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A  SUPPLEMENTARY EXPERIMENTS

We further extend our experiments on NVIDIA L20 GPUs, and complement additional analysis of

W16A16 (Wolf et al., 2020), Atom-based W4A16 (Lin et al.| 2024a), W4A4 (Zhao et al., [2024b),
and QSPEC.

Consistent Efficiency Enhancement of QSPEC over W4A16. As presented in Table 5| we detail
the token generation throughput for both QSPEC and WXAX methods across various model sizes,
quantization configurations, batch sizes, and datasets. Compared to W4A16, QSPEC achieves a
throughput increase of 1.33x across all the settings on average, with a peak improvement of 1.64 x.
These results, along with those in Table [d] validate the consistent efficiency superiority of QSPEC
over W4A16 on different GPU platforms. Additionally, QSPEC consistently outperforms W16A16
in terms of efficiency across all the settings.

Preserved Generation Quality of QSPEC Compared to W4A16. As illustrated in Figure|6| we
visualize the generation quality (i.e., accuracy) and efficiency (i.e., throughput). Aligning with the
analysis of Table [[, W4A4 experiences a significant performance decline, ranging from 18.5% to
39.5%, on multi-step reasoning benchmarks when compared to W4A16. In contrast, QSPEC not
only maintains the performance of W4A16 (slightly lower than that of W16A16 due to weight
quantization for memory saving), but also offers much higher throughput.

Detailed Latency Decomposition of Per Valid Token. As shown in Figure [7| we calculate the
per-valid-token latency by dividing the total latency by the number of accepted tokens in each sam-
ple, which is then averaged across all samples and evaluation datasets. Notably, the decode stage
accounts for the majority of the time latency when compared to the prefill stage. With the rapid draft-
ing capability and parallel verification, QSPEC achieves significantly lower latency than W4A16,
ranging from 28.5% to 39.7%. In detail, QSPEC spends more time in the draft phase than in the
high-precision verify phase. This may be attributed to the high acceptance rate of QSPEC, which
resulted in less verify requests.

Ablation on Draft Token Length. To assess parameter sensitivity, we vary the draft token length
v, the sole hyperparameter of QSPEC, from 2 to 7 across all benchmarks with Llama3.2-3b and
Llama3-8b-instruct models. For a thorough comparison, we also include the throughput of W16A16
and W4A16 as references. As depicted in Figure[8] an increase in +y results in a gradual decrease in
the token acceptance rate, since the rejection of any token leads to the discarding of all subsequent
tokens. Nevertheless, even at v = 7, the token acceptance rate remains relatively high at approx-
imately 70%, compared to the 28%—-58% observed in the 160m-7b draft-target model pair under
v = 5 in conventional speculative decoding (Liu et al.,[2024). Additionally, we observe a continu-
ous improvement in throughput compared to W4A16, indicating the hyperparameter robustness of
QSPEC. With an appropriate choice of v (i.e., 7 < 5), QSPEC consistently outperforms W16A16 in
both memory consumption and efficiency.
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Figure 6: Comparison of accuracy and efficiency among W16A16, W4A16, W4A4, and QSPEC
across various datasets with batch sizes of 8 and 16, respectively. The bars and lines represent the
accuracy and throughput of each method.
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Figure 7: Per-valid-token latency decomposition of W16A16, W4A16, QSPEC and W4A4 across
different models and batch sizes. The latency of QSPEC is further decomposed into draft and verify
categories for details.
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Figure 8: Acceptance rate and throughput of Llama 3.2-3b (with a batch size of 8) and Llama 3-8b-
instruct (with a batch size of 16) with respect to the draft token length ~.
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Table 5: Comparison of token generation throughput across different model sizes, quantization con-
figurations, and batch sizes for various datasets. All values are measured in token/s. “Avg.” denotes
the average speedup ratio for the corresponding row or column. “t” indicates the failure of W4A16
kernels to support these batch sizes together with long sequences and the large models.

Model Method Batch  GSMS8K MATH MBPP HumanEval ShareGPT LMsys-1k Avg.
8 S11.1 588.7 756.6 647.2 785.7 711.2 -

WI16A16 16 666.5 845.6 1171.0 948.3 1292.2 1126.4 -

32 8334 1081.5 1697.7 1111.6 1975.6 15533 -

8 804.7 921.2 1002.0 892.6 1091.6 990.3 -

W4A4 16 1109.1 1374.5 1548.0 1289.8 1763.5 1581.0 -

38! 32 1424.3 1899.3 2300.6 1488.2 2777.3 2194.4 -
8 420.0 476.7 604.5 535.7 610.4 559.8 -

W4A16 16 578.5 715.9 989.7 804.4 1080.2 925.8 -

32 726.3 933.8 1536.7 954.4 1704.5 1336.4 -

8 594.1 (1.41x) 648.2(1.36x) 760.1 (1.26x) 723.6(1.35x) 787.5(1.29x) 738.8 (1.32x) 1.33x
16 811.5(1.40x) 936.0 (1.31x) 1157.8 (1.17x) 1042.1 (1.30x) 1294.5 (1.20x) 1171.4 (1.27x) 1.27x

QSrEC 32 1030.4 (1.42x) 1240.2 (1.33x) 1617.4 (1.05x) 1248.5 (1.31x) 1969.6 (1.16x) 1576.0 (1.18%) 1.24x
Avg. 1.41x 1.33x 1.16x 1.32x 1.21x% 1.25 x 1.28x
8 2134 254.3 278.8 316.7 3224 285.3 -
WI16A16 16 290.3 362.1 447.7 505.1 541.3 441.6 -
32 340.9 441.6 585.3 663.6 735.3 564.2 -
8 349.5 411.7 396.1 471.2 471.8 4194 -
W4A4 16 496.6 612.2 614.3 749.5 760.9 642.6 -
7B 32 620.0 793.6 801.5 1043.9 1083.2 865.5 -
8 165.0 193.1 224.5 240.2 243.5 220.2 -
W4A16 16 231.8 286.5 384.4 407.3 4359 358.0 -
32 268.9 359.9 480.0 555.9 620.2 470.1 -
8  253.7(1.54x) 291.5(1.51x) 2983 (1.33x) 3509 (1.46x) 345.7(1.42x) 3103 (1.41x) 1.44x
QSPEC 16 359.8 (1.55x) 420.2(1.47x) 466.7 (1.21x) 555.2(1.36x) 557.8 (1.28%) 473.1(1.32x) 1.37x
32 441.8(1.64x) 527.2(1.46x) 5753 (1.20x) 749.4(1.35x) 770.0 (1.24x) 628.4(1.34x) 1.39x
Avg. 1.58x 1.48x 1.25x 1.39%x 1.31x 1.36x 1.39%x
8 189.4 211.5 256.0 259.1 290.7 265.8 -
WI6A16 16 262.0 311.2 408.7 401.2 511.0 4474 -
32 303.8 390.8 566.3 522.6 820.0 649.8 -
8 295.3 3235 344.6 354.4 395.9 366.8 -
W4A4 16 431.4 503.3 536.8 566.4 697.5 621.1 -
3B 32 532.8 688.5 755.7 763.7 1167.9 956.8 -
8 155.6 173.8 215.0 208.7 231.1 215.6 -
W4A16 16 2229 263.0 354.8 345.9 422.8 369.4 -
32 T T 509.8 468.7 706.0 580.5 -
8  222.6(1.43x) 2339 (1.35x) 256.7(1.19x) 271.5(1.30x) 285.0(1.23x) 268.3 (1.24x) 1.29x
QSPEC 16 322.6(1.45x) 362.5(1.38x) 402.7 (1.14x) 438.5(1.27x) 507.5(1.20x) 453.5(1.23x) 1.28x
32 400.2 (1) 362.5 (1) 578.1 (1.13x) 573.0 (1.22x) 798.8 (1.13x) 684.5 (1.18x) 1.27x
Avg. 1.44x 1.36x 1.15x% 1.26x 1.19x 1.22x 1.27 x
8 121.9 146.6 183.1 182.0 187.1 160.1 -
WI16A16 16 169.6 211.2 304.4 291.0 311.0 243.0 -
32 202.4 253.8 426.0 4235 311.0 334.2 -
8 194.7 228.2 253.6 261.5 259.8 228.2 -
W4A4 16 288.3 349.2 415.3 4249 431.5 348.4 -
13B! 32 369.8 469.9 606.7 665.4 431.5 508.8 -
8 94.8 1129 143.4 140.0 146.7 127.9 -
W4A16 16 136.1 171.9 250.8 236.9 255.9 207.2 -
32 T T 376.4 365.5 255.9 287.4 -
8 1482 (1.56x) 167.9(1.49%x) 193.6 (1.35%x) 201.2(1.44x) 194.5(1.33%x) 174.0 (1.36x) 1.42x
QSPEC 16 212.8 (1.56x) 248.6 (1.45x) 316.8 (1.26x) 323.3(1.36x) 327.4(1.28%) 266.9 (1.29%x) 1.29x
32 266.6 (1) 320.0 () 451.5(1.20x) 483.0(1.32x) 327.4(1.28x) 379.3(1.32x) 1.32x
Avg. 1.56x 1.47x 1.27x 1.37x 1.29% 1.32x 1.38%
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