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Figure 1: We propose a controllable and practical framework that generates landscapes. (a) Our framework integrates a Large
Language Model that converts user input into parameters and enables user control over the generation process through simple
texts. (b) It leverages optimization techniques to generate a general plan that includes terrains, roads, and various attributes. (c)
Subsequently, it refines the plan by smoothing and arranging elements through rules and patterns for aesthetic landscapes.

Abstract
Landscapes, recognized for their indispensable role in large-scale
scenes, are experiencing growing demand. However, the manual
modeling of such content is labor-intensive and lacks efficiency.
Procedural Content Generation (PCG) techniques enable the rapid
generation of diverse landscape elements. Nevertheless, ordinary
users may encounter difficulties controlling these methods for de-
sired results. In this paper, we introduce a controllable framework
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for procedurally generating landscapes. We integrate state-of-the-
art Large LanguageModels (LLMs) to enhance user accessibility and
control. By converting plain text inputs into parameters through
LLMs, our framework allows ordinary users to generate a batch of
plausible landscapes tailored to their specifications. A parameter-
controlled PCG procedure is designed to leverage optimization tech-
niques and employ rule-based refinements. It achieves harmonious
layering in terrains, zoning, and roads while enabling aesthetic
arrangement of vegetation and artificial elements. Extensive exper-
iments demonstrate our framework’s effectiveness in generating
landscapes comparable to those crafted by experienced architects.
Our framework has the potential to enhance the productivity of
landscape designers significantly1.

1The source code is publicly available at:
https://github.com/omegafantasy/ControllableLandscape, and
https://github.com/omegafantasy/ControllableLandscape_UnityClient.
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1 Introduction
Recently, there is a growing interest in developing efficient ap-
proaches for generating 3D indoor [62, 63, 65] and outdoor [32,
43, 48] content. Landscapes are indispensable outdoor content that
creates ecologically and aesthetically balanced living spaces, pro-
moting healthy lifestyles inmodern life [37, 64]. However, architects
often rely on modeling software to craft landscapes, which lacks
efficiency. Even with powerful tools [26], the modeling process still
requires many manual operations and much proficiency [18].

In the industry, generating landscapes is often assisted with Pro-
cedural Content Generation (PCG) techniques. PCG facilitates the
efficient and large-scale creation of natural environment contents
using mathematical rules, spatial patterns, or other techniques such
as optimization and deep learning [6, 14, 35, 50]. Nevertheless, these
approaches may have limitations in user control. Ordinary users
may find it challenging to leverage the process to achieve their
objectives fully. When confronted with multiple parameters, users
may experience difficulty adjusting them for optimal results. Ad-
ditionally, some PCG approaches require expertise in engineering
or architectural techniques and compromise accessibility to the
general audience. Addressing user control is essential for achieving
more effective landscape scene generation.

Large Language Models (LLMs) excel in natural language under-
standing and task performance [1, 52, 53]. Additional context or
prompts enable more appropriate and accurate responses aligned
with user specifications [52]. Therefore, LLMs are effective and
friendly tools for ordinary users to control expert tasks.

In this paper, we propose a controllable framework for procedu-
rally generating landscapes, aiming to generate aesthetic landscapes
effectively (Figure 1). We address user control by introducing a set
of parameters and integrating an LLM into our framework. Utilizing
our framework is simple for ordinary users, who merely need to
describe their desired landscapes in plain text. The framework au-
tomatically engages the LLM to comprehend the input and provide
responses that can be parsed into parameters, thereby guiding the
generation process to align with user objectives.

After determining the parameters, we generate the landscape
plan leveraging optimization techniques, featuring an adapted ge-
netic algorithm for terrain and vegetation types and a heuristic
algorithm for road generation. We use a discrete grid to represent
terrain, entrances, scenic spots, roads, and the layout scheme of the
landscape. Subsequently, we refine the plan through mathematical

smoothing for more natural transitions both horizontally and verti-
cally. Finally, we arrange diverse landscape elements to complete
an aesthetic landscape. Furthermore, the framework supports the
batch generation of many diverse landscapes given a user input.

We evaluate our framework through experiments. Performance
analysis and ablation studies delve into several components and
validate the overall plausibility of our method. The user study
demonstrates that the landscapes generated by our framework
are comparable to those crafted by experienced architects.

The key contributions of this paper are outlined below:
• We propose a framework facilitating the procedural genera-
tion of a large number of plausible landscapes.

• Our framework converts text inputs to parameters using a
Large Language Model, enhancing the generation process’s
controllability and accessibility to ordinary users.

• Our framework follows a parameter-controlled procedure
combining optimization and rule-based techniques, such as
a 2D-adapted genetic algorithm, a heuristic road generation
algorithm, and mathematical smoothing.

2 Related Works
2.1 Procedural Generation of Outdoor Contents
Procedural Content Generation (PCG) is a leading technique ow-
ing to its versatile applications across various industries (e.g., gam-
ing) [4, 17, 20, 45]. It is particularly effective for generating modular,
highly repetitive, or rule-based content [14]. Traditional methods
often rely on rules and simple randomized algorithms [14], such as
grammar trees [56] and noise. Recently, more advanced rule-based
methods have been proposed, such as binary [29] or multi-level [61]
partitioning for urban space planning. Computational geometry [9]
and example-based methods [66] are also widely employed. Infini-
gen [43] is a state-of-the-art approach that facilitates generating
natural objects and scenes through randomized mathematical rules.

Other PCG categories are also emerging. Optimization-based
methods typically perform multi-objective optimization by inte-
grating the problem into existing algorithmic frameworks. There
are cases for integer programming [39], Particle Swarm Optimiza-
tion [51], anisotropic shortest path algorithm [16], and genetic algo-
rithms [40]. Simulation-based methods simulate temporal changes
in content influenced by the autonomous actions of creatures and
natural phenomena to generate scenes iteratively. For instance,
simulating the interaction of individuals [47, 55] or the natural
weathering and battling events [28]. Learning-based methods apply
frameworks such as fully connected neural networks [30], Varia-
tional Autoencoders (VAEs) [57], and Generative Adversarial Net-
works (GANs) [19, 23, 34], etc.

Our framework combines the rule-based and optimization-based
approaches to leverage their respective advantages. Additionally,
incorporating an LLM enhances controllability and accessibility to
ordinary users. Recent studies [31, 48] also investigate the integra-
tion of LLM in PCG.

2.2 Large Language Models
Large language models (LLMs) have garnered extensive attention
recently. Many models are introduced [5, 33, 42, 59]. Literature
demonstrates their exceptional capabilities. Wei et al. [52] discover
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Figure 2: The framework involves three stages: In the first
stage, the LLM is employed to convert the user input into
parameters that control the generation. Next, we optimize
the landscape’s layout plan on a grid, focusing on the terrains,
spots, roads, and attributes. Finally, we refine it by smoothing
the resulting plan and arranging the elements to obtain an
aesthetic and plausible landscape.

that these models can handle complex tasks even in a zero-shot
manner. They [53] also observe that larger scales empower LLMs
with additional capabilities compared to smaller models. Bubeck et
al. [1] evaluate GPT-4 and conclude that beyondmastering language,
it can tackle diverse tasks spanning mathematics, coding, medicine,
and more. Typical examples include the advances in reasoning
tasks [54] and public health aiding [24]. Numerous applications
have emerged based on LLMs, such as Codex [3] and Galactica [49].
This paper employs the GPT-4 [33] model (Section 4.1).

2.3 Landscape Generation
Existing literature employs a diverse range of approaches to tackle
landscape generation. For instance, PCG techniques are leveraged
to automatically model urban forestry [32] and multi-biome land-
scapes [13]. The genetic algorithm is applied for systematic opti-
mizations [12, 46]. Parametric design approaches [2, 58] are also
explored. Simulations are performed to form ecoclimates [36], ter-
rain [7], and glaciers [8]. Real-world data and machine learning [22]
are combined to author large-scale ecosystems.

There is growing interest in interactively editing landscapes. For
instance, Emilien et al. [11] and Gain et al. [15] facilitate editing vir-
tual worlds using "brush" operations. Schott et al. [44] enable user
control over the simulation of large-scale erosion. Similar interac-
tive simulations are also applied to meandering river networks [38].
Ecormier et al. [10] propose a method for interactively generating
ecosystems containing flora and fauna. Makowski et al. [27] explore
interactive multi-scale modeling of plant ecosystems.

3D-GPT [48] has been proposed as an LLM-powered 3D pro-
cedural modeling system that enables the generation of natural
scenes through simple instructions. Compared with it, our frame-
work highlights arranging landscape elements rather thanmodeling
them individually. We also support larger quantities of vegetation.

3 Overview
Our framework comprises three stages: parameterization, optimiza-
tion of a layout plan, and generation of refined features (Figure 2).
In the first stage (Section 4.1), the LLM converts the user input into
parameters. We design the context (prompt) of the queries to ensure
accurate and robust responses, which are then parsed into param-
eters. These parameters cover diverse aspects and functionalities
(see Table 1) and guide the subsequent generation.

The second stage (Section 4.2) encompasses three optimization
steps, deriving a "layout plan" including information of terrains,
spots, roads, and attributes on a grid. The first and third steps em-
ploy an adapted genetic algorithm (Section 4.2.2), incorporating
modified crossover/mutation operations and a novel "evolution" op-
eration to produce solutions effectively. The first step (Section 4.2.3)
assigns each grid cell of five terrain types to characterize its to-
pography and surface features. The second step (Section 4.2.4) first
determines entrances and points of interest. Then, a heuristic-based
path-finding algorithm and evaluations are applied to generate pri-
mary and secondary roads. Like the first step, the third step (Sec-
tion 4.2.5) assigns each cell one of five attribute types, describing
what should be placed on the terrain.

The third stage (Section 4.3) uses two steps to finalize the gen-
eration: smoothing (Section 4.3.1) and procedural arrangement of
elements (Section 4.3.2). The smoothing step operates in both the
horizontal and vertical aspects. Horizontally, it smooths the borders
of the regions using cubic splines. Vertically, it generates a smooth
height map employing interpolations and Perlin Noise. The sec-
ond step arranges numerous landscape models based on specified
rules and patterns, where factors like model categories, terrain, and
location are considered for aesthetic arrangement.

4 Method
4.1 Parameterization from the Input Text
In this section, we introduce the methodology of utilizing the LLM
to convert the user input into parameters. Specifically, we merge
the input text with a predefined context, call the LLM API, and
parse the response to extract parameters.

We use the GPT-4’s chat model [33] 𝐿, which supports a text-
based context comprising one or multiple messages. According to
the official guidance, each message is assigned one of three "roles".
A "user" message𝑚𝑢 signifies the request from the user, and an
"assistant" message 𝑚𝑎 represents the response from the model.
A "system" message𝑚𝑠 , or the system prompt, is an independent
message providing instructions and defining the assistant’s behav-
ior. Recognizing that a comprehensive context enhances quality
and robustness of the responses, we design a context that includes
all three message types: a system prompt𝑚𝑠 , a sample input𝑚𝑢 ,
and a sample output𝑚𝑎 . Section A.1 of the supplementary mate-
rial provides more details for designing the system prompt. For
each query, this context is combined with user input text𝑚𝑖 and
sent to the LLM. Therefore, calling the LLM can be expressed as
𝑚𝑜 = 𝐿(𝑚𝑠 ,𝑚𝑢 ,𝑚𝑎,𝑚𝑖 ), where𝑚𝑜 is the response text from the
model. The output 𝑚𝑜 is then parsed into the parameters using
a syntax tree, enforcing a dictionary-like format for successful
parsing. For 𝑛𝑝 parameters {𝑝1, 𝑝2, ..., 𝑝𝑛𝑝 }, the parsing process is
formulated as {𝑝1, 𝑝2, ..., 𝑝𝑛𝑝 } = 𝑃 (𝑚𝑜 ).
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Table 1: The list of categorized parameters employed in the paper, with each row representing a category of parameters sharing
similar functionalities. Despite some groups appearing similar, they exhibit distinct representations or objectives. For instance,
𝑃𝐴 addresses all regions of the same type, whereas 𝑃𝑎 targets individual regions.

Name Value Type Brief Description Example

𝑃𝜖 Boolean Whether specific elements/types should exist 𝑃𝜖 (𝐻𝑖𝑔ℎ𝑙𝑎𝑛𝑑) = 𝐹𝑎𝑙𝑠𝑒
𝑃𝑁 Pair of Integer The range (lower/upper limits) of the number of specific regions/elements 𝑃𝑁 (𝐿𝑎𝑘𝑒) = [2, 2]
𝑃𝐴 Pair of Float The range of the total area coverage rates of specific regions 𝑃𝐴 (𝐹𝑜𝑟𝑒𝑠𝑡) = [0.35, 0.6]
𝑃𝑎 Pair of Float The range of the area coverage rate of any single specific region 𝑃𝑎 (𝐿𝑎𝑘𝑒) = [0.04, 0.2]
𝑃𝑆 Pair of Float The range of the sizes of specific elements 𝑃𝑆 (𝑅𝑜𝑎𝑑𝑊𝑖𝑑𝑡ℎ) = [2.5, 4]
𝑃𝐸 Enumerable Abstract representation of the extent of specific elements 𝑃𝐸 (𝑇𝑟𝑒𝑒𝐷𝑒𝑛𝑠𝑖𝑡𝑦) = 𝐸𝑥𝑡𝑒𝑛𝑡 .𝐻𝑖𝑔ℎ

Since this paper deals with many parameters, we categorize all
parameters into distinct groups (Table 1), where parameters within
a category share similar functionalities. Given the complexity of
managing all these parameters in a single query, we opt for a multi-
agent approach. For every input, we construct multiple queries to
the LLM, with each query focusing on parameters related to one
specific aspect. Every context {𝑚𝑠 ,𝑚𝑢 ,𝑚𝑎} used in these queries
contains similar background information and adheres to a standard-
ized format. The task description within each context is customized
to address the parameters associated with it.

4.2 Optimization of a Layout Plan
4.2.1 High-level Ideas. With multiple factors (e.g., style, balance,
and accessibility) to consider [60] and numerous natural/artificial el-
ements to arrange, generating a landscape in a single-shot process is
challenging. Therefore, we address the task in a general-to-specific
manner, encompassing two stages. This section (Section 4.2) is the
first stage, which focuses on devising a general plan. To reduce
the search space, we employ a 𝑤 × ℎ grid to formulate the plan
discretely.

We adopt a three-step approach that addresses several layers to
determine the grid contents. First, we generate the terrain, estab-
lishing it as the fundamental feature of the landscape. Second, we
determine the layout of key spots (entrances and points of interest)
and roads. Lastly, we assign the "attributes", guiding the placement
of natural elements or artificial features.

4.2.2 Genetic Algorithm on a Grid. The genetic algorithm is a ver-
satile optimization technique commonly employed to address opti-
mization problems. Each potential solution is encoded and treated
as an individual. By evaluating these individuals using a fitness
function and applying selection, crossover, and mutation opera-
tions, the algorithm iteratively fosters new generations of refined
solutions to the given problem.

We implement the genetic algorithm on a grid with𝑤 × ℎ cells,
where the "types" assigned to all cells represent a solution. Each
cell’s type is denoted by a non-negative integer, with a total of 𝐾
types available. Conventional practice employs a 1D binary string
encoding for each individual [21]. However, when conforming the
1D encoding to 2D cells, the crossover/mutation operations may
lead to fragmented and less optimal solutions due to mismatched
spatial properties of 1D strings and 2D grids. Therefore, we intro-
duce specialized modifications to these operations tailored to a grid.

Figure 3: Illustrations for Section 4.2.2. (a) The basic con-
cepts. (b) Crossover on two cases. For similar selected regions,
all contents are exchanged; otherwise, only the intersection
parts are exchanged. (c) Mutation on two cases. Contents ei-
ther in a region or a block are switched as a whole. (d) The
novel "evolution" operation. Depending on the fitness func-
tion, it actively increases the fitness value.

Additionally, we propose incorporating an "evolution" operation
into the genetic algorithm to accelerate the iterations. These opera-
tions are illustrated in Figure 3. Thus, the genetic algorithm follows
an iterative selection-crossover-mutation-evolution procedure. Sec-
tion A.3 of the supplementary material has more details.

4.2.3 Optimization of the Terrain. As the first step in Section 4.2,
this part determines the terrain for the landscape. Specifically, we
assign each cell a terrain type. Five distinct types are considered,
each represented by an integer index: unused (0), aquatic (1), ter-
restrial (2), artificial (3), and elevated (4). These types account for
the physical features of the land, encompassing its topography and
surface attributes. To elaborate on each type:

• An "unused" cell indicates that the cell is excluded from the
site, allowing the landscape’s shape to vary.

• An "aquatic" cell signifies the presence of a water body.
• "Terrestrial" and "artificial" cells represent flat areas. "Ter-
restrial" features land with natural elements (soil, rocks, etc.),
and "artificial" features ground covered by artificial elements
(bricks or cement).
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Figure 4: The results for three steps in Section 4.2. (a) The first
step (Section 4.2.3) optimizes terrain types (unused, aquatic,
terrestrial, artificial, and elevated) using the genetic algo-
rithm. (b) The second step (Section 4.2.4) determines en-
trances, points of interest, and two-level roads connecting
them. (c) The last step (Section 4.2.5) applies the genetic al-
gorithm again to optimize the attributes (none, basic, low-
growing, tall-growing, and architectural).

• An "elevated" cell specifies the presence of a highland or a
hill mainly reserved for natural elements.

As previously stated, the genetic algorithm is utilized for the
optimization. The fitness function considers multiple factors (ex-
istence, numeracy, area, location, and compatibility), detailed in
Section A.4 of the supplementary material. Figure 4(a) shows an
optimized result in this step.

4.2.4 Optimization of Spots and Roads. In the second step, we
determine the spots and generate the roads. The generation sequen-
tially targets entrances, points of interest, and primary/secondary
roads. A select-best structure is applied several times: Randomly
or procedurally generate a total of 𝑁𝑔 valid solutions, evaluate each
of them, and then select the best-evaluated solution.

An entrance is defined as a corner on the boundary of the land-
scape. In the select-best procedure to generate 𝑃𝑁 (𝐸𝑛𝑡𝑟𝑎𝑛𝑐𝑒) en-
trances, solutions with entrances better adhere to the following
criteria are more favored: (1) Adequate spacing between pairs, (2)
Even distribution across all directions, and (3) Adjacency to flat
lands. Similarly, we determine the 𝑃𝑁 (𝑃𝑜𝑖𝑛𝑡𝑂 𝑓 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡) points of
interest (POIs), which serve as scenic spots or landmarks.

Regarding road generation, we prioritize the primary roads,
which serve as vital routes connecting key locations. In our context,
we generate primary roads that connect all entrances and POIs. We
start by connecting every entrance to its nearest POI, then proceed
to repeatedly connect pairs of separated POIs with the smallest
Euclidean distance until all POIs are connected. We aim for an
approach that balances preserving the spatial structure and gener-
ating straightforward roads, guided by the following principles [25]:
(1) Avoid self-intersections or loops, (2) Follow the region borders
when feasible, (3) Minimize unnecessary twists and turns, and (4)
Avoid running along the site boundary.

Based on these principles, each road is generated using a ran-
domized heuristic approach, similar to a path-finding process. A

(a) (b)

Figure 5: The results of Section 4.3.1. (a) Vertically, we gen-
erate a continuous height map. Lighter areas are higher. (b)
Horizontally, we introduce curves to the region borders, with
colors signifying various combined types (see Section 4.3.2).

select-best structure is employed to evaluate and refine the gener-
ated roads. After determining all primary roads, we supplement
the secondary roads to connect more regions and spots. Section
A.5 of the supplementary material provides details for generating
these roads. We conclude this part by providing an example of the
optimized result, as shown in Figure 4(b).

4.2.5 Optimization of Attributes. The plan for vegetation and artifi-
cial elements has yet to be decided. In the final step, we address this
by assigning each cell an "attribute" type to describe what should
be placed on the terrain. Five types are designed: none (0), basic (1),
low-growing (2), tall-growing (3), and architectural (4).

• A "none" cell indicates that no explicit development is needed
for the cell, leaving it as raw terrain.

• A "basic" cell recommends fundamental and typical vegeta-
tion for the terrain, such as grass, weeds, and rocks.

• "Low-growing" and "tall-growing" cells feature plants of
different heights. Shrubs are typical low-growing vegetation,
while trees and bamboo are tall-growing.

• An "architectural" cell emphasizes artificial elements such
as pavilions, corridors, and statues.

The genetic algorithm is once again utilized. Compared with
Section 4.2.3, we consider similar perspectives (existence, numeracy,
area, location, and compatibility) but focus more on the attribute’s
compatibility with the terrain and key spots (Section A.6 of the
supplementary material). The result is shown in Figure 4(c).

4.3 Generation of Refined Features
4.3.1 Smoothing. This section completes the generation by re-
fining the features and determining all elements using two steps:
smoothing and procedural arrangement. In the first step, we apply
smoothing for a more natural landscape. In the vertical aspect, we
generate a continuous height map that specifies the physical height
of the ground at any location. The method involves assigning a rel-
ative height to each cell based on its terrain type, applying bilinear
and bicubic interpolation techniques, and adding Perlin Noise [41].
We then proceed to the horizontal aspect and smooth the region
borders by introducing cubic splines. These smoothing techniques
are detailed in Section A.7 of the supplementary material. Figure 5
illustrates the results of this step.
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Table 2: The representative elements for the "combined" types. A "/" indicates that the type is invalid or does not require
vegetation. "(s)" implies only a few elements, while "(l)" for numerous elements. Note that more elements are supported when
arranging the models (in Section 4.3.2). For instance, statues, hallways, and pavilions are all compatible with the type (𝑇3, 𝐴4).

Unused (𝑇0) Aquatic (𝑇1) Terrestrial (𝑇2) Artificial (𝑇3) Elevated (𝑇4)
None (𝐴0) / / grass (s) tiles (l) rocks (s)
Basic (𝐴1) / lotus (s) grass (l), shrubs (s) tiles (l), flowerbeds (s), shrubs (s) grass (l), rocks (s)

Low-growing (𝐴2) / lotus (l) shrubs (l), trees (s) tiles (l), shrubs (l), flowers (s) shrubs (l), grass (s), rocks (s)
Tall-growing (𝐴3) / / trees (l), bamboos (l) tiles (l), trees (l) trees (l), bamboos (l)
Architectural (𝐴4) / rocks (s) pavilions (s), trees (l) tiles (l), chambers (l), trees (s) pavilions (s), trees (l)

4.3.2 Procedural Arrangement of Landscape Elements. Aiming for
a reasonable arrangement, we first determine the "combined" types,
referring to the combination of a terrain type and an attribute
type. Formally, the combined type of a cell with terrain type 𝑇𝑖
and attribute type 𝐴 𝑗 is denoted as 𝐶𝑖, 𝑗 = (𝑇𝑖 , 𝐴 𝑗 ). It can also be
characterized by representative natural and artificial elements, as
presented in Table 2. A group of cells sharing the same combined
type is defined as a "zone", a refined version of "region" that operates
as a cohesive unit with unified functionality and characteristics.

This step finalizes the generation by procedurally arranging
landscape models. The arrangement starts with the instantiation of
the zone borders, considering different cases for walls, bridges, and
roads. Then, we place models within zones as the content, following
specific "rules" and "patterns". In our context, a "rule" is represented
by the spatial relationship among different models or between
models and the zone, referring to spatial relationship explained
in [62]. A "pattern" emphasizes particular structures (e.g., arrayed,
random, clustering) for placing groups of models, similar to [32].
Rules are typically applied to artificial elements, whereas patterns
are primarily used for natural elements. We can combine these rules
and patterns for more complicated and appealing landscapes. See
Section A.8 of the supplementary material for more details.

The arrangements results are stored as files containing all neces-
sary information (the height map, textures, and model placement)
to construct the landscape scene. A Unity plug-in is developed to
parse these files and convert them into Unity-native scenes. Each
scene is automatically rendered with twenty-one images, compris-
ing an overview from a bird’s eye perspective, four large-scale views
covering all sides, and sixteen small-scale views from predefined
angles and locations. Examples of rendered results and viewpoints
are presented in Figure 6. Section B.1 of the supplementary material
shows more results and implementation details.

5 Experiments
5.1 Performance
5.1.1 Efficiency of the Framework. The grid size significantly influ-
ences the efficiency of our framework. Since the parameterization is
LLM-related and unstable, we focus on assessing the optimization
(Section 4.2) and refining (Section 4.3) sections. We conduct five
hundred trials using widths and lengths from {10, 15, 20, 30}, with
mean execution times in seconds displayed in Figure 7b. Larger
grids like 30× 30 require significant time, whereas lower-resolution
grids may compromise generation quality. Therefore, we recom-
mend a 20×20 grid, which takes about twenty seconds with parallel

(a) (b)

(c) (d)

Figure 6:We develop a Unity plug-in to automatically convert
the results to Unity scenes and render them. (a) A bird’s eye
view of the whole landscape. (b) A large-scale view from
one side of the landscape. (c) A small-scale view within the
landscape. (d) Sixteen viewpoints relative to the landscape.

computing. Using a 20×20 grid, we analyze the efficiency of various
framework components, illustrated in Figure 7a. The components
with genetic algorithms and the procedural arrangement consume
significant time due to the extensive iterations and computations.

5.1.2 Influence of the User Input. In this part, we investigate the
influence of user input on the results. First, we assess the LLM’s
ability to interpret user descriptions. We examine its accuracy in
determining the existence of a lake (i.e., 𝑃𝜖 (𝐿𝑎𝑘𝑒)) based on pos-
itive/neutral/negative descriptions (e.g., "The landscape has two
lakes", "The site is mostly covered by trees", and "The landscape
has no lakes"). Although the LLM may sometimes fail to accurately
comprehend when disturbed by additional information, implicit
references, or negative wording, the responses are generally accu-
rate. Section B.2 of the supplementary material has more details
on this case. For more complicated cases associated with many pa-
rameters, we find the LLM able to handle the preferences regarding
each parameter accurately. We also test ambiguous or even unre-
lated inputs (e.g., "An economical landscape"), where parameters
are mostly left as default. In general, we conclude that the LLM is
effective in input comprehension.
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(a)

(b) (c)

Figure 7: Some illustrative results from experiments. (a) Time
breakdown for framework components, with element ar-
rangement and the genetic algorithm consuming the ma-
jority of time. (b) Total execution time across various grid
sizes. (c) Maximum fitness values for the genetic algorithm
under different crossover and mutation rates. Optimal rates
(𝜂𝑐 = 0.9, 𝜂𝑚 = 0.7) are chosen as default hyperparameters.

(a) (b)

Figure 8: An example demonstrating the influence of the
user input. (a) The user specifies the presence of many lakes.
(b) The user specifies that no lakes should exist.

Then, we examine the generation process’s ability to adhere to
the parameter. For the case regarding the existence of lakes, we con-
duct one hundred trials and find that 98% of the resulting landscapes
have no lakes when specifying 𝑃𝜖 (𝐿𝑎𝑘𝑒) = 𝐹𝑎𝑙𝑠𝑒 . Conversely, all
landscapes contain at least one lake when 𝑃𝜖 (𝐿𝑎𝑘𝑒) is set to True or
left unspecified, due to the emphasis on lakes as essential elements
in the fitness function. Figure 8 illustrates examples of landscapes
with and without lakes. We also test cases for other landscape el-
ements and obtain similar results, which indicates our process’s
high reliability.

5.2 Ablation Study
5.2.1 Effectiveness of the Genetic Algorithm. In this part, we eval-
uate the proposed generic algorithm from several aspects. First,
we conduct tests with different crossover rates 𝜂𝑐 ∈ [0.4, 1] and
mutation rates 𝜂𝑚 ∈ [0.2, 0.8]. The maximum fitness value for eval-
uating the terrains (Section 4.2.3) is used as the metric. For each
combination of rates, we run the algorithm two hundred times
under identical configurations. Figure 7c presents the results. The
combination (𝜂𝑐 = 0.9, 𝜂𝑚 = 0.7) yields the highest fitness value,
indicating that the algorithm is most effective under these values.
These values are thereby chosen as the default hyperparameters.

Next, we examine the novel "evolution" operation by comparing
our algorithm with the baseline without this operation (i.e., evolu-
tion rate 𝜂𝑒 = 0). Using the same experimental settings, the mean
fitness value for the baseline yields 26.15, which is 22.5% lower than
the value of 33.73 achieved with the evolution operation. This re-
sult is anticipated as the evolution operation actively raises fitness
values. However, we observe that a high 𝜂𝑒 may excessively reduce
diversity due to extensive modifications. Thus, a default value of
𝜂𝑒 = 0.1 is selected to balance effectiveness and diversity. Finally,
we compare the proposed 2D-adapted algorithm with the classic
1D implementation. The classic approach achieves a mean fitness
value of 12.74, which is significantly outperformed by our method.
It demonstrates that the proposed genetic algorithm successfully
adapts to the 2D case and produces better results.

5.2.2 Effectiveness of the Optimization of Roads. In this part, we
compare the heuristic road generation approach in Section 4.2.4
with a baseline approach that connects corners with at most two
straight segments (in an ’L’ shape). Both methods are tested on
random terrains, entrances, and POIs to generate the primary roads
until all entrances and POIs are connected. The results demonstrate
that although our method produces slightly longer roads, it signifi-
cantly reduces the disruption to the region structure and results in
more balanced region areas. See Section B.4 of the supplementary
material for details.

5.3 User Study
5.3.1 Task Specification. This section elaborates on the user study
that evaluates our framework. We invite three experienced design-
ers to craft landscapes manually within Unity. All landscapes are
configured as 400× 300 meters (equivalent to a grid size of 20× 15),
with the same set of assets utilized for design. Ten landscape scenes
are obtained for comparison (Manual), each taking about two days
to complete. Furthermore, we design two baseline approaches modi-
fied from our framework. The first baseline (Random1) replaces the
optimization of attributes (Section 4.2.5) with a naive process that
assigns each cell a random attribute. The second one (Random2)
simplifies the procedural arrangement of elements (Section 4.3.2) by
organizing all elements in a randomized manner. These baselines
also serve as a supplement to the ablation study. One hundred land-
scapes are randomly generated for each baseline and our method
(Ours).

Six criteria with assigned weights, devised by professional land-
scape architects, are employed to facilitate a comprehensive evalu-
ation (Table 3). These criteria are explained in Section B.5 of the
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Table 3: The criteria for comprehensively evaluating the land-
scapes, weighted based on their importance.

Criterion Label Weight

Degree of Ecological Diversity D 25%
Adaptability Based on Local Conditions A 20%
Management of Spatial Sequences S 15%
Presentation of Visual Richness R 15%
Application of Landscaping Techniques T 15%
Minimization of Artificial Traces N 10%

supplementary material. Every participant evaluates twelve dis-
tinct landscapes, with three scenes randomly selected for each
approach. Twenty-one images are generated from viewpoints in
Figure 6 for every landscape. Using a 5-point Likert Scale, partic-
ipants score each criterion from 1 (lowest) to 5 (highest) for all
landscapes. Finally, participants are asked to select the best one
among all landscapes.

5.3.2 Result and Analysis. Thirty users participate in our study,
comprising thirteen males and seventeen females with an average
age of 𝜇 = 23.5 and standard deviation 𝜎 = 2.96. Nine of them
(30%) are familiar with landscape design. Ninety valid samples are
collected for each approach, and the weighted scores are computed
and presented in Figure 9a. The mean weighted score and stan-
dard deviations for the four approaches are 3.37(0.70), 3.39(0.69),
3.49(0.68), and 3.52(0.70), respectively. Though a one-way ANOVA
test indicates no significant difference among the four groups of
data (𝑝 = 0.376), Ours and Manual slightly outperform Random1
and Random2. It suggests that randomizing certain parts of our
framework produces inferior results. Figure 9b shows the frequency
of each approach being selected as the best. Despite our approach
not being as favored, it generates landscape scenes comparable to
the manually crafted ones and exhibits satisfying plausibility.

In Figure 9c, we analyze scores for each criterion. Landscapes
fromOurs andManual receive higher overall ratings. Manual scenes
demonstrate significant advantages in criteria T and N, attributed
to exquisite landscaping techniques and outstanding naturality.
However, they receive lower scores for D, primarily due to fewer
elements compared to the generated scenes, given the substantial
effort required for manual operations. Compared to the crafted land-
scapes, our results excel in diversity and richness but lack aesthetics
in other aspects. However, feedback reveals that some users fail to
notice that most scenes are generated or cannot distinguish them
from crafted ones, even after completing the study. Despite room
for improvement, the generated landscapes can already compete
with the manually designed ones in terms of quality.

6 Conclusion and Future Work
This paper introduces a framework leveraging the capabilities of
LLMs and PCG for controllable landscape generation. Following
a three-stage process, the framework can seamlessly convert any
textual input into a batch of aesthetic landscapes tailored to user
specifications. The performance analysis and ablation studies vali-
date the plausibility of the proposed approaches, and the user study

(a) (b)

(c)

Figure 9: In the user study, each criterion in Table 3 is rated
from 1 to 5. (a) The weighted sum of scores considering all cri-
teria. Landscapes by Ours and Manual receive better ratings.
(b) The breakdown for selecting the best scene, indicating
that the crafted scenes are the most favored. (c) Scores for
each criterion. Our results excel in diversity and visual rich-
ness, whereas the designed scenes stand out in other criteria,
especially techniques and naturality.

demonstrates that the generated landscapes stand on par with those
crafted by professional designers. The framework serves as a tool
that enables efficient and controllable landscape generation for or-
dinary users, potentially enhancing design productivity. However,
we still have the following limitations.

Firstly, the framework lacks dynamic effects and interactions
in temporal and spatial dimensions. In real world, landscapes are
vibrant components within a larger ecosystem. Landscapes are
subject to dynamic influences and experience seasonal changes.
Spatially, the landscape is intricately linked to its surroundings,
encompassing natural factors like sunlight and artificial elements
such as streets. We plan to contextualize the landscape within a
broader framework and incorporate more dynamic interactions.

Secondly, the currently generated results are not yet comparable
to well-designed real-world landscapes. For instance, the artificial
traces of a grid cannot be removed by smoothing. Additionally,
the limited rules, patterns, and element categories compromise
flexibility in landscape arrangement. Our future direction involves
introducing refined approaches and expanding the range of avail-
able assets to achieve more realistic results.

Finally, there remains room for enhancing controllability within
the current framework. As discussed in Section 5.1.2, the conversion
from user input to parameters occasionally suffers from inaccura-
cies. In the future, we will conduct more extensive experiments to
understand the parameterization and enhance control.
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