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A SUPPLEMENTS FOR THE METHOD

A.1 Parameterization from the Input Text

In the parameterization step, the system prompt m; is divided into
four parts: The first part establishes the assistant’s identity and
offers a brief background introduction, and the second part provides
a detailed problem explanation and clarifies vital concepts. The third
one outlines the task, instructing the assistant to generate specific
parameters based on user input. The last part precisely specifies
the output text format for parsing. Given that user input might
not cover all relevant factors considered in the prompt, we allow
the assistant to provide "default" results when specific parameters
are not explicitly mentioned. A simplified version of the system
prompt is illustrated in Figure 1. Note that defining the context is a
once-and-for-all process. The same context can be combined with
various inputs and used for numerous queries.

A.2 Specifications

A grid with w X h square cells (with w columns and h rows) is used,
with a total of (w+1) X (h+1) cornersand A X (w+1)+ (h+1) Xw
edges in the grid. In the subsequent descriptions, the length of
an edge is considered as 1, which serves as the unit distance for
the grid. Similarly, two adjacent cells (left and right or front and
back) are considered to have a unit distance. In most calculations,
we compute the distance between cells, edges, or corners using
the Euclidean metric. It is also important to recognize that a unit
distance corresponds to D meters in the real-world context.

In this paper, an edge e is defined as the border between two cells
or the connected part between two corners v1 and vz, denoted as e =
(v1,v2). A road R comprises k > 1 connected edges linking two dif-
ferent corners v4 and vp, i.e., R = {(v4,v1), (v1,02), ..., (Vg—2, Vg—1)>
(vk-1,0B)}

A.3 Genetic Algorithm on a Grid

In this section, we present the key concepts in the adapted genetic
algorithm as follows:

Encoding and Basics We use a w X h array matching the grid’s
size to store integers ranging from 0 to K — 1 for any in-
dividual. A cell u positioned at column x and row y is de-
noted as u(x,y). In any individual, two cells are considered
"connected" only if they have a unit distance between them,
so diagonal cells are not considered connected. A "region”
Q = {uy,uy, ..., uy } is defined as a set of cells of the same type
connected as a whole. The term "fragment” usually denotes
a small undesirable region. A "block" B = {uy, ua, ..., Uyy, xp, }
represents a rectangular area within the grid, encompassing
w1 X h1(1 £ w; <w,1 < hy < h) cells. The illustrations are
as Figure 2a.

Crossover Crossover is the operation where specific components
of two chosen individuals are exchanged to generate two

Background
You are a landscape architect who helps the user. The user is going to design the
landscapes on a grid (for example, with 20*20 cells)...

Problem Explanation
There are expectedto be several types of terrain... These terrains has the
Jollowing characteristics... For example, a lake reférs to a body of water where
bridges can be built and...
If a series of conmected cells on the grid are all of the same type, they will be
considered a region. The entire terrain may have multiple regions...

Task Specification
The user will next input a description of the landscape, and you need o extract
certain parameters and restrictions regarding these aspects:
1. The user specifies which types of terrain must be present or nust not be present.
2. The user specifies the total coverage percentage for certain types of terrain.

It is likely that the user's input does not cover some of the information above. In
such a case, you... Your output needs to follow logical consistency, such as... If the
user's input cannot be resolved, then...

Output Format
Your output must strictly follow the format described below:
The first 5 lines contain lists corresponding to ground cover types (0 t0 4) ...
The first line contains boolean values (0 for no, 1 for yes).
The second line contains tuples representing lower and wupper limits...
The last line provides feedback to the user. If the input cannot be resolved...
Otherwise, output "OK".

Figure 1: A simplified version of the system prompt for pa-
rameterization. To enhance the LLM’s comprehension and
task completion, we segment the prompt into four parts.

new individuals. If the selected individuals are the same,
no crossover is needed. Otherwise, we begin by randomly
selecting a position (x, y), where the two cells u1 (x, y) and
uz(x,y) at that position from different individuals are of
different types, denoted as #; and f;, respectively. We then
compute the regions Qq and Qj containing the two cells,
respectively. By overlapping the two regions, we obtain the
intersection part Q. = Q1 N Q. If the intersection part

% > nq (where nq is
a controllable threshold), then the regions Q; and Qy are
considered "similar" to each other. In such a case, the contents
of the two regions are exchanged, implying that all cells in Q;
are assigned type t, while those in Qy are assigned type t;.
Otherwise, only the intersection part is exchanged. Figure 2c
shows the crossover operation for the two cases. Generally,
the adapted approach preserves the spatial continuity when
exchanging the components.

Mutation Mutation is the operation wherein an individual un-
dergoes specific changes in its content. We design two ap-
proaches to address this operation, as shown in Figure 2d.
The first approach is to mutate a region. A region Q is ran-
domly selected, and all its cells are altered to another single
type, preserving the structure of all existing regions. The
second one is to mutate a block. A small block B is randomly
selected at a random location, and all its cells are assigned a
random single type. Although easy to execute, the second ap-
proach can potentially disrupt spatial continuity and result

is sufficiently large, i.e.,
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ALGORITHM 1: The Genetic Algorithm

Output: The individual with the highest fitness value.
Initialize the population of N, individuals;

-

Generation « 1;

)

3 repeat

4 Evaluate all individuals using the fitness function;

5 Select N, individuals as the new generation of population;
6 Perform Crossover operations with a rate of #.;

7 Perform Mutation operations with a rate of #,,;

F Perform Evolution operations with a rate of n,;

9 Generation <« Generation + 1;

10 until Generation > Ny;
Choose the individual with the highest fitness value throughout the
entire process as the output;

1

oy

in more fragments. However, introducing such variations to
the regions can pave the way for better solutions.

Evolution Evolution, a novel operation proposed, actively modi-
fies an individual to increase its likelihood of being selected
into the next generation. Specifically, an individual after
evolution is better evaluated by the fitness function, as man-
ifested in Figure 2e. In essence, evolution serves as a pos-
itive form of mutation. Since most random mutations are
detrimental to individuals, an evolution operation assists
the population in fixing defects and cultivating improved
solutions. The implementation is always based on the fitness
function. In this paper, this operation prioritizes reducing
fragmentation and altering undesirable cells or regions in
most instances.

The procedure of the adapted genetic algorithm is outlined as
Algorithm 1. The algorithm’s parameters, including Ny, Ny, n¢, m.
and 7, are all adjustable.

A.4 Optimization of the Terrain

For a controllable and effective generation, the genetic algorithm’s
fitness function should adhere to both the parameters and gen-
eral landscape design principles. Therefore, any violation of the
parameters and the principles incurs penalties. To compute the
fitness value f(I) for any individual I, we begin by summing up
a "total penalty value", denoted as p(I), which comprises several
components as listed below:

(1) The existence penalty, denoted as p¢(I). Aligning with
the parameter Pe, the value depends on each region type’s
correct or incorrect existence in I. For instance, if the user
specifies no lakes (i.e., P (Lake) = False), but "aquatic” cells
are present in I, then p¢ (1) is significantly increased.

(2) The numeracy penalty pn (I), which is controlled by Py.
When the count of regions in I for a specific type does not fall
within the range decided by the parameter, the penalty accu-
mulates. The deviation from the standard range influences
the penalty value.

(3) The area penalty p4(I), aligned with both P4 and P,. Like
pN (I), the penalty accumulates whenever the area coverage

Anonymous Authors

A grid with 8*8 cells

An individual Ablock All regions

(@)

lM\l(aﬁon
EEEE ] /

Dissimilar regions

Fitness = 6

Fitness = 10

(d

Figure 2: Examples and illustrations for the genetic algo-
rithm. (a) The basic concepts. (b) The grid cells can be flat-
tened using a row-wise representation. However, when oper-
ating on one-dimensional continuous cells, more fragments
may be created in the grid due to discontinuity in a two-
dimensional representation. (c) The crossover operation on
two cases: When the selected regions are similar, the contents
are exchanged; otherwise, only the contents of the intersec-
tion part are exchanged. (d) The two approaches for the mu-
tation operation. Contents either in a region or a block are
switched as a whole. (¢) The novel "evolution" operation that
increases the fitness value. The implementation depends on
the fitness function.

rates deviate outside the specified range. Both the total cov-
erage rate for all regions and the coverage rate for any single
region contribute to the penalty.

(4) The location penalty py (I), influenced by Pr. Each region
is assigned one or more enumerable labels representing its
approximate locations (e.g., Center and BottomLeft), and
the penalty accumulates if none of these labels match the
parameter specifications. "Aquatic" and "elevated" cells incur
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Figure 3: An example of deciding the probabilities (before
normalization) in a single iteration of Algorithm 2. The prob-
abilities are adjusted based on the principles described in
Section 4.2.4. An edge that follows the principles is more
likely to be selected and added to the road.

higher penalties due to their distinctiveness. Additionally,
landscape principles are incorporated into the evaluation.
For instance, an "aquatic" region too close to the landscape
boundary is penalized.

(5) The compatibility penalty pc(I) that is unrelated to any
parameter. Governed by the landscape design principles, it
evaluates the type compatibility of adjacent regions. For in-
stance, an "elevated” region adjacent to an "aquatic" region
is considered appropriate. However, if a lake surrounds the
highland, the penalty value will accumulate due to incom-
patibility.

In the evaluation, all the above components yield non-negative
values. Upon computing the penalties, the total penalty value p(I)
and the fitness value f(I) are given by Equation 1 and Equation 2.
In each iteration of the algorithm, the N, individuals for the next
generation are selected using a classic Roulette wheel selection
approach [1]. For a population {I1, I, ..., IN, } with corresponding
fitness values {f(I1), f(L2), ..., f(INP)}, the probability of selecting

indivi o fU)
any individual I; is i\jflf(fk
domly choosing the individuals one by one (with repeated selection

allowed) until the desired N, individuals are selected.

. The selection process involves ran-

p(I) = pe(I) + pn(I) + pa(l) + pL(I) + pc(I) (1)
100
f)= m (2)

A.5 Optimization of Spots and Roads

The randomized heuristic approach to generate primary roads is
outlined in Algorithm 2. The algorithm operates by repeatedly
determining the next corner. In each iteration, an equal probability
of being selected is initially assigned to each corner among the
four possible directions. However, the probabilities are multiplied
by several hyperparameters or set to zero based on different cases.
Eventually, edges adhering to the principles (described in Section
4.2.4 of the paper) are more likely to be selected as the road. As
an example, we present Figure 3 to illustrate the key ideas in the
algorithm.

This road generation approach balances exploration and exploita-
tion, potentially resulting in satisfying roads. However, as a ran-
domized approach, it may also lead to poor outcomes. Therefore, we

ACM MM, 2024, Melbourne, Australia

ALGORITHM 2: The Randomized Heuristic Path-Finding Approach

Input: The starting corner o5 and the target corner v;.
Output: The road R connecting vs and v;.

1 R {}

2 V< {ous}// Visited corners;

3 v« vg// Current corner;
4 d <« —1// Last direction;
5 repeat
6 Determine the set of four adjacent corners
Va & {o1, 02,03, 04 }3
7 fori e {1,2,3,4} do // Handle each adjacent corner

8 pi < 1// Probability of being selected;

9 if v; € V then // Already visited

10 pi < 0;

1 end

12 if v; is outside the landscape then

13 Pi < 0;

14 end

15 if (v, v;) goes along the boundary of the landscape then
16 Pi < opi;

17 end

18 if (v, v;) goes along the border of two regions then
19 pi — api;

20 end

21 if (v, v;) goes towards v; then

22 Pi < a3pi;

23 end

24 if d == ithen // Go straight

25 Pi < aupi;

26 end

27 end

28 S < p1+ P2+ p3+ Py;

29 fori € {1,2,3,4} do // Normalize

30 pi — ’%;

31 end

32 Randomly select a number k from the set {1, 2, 3,4}, where

each number i has a probability of p; of being chosen;
33 d — k;
34 R~ RU {(v,0g9)};
35 V—VU{ug};
36 v — vg;

37 until 0 = vy;

employ the select-best structure. In doing so, we generate multiple
solutions and select the best one. The evaluation score E(R) for
road R is formalized as Equation 3, where |R| is the length of the
road and T(R) is the number of left/right turns in the road. Each
edge e is assigned a value E(e), specifically, f; for boundary edges
of the landscape, f; for borders of regions, and 0 otherwise. The
solution with the highest E(R) is selected as the final result.

E(R) = -1.5(|R| + T(R)) + ZE(e) 3)

e€R
The roads to connect all POIs and entrances are generated repeat-
edly using Algorithm 2. In practice, already-generated roads can
impact the process of connecting more corners. We use a union-find
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set to record the connected corners to address this. Corners con-
nected by existing roads are placed in the same union. Therefore,
in the iteration process of Algorithm 2, the termination condition
can be modified to "v and v; are in the same union", indicating that
v and v; are already connected by existing roads.

With only the primary roads, the tourists may only have access
to a few regions and scenic spots. Secondary roads, serving as sup-
plements to the primary roads, are crucial for enhancing the touring
experience. Unlike addressing primary roads, we use the following
process to determine secondary roads: First, we designate all non-
primary-road region borders as secondary roads. Subsequently, we
repeatedly divide the largest region into two parts and add the di-
viding edges to secondary roads until the number of edges reaches
the complexity specified by parameter Pg(RoadComplexity). Each
region division employs a growth-based approach, prioritizing rela-
tive balance while incorporating controlled randomness. Any value
(extent) of parameter Pr(RoadComplexity) is mapped to a rate r
(0 < r < 1), which represents the number of road edges divided
by the total number of available edges in the grid. For example,
a Pg(RoadComplexity) = Extent.Low is mapped to r = 0.3, and
Extent.High is mapped to r = 0.4.

A.6 Optimization of Attributes

The genetic algorithm in this step uses similar configurations to
that in Section A.4. We apply the same approach to calculate the
fitness value for each individual, with modifications to the criteria
for the penalty value p’(I) (some of which operate similarly, thus
descriptions are omitted):

(1) The existence penalty p/(I).

(2) The numeracy penalty py (I).

(3) The area penalty p’, (I).

(4) The location penalty p; (I). Same as the one in Section A4,
the value is influenced by the parameter Py, but no additional
restrictions for the location of specific types are applied here.

(5) The compatibility penalty p/.(I), which serves as a crucial
component guided by landscape design principles. Firstly, we
assess the attribute’s compatibility with the terrain, where
every cell with inappropriate combinations is penalized. For
example, "tall-growing" and "aquatic” are incompatible types,
but "tall-growing" and "elevated” match perfectly. Next, we
assess the attribute’s compatibility with the key spots, where
we only consider cells near the entrances and POIs. For ex-
ample, among the cells with an Euclidean distance of less
than 3 to a POI, an "architectural” cell is required. Another
case is that both "tall-growing" and "architectural” cells are
not recommended near an entrance due to the reservation
of open space.

After evaluating all the abovementioned components, we com-
pute p’(I) and the fitness value f’(I) similar to Equation 1 and
Equation 2. Other components of the genetic algorithm, including
the selection policy, remain unchanged.

A.7 Smoothing

For the vertical aspect of the smoothing, we generate a continuous
height map that specifies the physical height of the ground at any
location (with coordinates not necessarily being integers). Firstly,
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every cell u is assigned a relative height h(u) ranging from 0 to 1
according to its terrain type:

e Every "aquatic” cell is assigned h(u) = 0. To simplify, we
stipulate that all water surfaces have a unified height of
Hyy > 0, so that they can cover all "aquatic” cells.

o "Terrestrial” and "artificial" cells are both assigned approxi-
mate heights slightly higher than Hy,. Random values are in-
troduced for a little variance in the heights, formally, h(u) =
Hg + prRandomFloat(0, 1) for terrestrial cells and h(u) =
Hg +paRandomFloat(0, 1) for artificial cells. Here, Hg rep-
resents the basic height of the ground, and y7 and p4 are
small threshold ratios for the variation.

o "Elevated" cells are classified into three layers. A cell in
the ith (i € {1,2,3}) layer is given a relative ratio t =
i-1+RandomFloat(0l) 'then h(u) = (1 — t)Hg + ¢, indicat-
ing an interpolation of Hg and 1 with ratio t. In a region full
of "elevated” cells, interior cells are of higher layers. Specif-
ically, cells adjacent to the boundary are of layer 1, cells
adjacent to the layer 1 cells are of layer 2, and the remaining
cells are of layer 3. This layering process ensures a smooth
climb from the bottom to the top and allows for elevations
among different parts of the highland.

When computing heights, each cell can be represented by its
center point, as shown in Figure 4. The simplest way to obtain a
continuous height map is to perform bilinear interpolation on the
two-dimensional grid. However, as the gradients among adjacent
cells may vary significantly, there can be obvious artifacts at the
positions of the edges and corners in the original grid. Another ap-
proach is to apply bicubic interpolation [2], which introduces curves
of higher degrees and results in a much smoother map. However,
we observe that applying bicubic interpolation directly can lead to
changes in height values at the cell center points, especially near the
water and the highlands, e.g., an aquatic cell is lifted weirdly. There-
fore, before interpolation, we perform an upscaling operation by
computing the heights of corners and edge midpoints. As illustrated
in Figure 4, the height of a corner equals the mean of four adjacent
cells” heights, which is a special case of bilinear interpolation. The
heights of edge midpoints are computed in a similar manner. Given
a grid with w X h cells, the upscaling operation results in a new
grid comprising (2w + 1) X (2h + 1) corners. Performing bicubic
interpolation on the new grid allows the original assigned heights
to be better preserved while achieving sufficient smoothing. For a
more natural terrain elevation, we add Perlin Noise to the resulting
height map scaled by pup, i.e., Ah = up(PerlinNoise(0, 1) — 0.5) [5].
The resulting height map is truncated to ensure all values range
from 0 to 1, represented by a grayscale image. When eventually gen-
erating the landscape scene, the relative height is mapped linearly
to a range from Om to Ps(MaxHeight), where Ps(MaxHeight), cor-
responding to h(u) = 1, is a parameter specified by the user.

Horizontally, the smoothing is applied to each region border,
which comprise a set of edges stretching along the axes’ directions
and connecting the corners. The idea is to introduce curves and
insert more points. Firstly, we add a slight Gaussian displacement to
each corner. Then we identify the control corners, which are corners
connected to more than two edges. Each segment, defined as the
portion between two control corners, constitutes a sequence of
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Figure 4: The illustration of the upscaling operation for com-
puting heights. Each cell is represented by its center point
(rectangle), with the height already assigned. The heights of
corners and edge midpoints are computed through bilinear
interpolation. These points are then regarded as the corners
of a new grid for subsequent interpolation. If the original
grid contains wxh cells, the new grid will have (2w+1)x(2h+1)
corners.
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Figure 5: The process of smoothing the regions’ borders.
Given a set of corners and edges, we start by adding slight
displacements. Then we identify the control corners and seg-
ments. Lastly, we apply a weighted cubic spline for smoothing
and perform the discretization by inserting points.

adjacent corners. For each segment, we employ a cubic spline to fit
all corners. The starting and ending corners are given significantly
higher weights than others to ensure the spline passes through
these two corners. Finally, we insert new points along the spline
and connect them to form the new segment. Figure 5 illustrates the
above process.

A.8 Procedural Arrangement of Landscape
Elements
Here, we list the cases for instantiating the zone borders:

o Non-road borders: No instantiation is required for borders
that are not roads.

e Site boundaries: Borders serving as the boundary for the
entire site are instantiated with walls. Entrances are reserved
for clear pathways.

e Roads across lakes: Borders functioning as roads across
lakes are treated as bridges. When the bridges are too short
to connect the lands, the terrain along the border is uplifted
to connect the remaining parts.

e Ground roads: Borders functioning as roads on the ground
are instantiated as road bricks. Widths for primary roads and
secondary roads are both controlled by Ps(RoadWidth).

Figure 6 shows the ideas of the two kinds of rules and three kinds
of patterns. To provide further details:

A A A AL | Ay 2
AAAAAA[A** 28 #H
A A A a4 A

A, A M B HE

Arrayed Pattern Random Pattern Clustering Pattern

Figure 6: Rules and patterns for the procedural arrangement
of elements. The rules concentrate on the spatial relationship
(both positional and orientational) among distinct models
and between models and the zone. Meanwhile, the patterns
emphasize various structures for arranging a multitude of
replicated models.

o The rule for relationship among elements: Arrange two
or more models as a group, specifying the positional or ori-
entational differences between any two models based on
recognized landscape practices or standards. For example, a
chamber may be accompanied by two statues at the front
with specific positions and orientations.

o Therule for relationship between elements and the zone:
Place a model in a specific location within the zone (e.g.,
central) or arrange it to have a specific spatial relationship
(positional and orientational) with the zone’s boundary. For
example, a hall should be positioned neither too far nor too
close to the main road [3].

e The arrayed pattern: Arrange a sequence of models regu-
larly in an array-like structure within the zone. The density
is affected by both the parameter Pg (e.g., Pg(TreeDensity))
and the model type (e.g., trees occupy more space than
shrubs). However, strict regularity in the arrangement is
not mandatory. An alternative approach is to introduce ran-
dom displacement (e.g., Gaussian) in the positions. Another
method is to establish a grid within the zone and position
each model randomly within each cell.

e The random pattern: Randomly distribute some models
within the zone, with the density influenced by both the
parameter Pr and the model type. In certain instances, the
models are permitted to overlap, especially for basic and low-
growing elements such as grass, flowers, and rocks. However,
overlaps are strictly prohibited in significant architectural
elements like buildings.

e The clustering pattern: Organize some models into clus-
ters within the zone. In most cases, the density of clusters
is controlled by the parameter Pg, and their properties (size,
number of models, etc.) are determined by the model type.
This pattern is beneficial for creating scenic spots by group-
ing attractive elements. Rocks, in particular, are suitable to
be arranged by piling and clustering [4].
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Based on the rules and patterns, we further present ideas for
organizing the models as below:

e Trees: As crucial components in a landscape, trees play a
vital role in many combined types. In most cases, we ap-
ply both the random pattern and the clustering pattern
for the arrangement. However, specific relationships with
some artificial elements such as pavilions may be added for
additional constraint.

e Shrubs: As common elements in a landscape, these models
can be arranged using all three patterns depending on their
functionalities. For example, in small zones, they are often
grouped with arrayed or clustering patterns. In large zones,
however, they can be randomly distributed alongside trees.

o Rocks: As mentioned earlier, these models are preferably
placed in clusters. An exception is that in some lakes, a few
rocks are positioned at specific locations within the zone
to serve as attraction spots [4].

e Buildings (e.g., chambers and pavilions): In most cases, the
arrangement of such models adheres to certain rules. How-
ever, we permit a random distribution of a few smaller-scale
buildings.

e Lotus and various flowers: The arrangement of these mod-
els depends on the environment. When occurring naturally,
they are randomly placed. Otherwise, they can be arranged
in an array or clusters.

o Grass and other low-growing plants: As they typically grow
naturally in random places, we simply utilize the random
pattern to arrange them.

In the arrangement, relevance among various elements within
each zone is ensured by the proposed rules, such as spatial relations
for multiple elements. With the arrangements completed, the land-
scape generation is concluded, and the result is outputted as files
containing all necessary information for constructing the landscape
scene. Specifically, two images are generated, one for the height
map and the other for the texture of the terrains. Additionally, a text
file is provided, specifying information about all models, including
their position, orientation, and scale.

B SUPPLEMENTS FOR EXPERIMENTS
B.1 Results and Setup

We implement our framework using Python 3.8. Since the genera-
tion processes of different landscapes are independent, we leverage
20-core CPU parallel computing for acceleration. The hyperparam-
eters used in Section A are detailed in Table 2. The results of the
landscape generation framework are presented using Unity ver-
sion 2022.3.14f1c1. A total of 100 rendered images are presented in
Figure 7 and Figure 8.

B.2 Influence of the User Input

We test whether the LLM can determine the existence of the lake
(i.e., Pe(Lake)) correctly. The inputs and corresponding results, af-
ter a hundred repeated queries each, are presented in Table 1. The
second column in the table indicates the percentage of Pc(Lake)
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explicitly set to True, whereas the third column shows the percent-
age of Pc(Lake) = False. The percentage of the default value used
can be computed by subtracting these two percentages from 1.
Although the first three inputs all indicate the presence of lakes,
only the first input achieves rather satisfying results. For the sec-
ond input, the LLM may be disturbed by additional information,
including nouns such as "hills" and "forests", and adjectives/adverbs
such as "dense" and "partially”. For the third input, the LLM may
fail to comprehend that an "island" implies the presence of a lake.
The fourth input does not include decisive information about a lake
but suggests that a lake is more likely not to exist. In this case, the
LLM comprehends it well and provides accurate responses. The
last input explicitly states that no lakes can be present. However,
for more than 30% of all trials, the LLM is wrong or not sure about
the answer. This may be attributed to the instability of the LLM
itself and the neglect of negative wording. Overall, the model’s
performance can be improved. Factors such as the design of the
context and the capabilities of the LLM may both be accounted for.

B.3 Effectiveness of the Genetic Algorithm

The classic 1D implementation used for comparison is described as
follows: Each individual is encoded by a string of integers, which is
the row-wise flattened representation of the grid. After randomly
selecting a position, the crossover operation swaps the subsequent
components between the two parents to create the offspring. The
mutation operation randomly selects a short segment in the string
and assigns the same new value to override the existing values. The
evolution operation does not exist in this implementation.

B.4 Effectiveness of the Optimization of Roads

This part compares the proposed road generation algorithm with
a baseline approach. The evaluation is based on three metrics: the
number of terrain regions (split by roads), the relative standard
deviation of the region areas (i.e., standard deviation divided
by mean), and road complexity (i.e., the number of road edges
divided by the total number of edges). Five hundred trials are tested
for both approaches and the means are computed.

The results are summarized in Table 3. Compared to the baseline,
our heuristic approach leads to over 20% fewer number of regions,
significantly reducing the disruption to the structure of regions.
Additionally, our approach results in a slightly smaller relative
standard deviation concerning the areas of all regions, indicating
a more balanced separation of areas. However, since the baseline
typically generates the shortest roads among the corners, the roads
produced by our approach are slightly longer. We conclude that
our approach effectively contributes to a more balanced region
structure while generating roads of acceptable lengths.

B.5 User Study

Here, we present the explanations to all evaluation criteria:

e Degree of Ecological Diversity (D): Abundance of the
variety of plant species tailored for ecological stability, and
adherence to the ecological characteristics of natural veg-
etation; Ambiance and aesthetic representation of nature
in the landscape, aligned with the principles of situational
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Table 1: Inputs and results for testing the LLM’s interpretation, focusing on the scenario related to the existence of lakes. After
a hundred queries, we calculate the percentages of different types of responses. The responses are considered appropriate only
for the first and the fourth input. In other cases, the LLM may fail to accurately comprehend the inputs’ intentions. In general,
there is room for improvement in performance.

Input Text Percentage of Pc(Lake) = True Percentage of Pe(Lake) = False
"The landscape has two lakes." 86% 2%
"The site has a lake partially surrounded by hills and dense forests" 59% 9%
"The landscape features an island and two valleys." 43% 8%
"The site is mostly covered by trees." 15% 29%
"The landscape has no lakes." 13% 69%
Table 2: The hyperparameters used for implementing the e Adaptability Based on Local Conditions (A): Seamless
method. integration of buildings and plants with the topography, em-
phasizing harmony and adaptability to local conditions; Con-
Name Value Brief Description sideration of the relationship among water sources, moun-
— - - tainous terrain, and buildings to seamlessly blend architec-
D 20 Real length (m) for a unit distance in the grid ture with the natural surroundings.
e g
no 0.6 Threshgld fo.r Ju.dgmg s1m11§r1ty in Fr ossover e Management of Spatial Sequences (S): Design of the over-
Np 100 Pop 1.11at10n size 1n Fhe genetlc algohrlthm . all landscape layout that ensures a cohesive flow of elements,
Ny 100 Maximum gene'ratlon mn th? genet1.c algorithm complementing other attractions and creating a harmonious
e 0.9 Crossgver rate.m the gene?” algopthm unity; Emphasis on the coherence of spatial sequences, creat-
Tm 0.7 Mutatlf)n rate m the genetlF algorthm ing depth through vivid layouts and elevation changes; Use
Ne ?'1 Evolution rate H.l t}}e 5enet‘° alg"mhm ) of miniature landscapes to express panoramic views, com-
o1 5 One of the multiplication rates in path-finding bining majestic features and intricate details for picturesque
a 2 One of the multiplication rates in path-finding scopes.
a3 3 One of the mult?plication rates %n path-ﬁnd%ng e Presentation of Visual Richness (R): Design of paths
a4 3 One of the multiplication rates in p ath-finding with rich access to landscapes, ensuring a visually engaging
A -5 Edge value for lan(.iscap e boundaries experience for visitors; Use of appropriate curvature in path
P2 2 Edge .Value Afor region borders design to enable frequent changes in perspective, achieving
Hy 0.08 Relat%ve he%ght of water surfaces a dynamic visual experience with every step.
He 0.1 Relative height of grounds . e Application of Landscaping Techniques (T): Enhance-
HT 0.025  Scale of randomness for "ter.rest.rlal" cells ment of complementarity between indoor and outdoor views,
HA 001 Scale of randﬁ)mneﬁs for "artificial” cells effectively expanding the overall viewing visibility. Emphasis
Hp 0.02 Scale for Perlin Noise on hierarchy organizing to create harmony between distant
and near views.
e Minimization of Artificial Traces (N): Conveying natural-
ity through appropriate orientation and natural lighting of
Table 3: The results of the ablation study for generating the buildings, along with the creation of openness through a suit-
roads. Although our method produces roads that are slightly able density of buildings. Adherence to natural topography
longer, it significantly reduces the disruption to the region in the layout of scenic spots to minimize artificial traces.
structure and results in more balanced region areas.
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