain:

xt =
√
αtxt−1 +

√
βtzt

=
√
αtαt−1xt−1 +

√
αtβt−1zt−1 +

√
βtzt

= ...

=
√
ᾱtx0 +

√
αtαt−1...α2β1z1 + ...+

√
αtβt−1zt−1 +

√
βtzt.

(33)

We can see that p(xt|x0) can be written as a Gaussian with mean
√
ᾱtx0 and variance

(αtαt−1...α2β1 + ...+ αtβt−1 + βt)I = (1− ᾱt)I .

This property allows us to write the forward diffusion process in the form of equation 5. As T →∞,
the discretized equation 5 converges to the SDE form defined in equation 4.

Lemma 1. (Tweedie’s formula) Let µ be sampled from a prior probability distribution G(µ) and
z ∼ N (µ, σ2), the posterior expectation of µ given z is as:

E [µ | z] = z + σ2∇z log p(z). (34)

From Tweedie’s formula, we can obtain the following property:

Property 2. For DDPM with the marginal distribution p(xt|x0) of the forward diffusion process
computed in equation 32, p(x0|xt) has a posterior mean at:

E [x0 | xt] =
1√
ᾱ(t)

(xt + (1− ᾱ(t))∇xt
log pt (xt)) . (35)

C ALGORITHMS

C.1 TRAINING AND SAMPLING ALGORITHM OF BACKDIFF

We provide the training procedure in Algorithm 1 and the manifold constraint sampling procedure
in Algorithm 2.

C.2 CG ATOMS CHOICE STRATEGIES

We elaborate on the CG atoms’ choice strategies for the self-supervised training framework, as
described in Sec. 4.2. The random strategy is shown in Algorithm 3 and the semi-random strategy is
shown in Algorithm 4. In this work, we choose a semi-random strategy throughout the training, with
the training ratio defined in Table 4. The training ratio value is obtained by roughly estimating the
usage of each atom type in popular CG models. We notice that incorporating a larger percentage of
other atom types not listed, while enhancing the generalization across different CG protocols, will
require longer training time. Except for the training ratio of Cα, users can adjust the other values as
needed.

13
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Algorithm 1 Training of Backdiff
1: Input: proteins [G0, ...,GN ], each with ensembles [C0, ..., CKG ], learning rate a, CG choice

strategy T , sequence of noise levels [α1, ..., αT ]
2: Output: trained score model sθ
3: for i = 1 to Niter do
4: for G ∼ [G0, ...,GN ] do
5: uniformly sample t ∼ [1, ..., T ] and C ∼ [C0, ..., CKG ]
6: Separate C into CG atomsRatm and omit atoms (backmapping targets) Comit by the

CG choice strategy T with the observation maskM
7: Calculate the displacement D of each omitted atom from its residue’s Cα’s position
8: z ∼ N (0, I)
9: Calculate noisy displacement Dt =

√
αtD + (1− αt)z

10: Obtain noisy configuration Ct from Dt

11: predict ŝ = sθ,G(Ct,M, t)

12: update θ ← θ − a∇θ

∥∥ŝ−∇Dt
log pt|0(Dt | 0)

∥∥2
13: end for
14: end for

Algorithm 2 BackDiff sampling with manifold constraint
1: Input: protein molecular graph G, CG maskM, diffusion steps T , CG atoms Ratm, CG auxil-

iary variables Raux, auxiliary CG mapping function ξaux, {ζi}Ti=1 , {σ̃i}
T
i=1, sequence of noise

levels [α1, ..., αT ]
2: Output: predicted conformers C
3: Dt ∼ N (0, I)
4: for i = T − 1 to 0 do
5: Obtain noisy configuration Ci from Di andRatm
6: ŝ← sθ (Ci,M, t)

7: D̂0 ← 1√
αi

(Di + (1− ᾱi) ŝ)

8: z ∼ N (0, I)

9: D′
i−1 ←

√
αi(1−ᾱi−1)

1−ᾱi
Di +

√
ᾱi−1βi

1−ᾱi
D̂0 + σ̃iz

10: Di−1 ← D′
i−1 − ζi∇Di

∥∥∥Raux − ξaux

(
D̂0,Ratm

)∥∥∥2
2

11: end for
12: Obtain C from D̂0 andRatm

Cα N C O Cβ Other

r 1 0.6 0.6 0.4 0.4 0.05

Table 4: The training ratio of each atom type. Atoms with the same atom types will have the same
training ratio.

D CG MAPPING PROTOCOLS

In this section, we briefly introduce the three CG methods used for backmapping experiments in this
paper. These CG models are designed from a mixing of knowledge-based and physics-based po-
tentials and have been successfully applied in studying ab initio protein structure prediction, protein
folding and binding, and extended to even larger systems like protein-DNA interactions. The CG
mapping protocol of each method will vary from systems. In this paper, we take the general form
of each protocol, summarized in Table 5. Among the three chosen CG methods, MARTINI has the
highest CG resolutions: roughly four sidechain heavy atoms represented by one CG atom and two
heavy atoms on the ring-like structure represented by one CG atom.

14
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Algorithm 3 CG atoms choice: random strategy
1: Input: a training sample with N heavy atoms: C = [c1, c2, · · · , cN ]
2: Output: CG atomsRatm, omitted atoms Comit, CG maskM = [m1,m2, · · · ,mN ]
3: CG atom ratio r ∼ Uniform(0, 1)
4: for i = 1 to N do:
5: if atom i is a Cα then
6: Ci ∈ Ratm
7: mi = 0
8: else
9: pi ∼ Uniform(0, 1)

10: if pi > r then
11: Ci ∈ Comit
12: mi = 1
13: else
14: Ci ∈ Ratm
15: mi = 0
16: end if
17: end if
18: end for

Algorithm 4 CG atoms choice: semi-random strategy
1: Input: a training sample with N heavy atoms: C = [c1, c2, · · · , cN ], a pre-defined training ratio
r = [r1, r2, ..., rN ]

2: Output: CG atomsRatm, omitted atoms Comit, CG maskM = [m1,m2, · · · ,mN ]
3: CG atom ratio r ∼ Uniform(0, 1)
4: for i = 1 to N do:
5: pi ∼ Uniform(0, 1)
6: if pi > ri then
7: Ci ∈ Comit
8: mi = 1
9: else

10: Ci ∈ Ratm
11: mi = 0
12: end if
13: end for

15
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Ratm Raux

MARTINI Cα Up to Four side chain COM beads
Rosetta Cα, C,N,O side chain COM
UNRES Cα, N side chain COM

Table 5: The CG mapping protocol of three CG methods used in this paper.

E MODIFIED TORSIONAL DIFFUSION

In this section, we briefly introduce Torsional Diffusion. Torsional Diffusion is a diffusion frame-
work operating on the space of torsion angles. Torsion angles describe the rotation of bonds within a
molecule. It lies in [0, 2π), and a set of m torsion angles define a hypertorous space Tm. The theory
behind score-based diffusion holds for compact Riemannian manifolds, with subtle modifications.
For τ ∈ M , where τ represents the torsion angles and M is Riemannian manifold, the prior distri-
bution pT (x) is a uniform distribution over M . We choose VE-SDE as our forward diffusion, with

f(τ , t) = 0, g(t) =
√

d
dtσ

2(t), where σ(t) represents the noise scale. We use an exponential diffu-

sion σ(t) = σ1−t
minσ

t
max, with σmin = 0.01π, σmax = π, t ∈ (0, 1). As shown in equation 3, training

a denoising score matching model requires sampling from the perturbation kernel p(τ (t)|τ (0)). We
consider the perturbation kernel on Tm with wrapped normal distribution:

p(τ (t)|τ (0)) ∝
∑

d∈Zm

exp

(
−∥τ (0)− τ (t) + 2πd∥2

2σ2(t)

)
, (36)

and the other terms in the loss function equation 3 remain unchanged.

The sampling process of Torsional Diffusion is also similar to normal diffusion models with little
changes: we draw samples from a uniform distribution as prior on torus space, and then discretize
and solve the reverse diffusion via a geodesic random walk. We implement the model as a Torsional
Diffusion conditioned on CG variables. The sampling procedure of the modified Torsional Diffusion
is shown in the pseudo-code in Algorithm. 5.

Algorithm 5 Modified Torsional Diffusion sampling
1: Input: protein molecular graph G, diffusion steps T , CG atoms Ratm, auxiliary variables Raux

(including bond lengths l and bond angles ω)
2: Output: predicted conformers C
3: τT ∼ U(0, 2π)m

4: for i = T − 1 to 0 do
5: let t = i/T, g(t) = σ1−t

minσ
t
max

√
2 ln (σmax/σmin)

6: Obtain noisy configuration Ci from τi,Ratm, l, ω
7: ŝ← sθ,G (Ci, t)
8: z ∼ wrapped normal with σ2 = 1/T
9: τ ′

i−1 = τi +
(
g2(t)/N

)
ŝ

10: τi−1 = τ ′
i−1 + g(t)z

11: end for
12: Obtain C from τ ′

0,Ratm, l, ω

F EVALUATION METRICS

Root Mean Squared Distance (RMSD) Root Mean Square Deviation (RMSD) is a commonly
used measure in structural biology to quantify the difference between two protein structures. It’s
particularly useful for comparing the similarity of protein three-dimensional structures. The RMSD
is calculated by taking the square root of the average of the square of the distances between the
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atoms of two superimposed proteins:

RMSD = min
Tg∈SE(3)

√√√√ 1

N

N∑
i=1

∥∥Tg(ri)− rrefi

∥∥2 (37)

, where N is the number of atoms in the protein, and ri and rrefi are positions of the i−th equivalent
atoms of two structures being compared. A lower RMSD of a generated configuration indicates
more similarity to the original all-atom configuration.

Generative diversity score (DIV) RMSD can be a confusing metric when evaluating the diversity
of the generated samples. The main reason lies in that a high RMSD can simultaneously indicate
high diversity and low accuracy. As suggested by Jones et al. (2023), the average pairwise RMSDs
between (1) generated samples and the original reference and (2) between all generated samples
should be approximately equal. Following this idea, a generative diversity score DIV is defined as:

RMSDref =
1

N

N∑
i

RMSD
(
Cgeni , Cref

)
RMSDgen =

2

N(N − 1)

N∑
i

(i−1)∑
j

RMSD
(
Cgeni , Cgenj

)
DIV = 1− RMSDgen

RMSDref
,

(38)

where N is the number of generated samples conditioned on a single CG configuration. DIV ap-
proximately lies on the interval [0, 1]. A deterministic backmapping (all generated samples are the
same) will have DIV = 1, indicating no diversity. On the contrary, DIV ≈ 0 is achieved when
RMSDref ≈ RMSDgen, which indicates Cref and Cgeni shares a similiar distribution. In this case,
the backmapping algorithm generates diverse all-atom configurations following a correct probability
distribution. Overall this metric can indicate diversity well and avoid giving high diversity scores
(low DIV) to models that generate totally off configurations.

Steric clash ratio A steric clash in protein structures refers to a situation where atoms are positioned
too close to each other, leading to overlapping electron clouds. This results in an energetically
unfavorable state, as it violates the principles of van der Waals radii and can destabilize the protein
structure. Following GenZProt (Yang & Gómez-Bombarelli (2023)), we report the ratio of steric
clash occurrence in all atom-atom pairs within 5.0 Å, where the steric clash is defined as an atom-
atom pair with a distance smaller than 1.2 Å.

G EXPERIMENT DETAILS

G.1 MODEL ARCHITECTURE

Graph Neural Network (GNN) has been widely applied in molecular conformation prediction prob-
lems. In this paper, we adopt the equivariant GNN, and more specifically, e3nn library as our GNN
architecture to parameterize the conditional score function sθ. Following Batzner et al. (2022), we
denote each node a with node representations V k,l,p

acm , where k represents the message-passing layer
number, l represents the rotation order, p ∈ [−1, 1] represents the parity, with p = 1 representing
even parity (invariant under parity), and p = −1 representing odd parity (equivariant under parity).

In this study, we denote the choice of CG atoms with an observation mask M = {n1, ..., nN} ∈
{0, 1}N , with na = 0 representing the a-th atom is a CG atom and na = 1 representing the
a-th atom is an omitted atom. We then have each protein configuration data input expressed
as {D,Ratm,M,G}. Each node in the graph G is represented as va = {na, ta}, where na is
a learnable atom type embedding fixed for a given atomic number and ta is a learnable amino
acid type embedding fixed for a given amino acid. Each edge in the graph is represented as
eab = {va + vb, sab, µ(dab), tGRF}, where sab is a learnable bond type embedding for a given
bond type, µ(dab) is the radial basis representation of distance between node a and node b, and
tGRF = {sin 2πωt, cos 2πωt} represents the diffusion time information with Gaussian random fea-
tures. Given the protein configuration data input {D,Ratm,M,G} and the diffusion time t, we first
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embed node and edge attributes into higher dimensional feature spaces using feedforward networks:

V 0,0,1
a = MLP(va) ∀va ∈ V,
heab

= MLP(eab) ∀eab ∈ E .
(39)

The message-passing layers are based on E(3) equivariant convolution from Batzner et al. (2022),
Jing et al. (2022). At each layer, messages passing between two paired nodes are constructed using
tensor products of nodes’ irreducible representation with the spherical harmonic of edge vectors.
The messages are weighted by a learnable function that takes in the scalar representations (l = 0)
of two nodes and edges. Finally, the tensor product is computed via contract with the Clebsch-
Gordan coefficients. At the message-passing layer k, for the node a, its rotation order l0, and output
dimension c′, the message-passing layer is expressed as:

V
(k,lo,po)
ac′mo

=
∑

lf ,li,pi

∑
mf ,mi

C
(lo,mo)
(li,mi)(lf ,mf )

1

|Na|
∑
b∈Na

∑
c

ψ
(k,lo,lf ,li,pi)
abc Y

(lf )
mf (r̂ab)V

(k−1,li,pi)
bcmi

,

(40)
where the tensor product between the input feature of rotation order li and spherical harmonics of
order lf generates irreducible representations of output orders |li − lf | ≤ lo ≤ |li + lf |, (−1)lf pi =
po, C represents the Clebsch-Gordan coefficients, Na = {b | ∀eab ∈ E} represents the neighboring
nodes of node a, Y represents the spherical harmonics, and

ψ
(k,lo,lf ,li,pi)
abc = Ψ

(k,lo,lf ,li,pi)
c

(
heab

∥∥∥V (k−1,0,1)
a

∥∥∥V (k−1,0,1)
b

)
(41)

is the weight function using feedforward networks that take in the scalar representations of two
nodes and the edge embeddings. In this paper, the rotational order of nodes (l0, li) and spherical
harmonics (lf ) are below 3.

After L layers of message-passing, the node feature becomes Va = (V (L,0,p) ∈ Rc, V (L,1,p) ∈
R3c, V (L,2,p) ∈ R5c). We parameterize the time-dependent score function sθ(D(t), t|Ratm) with
rotational and parity equivariant feature V (L,1,−1)

a :

sθ = [V (L,1,−1)
a : na = 1]. (42)

G.2 HYPERPARAMETERS

In this section, we introduce the details of our experiments. The score function sθ is parameterized
by the equivariant GNN presented in Sec. G.1. The atom type embedding na has an embedding size
of 4 and the amino acid type embedding ta has an embedding size of 8. The bond type embedding
sab, which denotes if an edge represents a bonded or nonbonded interaction, has an embedding size
of 2. In the initial embedding step, node and edge features are embedded into a latent dimension
of 32. 8 message-passing layers as in equation 40 are used. The final 3-dimensional rotational
and parity equivariant output features of each omitted atom are concatenated as the final predicted
score. For the hyperparameters of the VP-SDE, we choose β1 = 1.0 × 10−7, βT = 1.0 × 10−3,
with a sigmoid β scheduler and diffusion step numbers T = 10000. BackDiff is trained on a single
NVIDIA-A10 GPU until convergence, with a training time of around 24 hours and ADAM as the
optimizer, with 64 batch size.

G.3 CHOICE OF THE CORRECTION WEIGHT

An important hyperparameter in the manifold constraint sampling is the correction term weight
ζ. We should expect that a too-low weight will lead to inconsistency with the conditions and an
overly-high weight will make the sampling path noisy. Following Chung et al. (2022), we set ζi =
ζ ′i/
∥∥∥Raux − ξaux

(
D̂0,Ratm

)∥∥∥, with ζ ′i = 0.5 yielding the optimized sampling quality. An ablation
study on the influence of correction weight is summarized in Table 6. From the table, we can see
that the proposed correction weights produce the best result. Although a higher correction weight
can offer stronger manifold constraints, leading to a smaller bond length and bond angle error, it
over-deviates the sampling path and thus generates samples at low probability space.
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ζ ′i PED00011 PED00055 PED00151

Bond length
MAE (Å)

0.5 < 0.001 < 0.001 < 0.001

0.01 0.003(< 0.001) 0.007(0.002) 0.004(0.001)
500 < 0.001 < 0.001 < 0.001

Bond angle MAE 0.5 0.167(0.095) 0.106(0.088) 0.124(0.097)
0.01 0.293(0.164) 0.176(0.150) 0.194(0.123)
500 0.099(0.003) 0.078(0.004) 0.065(0.002)

SCR (%) 0.5 0.918(0.609) 0.786(0.335) 0.820(0.316)
0.01 2.485(0.743) 2.201(0.469) 2.093(0.554)
500 1.966(0.451) 1.835(0.644) 1.752(0.340)

Table 6: Ablation study on different correction weights.

H ADDITIONAL EXPERIMENTAL RESULTS

We present the multi-protein backmapping results for Rosetta CG model in Table 7 and MARTINI
CG model in Table 8. Note that the CG-transferable BackDiff model is not retrained for the two new
experiments. The results further demonstrate BackDiff’s enhanced accuracy and transferability. No-
tably, in the experiments with the MARTINI CG model, which features a higher dimensionality of
CG auxiliary variables, BackDiff achieves superior backmapping results compared to its perfor-
mance with the other two CG models (UNRES and Rosetta). On the other hand, baseline methods
like GenZProt and Torsional Diffusion deliver similar or less impressive results with the MARTINI
CG model than with UNRES and Rosetta. This indicates that BackDiff can harness the benefits of
CG models with a richer set of auxiliary variables, a capability not apparent in the other methods.
Additionally, we evaluate the sidechain torsion angle distribution of ground truth and sampled con-
figurations from different methods. As shown in Figure 3, 4 and 5, BackDiff aligns closer to the
ground truth distributions, even though torsion angles aren’t its primary training objective.

Method PED00011 PED00055 PED00151

BackDiff (fixed) 0.616(0.201) 1.587(0.359) 1.287(0.163)
BackDiff (trans) 0.751(0.222) 1.344(0.275) 1.410(0.197)

RMSDmin(Å) GenZProt 2.245(0.430) 2.568(0.496) 2.661(0.325)
TD 1.599(0.357) 2.003(0.376) 1.458(0.256)

BackDiff (fixed) 0.611(0.456) 0.784(0.529) 0.463(0.268)
BackDiff (trans) 0.923(0.647) 0.792(0.475) 0.820(0.316)

SCR (%) GenZProt 2.215(1.237) 2.192(0.673) 1.545(0.602)
TD 1.034(0.499) 1.205(0.471) 0.772(0.315)

BackDiff (fixed) 0.068(0.010) 0.097(0.020) 0.119(0.015)
BackDiff (trans) 0.075(0.023) 0.104(0.021) 0.111(0.044)

SCMSEmin (Å
2
) GenZProt 1.787(0.289) 1.704(0.368) 1.633(0.301)

TD 1.108(0.309) 0.946(0.247) 1.513(0.350)

BackDiff (fixed) 0.139(0.056) 0.261(0.115) 0.200(0.079)
BackDiff (trans) 0.084(0.060) 0.155(0.067) 0.108(0.058)

DIV GenZProt 0.625(0.117) 0.637(0.132) 0.604(0.136)
TD 0.184(0.061) 0.271(0.091) 0.205(0.081)

Table 7: Results on multi-protein experiments backmapping from Rosetta CG model.
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Method PED00011 PED00055 PED00151

BackDiff (fixed) 0.415(0.156) 1.012(0.208) 0.827(0.141)
BackDiff (trans) 0.517(0.182) 0.827(0.174) 0.957(0.196)

RMSDmin(Å) GenZProt 2.993(0.526) 3.015(0.728) 2.982(0.552)
TD 1.969(0.527) 2.493(0.643) 1.738(0.216)

BackDiff (fixed) 0.314(0.232) 0.629(0.512) 0.227(0.135)
BackDiff (trans) 0.536(0.478) 0.701(0.435) 0.520(0.393)

SCR (%) GenZProt 2.759(0.988) 3.000(0.672) 1.894(0.433)
TD 1.103(0.570) 1.741(0.513) 1.450(0.513)

BackDiff (fixed) 0.035(0.008) 0.030(0.005) 0.028(0.005)
BackDiff (trans) 0.030(0.006) 0.034(0.007) 0.040(0.015)

SCMSEmin (Å
2
) GenZProt 2.307(0.378) 2.145(0.488) 2.389(0.404)

TD 1.302(0.284) 1.436(0.527) 1.784(0.496)

BackDiff (fixed) 0.205(0.050) 0.325(0.087) 0.198(0.074)
BackDiff (trans) 0.147(0.072) 0.169(0.078) 0.152(0.063)

DIV GenZProt 0.674(0.130) 0.691(0.115) 0.640(0.128)
TD 0.282(0.056) 0.326(0.075) 0.233(0.059)

Table 8: Results on multi-protein experiments backmapping from MARTINI CG model.

(d)

(e)

(f)

(a)

(b)

(c)

Figure 3: Multi-protein experiments backmapping from the UNRES CG model showing results on
residue 7 of PED00011, a Glutamine (GLU) amino acid residue: (a) Histogram of sidechain torsion
angles of ground truth and samples generated from four models, (b)-(f): the sidechain configurations
visualization from (b) reference (c) fixed CG BackDiff (d) transferable CG BackDiff (e) GenZProt
(f) Torsional Diffusion.

I LIMITATIONS OF BACKDIFF

As shown in Sec. 5, BackDiff significantly improves the protein backmapping accuracy. However,
BackDiff has a number of limitations.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: Multi-protein experiments backmapping from the UNRES CG model showing results on
residue 8 of PED00011, an Arginine (ARG) amino acid residue.

Bond lengths and bond angles A primary drawback of BackDiff, in comparison to internal-
coordinate-based generative models, is its susceptibility to producing unrealistic bond lengths and
angles, even with manifold constraint sampling. This inaccuracy is notably prominent in bond an-
gles possibly because of their nonlinear mappings from Cartesian coordinates. On the other hand,
internal-coordinate-based models inherently avoid such issues by constructing geometries from pre-
defined, reasonable bond lengths and angles. Future work will focus on refining these nonlinear
manifold constraints to reduce errors in bond angles and other nonlinear CG auxiliary variables.

Sampling efficiency A notable limitation of diffusion models is their slower sampling efficiency.
Compared to other generative models like Variational Autoencoders (VAE) and Normalizing Flows
(NF), which often achieve generation in a single step, diffusion models require hundreds to thou-
sands of reverse diffusion steps for effective sampling. This demand is even more pronounced for
manifold constraint sampling, where fewer diffusion steps might not sufficiently constrain the condi-
tions. In BackDiff, generating 100 samples per frame requires an average of 293 seconds, whereas
for GenZProt (a VAE-based method) takes an average of 0.009 seconds. Improving the sampling ef-
ficiency of both diffusion models and manifold constraint sampling presents a compelling direction
for future research.

Training data quality An optimal training dataset for BackDiff would encompass data from tens of
thousands of proteins, all simulated under a unified force field. Such a dataset would ensure com-
prehensive coverage of the protein space and minimize inconsistencies in data quality. In contrast,
our current dataset comprises a mere 92 proteins, sourced from varied simulations and sampling
methodologies. Such diversity in data origins may compromise the model’s broader applicability
across protein spaces. Moving forward, our goal is to integrate a more expansive and consistent set
of high-quality protein simulation data, enhancing the robustness and performance of BackDiff.

Chirality of proteins Proteins are made up of amino acids, most of which are chiral. This means
they exist in two forms (enantiomers) that are mirror images of each other but cannot be superim-
posed. In nature, almost all amino acids in proteins are in the L-form (left-handed). This chirality is
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Figure 5: Multi-protein experiments backmapping from the UNRES CG model showing results on
residue 27 of PED0001, a Methionine (MET) amino acid residue.

crucial for the structure and function of proteins. Performing a parity transformation on the protein
will change left-handed coordinate systems into right-handed ones. Our model does not take care of
the chirality and simply assumes parity equivariant: p(C|Ratm,G) = p(−C| −Ratm,G). This can be
a point for improvement.
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