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ABSTRACT

Diffusion models have emerged as powerful generative models, capable of synthe-
sizing high-quality images by capturing complex underlying patterns. Building on
this success, these models have been adapted for time-series forecasting, a domain
characterized by intricate temporal dependencies. However, most existing works
have focused primarily on empirical performance without sufficient theoretical
exploration. In this paper, we address this gap by introducing a generalized loss
function within the diffusion-based forecasting framework. Leveraging this foun-
dation, we introduce TF-score, a score-based diffusion model designed to capture
the interdependencies between historical data and future predictions. Extensive
experiments across six benchmark datasets show that TF-score consistently sur-
passes leading baselines, including prior diffusion-based models. Furthermore, we
extend existing guidance sampling strategies into a our score-based formulation,
achieving performance gains across multiple datasets while providing a detailed
analysis of the trade-offs involved.

1 INTRODUCTION

Time-series data is prevalent in our daily lives. There are numerous sub-problem related to time-
series data such as time-series generation, forecasting, anomaly detection and sequential recom-
mendation (Ahmed et al., 2010; Ismail Fawaz et al., 2019; Fu, 2011). Among these, time-series
forecasting is a prominent example, aiming to predict future behavior based on historical data. De-
spite extensive research efforts to develop effective forecasting methods, the inherent complexity of
time-series data presents significant challenges. To solve these challenge, researchers have increas-
ingly turned to deep learning techniques to better understand and model the structure of time-series
data (Lim & Zohren, 2021; Torres et al., 2021; Miller et al., 2024).

Generative Models has achieved remarkable success across various real-world applications. No-
tably, these methods have been employed to generate high-quality synthetic images, realistic voices,
and even lifelike videos, among other creative outputs. Recently, the conditional generation strate-
gies of generative models have widely conducted to time-series processing, including time-series
generation, forecasting and anomaly detection.

Diffusion models, which have recently gained attention for their ability to generate high-quality
images while maintaining stable training loss, have also been applied to time-series processing,
achieving state-of-the-art results. However, many of these applications have lacked theoretical jus-
tification, focusing instead on the empirical adaptation of diffusion models to new domains (Rasul
et al., 2021; Tashiro et al., 2021; Yan et al., 2021).

In this work, we examine the application of diffusion models to time-series data, classifying existing
approaches into two main categories and analyzing their target values from the perspective of the
score function (c.f. Section 2.2). We further generalize these categories into a continuous score
stochastic differential equation (score SDE) framework, addressing the theoretical gaps in previous
studies. Building on this, we introduce TF-score, a score-based diffusion model for time-series
forecasting that captures the internal structure of historical and predicted values by optimizing a
generalized loss function. This formulation leads to a more robust denoising process, improving
predictive performance. Leveraging modifications to a well-known backbone model (Kong et al.,
2021), TF-score surpasses most of the baselines, demonstrating superior performance compared to
other diffusion-based forecasting methods.
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Additionally, we extend existing guidance strategies used in diffusion models into a score-based
form, exploring their performance in time-series forecasting (Ho & Salimans, 2022; Kollovieh et al.,
2023). This can be achieved through our specific choice of generation process: synthesizing a total
sequence. By generating entire time-series, TF-score enables comparison between the generated
output and historical data, facilitating more robust guidance sampling. Through a series of experi-
ments, we demonstrate that these approaches enhances model performance for several datasets while
shows trade-off relationship across datasets.

Our contributions can be summarized as follows:

• We unify various diffusion models into a more generalized framework by deriving the
continuous score SDE form (c.f. Section 3).

• We apply previous guidance generation methods for diffusion models to our score-based
framework and evaluate their performance (c.f. Section 4).

• As a result, our model, TF-score, achieves state-of-the-art results on six of the most popular
forecasting datasets, supported by extensive ablation studies.

2 PRELIMINARY AND PROBLEM STATEMENT

2.1 DIFFUSION MODELS

Generative models aim to synthesize realistic data, such as images, by learning the underlying prob-
ability distribution of the data (Oussidi & Elhassouny, 2018; Harshvardhan et al., 2020; Cao et al.,
2024). Among various generative approaches, diffusion models have gained prominence defeating
generative adversarial network (GAN), in terms of generating high-quality images with more stable
training (Dhariwal & Nichol, 2021; Song et al., 2020; Ho et al., 2020; Cao et al., 2024). Diffusion
models operate through following two-step process: i) Noising step, which means gradually adding
noise to an image, transforming it into Gaussian noise, ii) Denoising step, which means recovering
the original image from the noisy version, where the noise is sampled from a specific distribution,
typically a normal distribution (Yang et al., 2023).

Initially, the denoising process was designed to reverse the noising process by adding noise in the
opposite direction at each step. This process is derived from minimizing the Kullback-Leibler (KL)
divergence between the joint probability of noising and denoising step, leading to an inequality
involving the negative log-likelihood, similar to the variational autoencoder (VAE) framework. This
approach is called Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020). Below, we
briefly describe the DDPM process.

Given original image x ∼ p(x) and the length of noising and denoising step T , DDPMs add
noise to the image according to the transition kernel: p(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI),

where t ∈ {1, 2, ..., T} and βt ∈ (0, 1) is a hyperparameter. With sufficiently large T , xt con-
verges to a normal distribution. DDPMs then train a corresponding learnable denoising kernel
pθ(xt−1|xt) = N (xt−1;µθ(t, xt),Σ(t, xt)), where the denoising process aims to reverse the added
noise. By minimizing the KL divergence between the joint distributions of the noising and denoising
processes, DDPMs optimize target network ϵθ(·, ·) by using the following loss function:

LDDPM (θ) = EtEx∼p(x)Eϵ∼N (0,I)[λ(t)||ϵ− ϵθ(t, xt)||2]

As a follow-up research, Song et al. (2020) have generalized diffusion models from discrete-time
processes to continuous Stochastic Differential Equation (SDE) formulations, introducing Variance
Exploding (VE), Variance Preserving (VP), and sub-VP processes. In this framework, the noising
and denoising processes of diffusion models are reinterpreted as forward and reverse SDEs, respec-
tively:

dx = f(t, x)dt+ g(t)dw
dx = [f(t, x)− g(t)2∇xlogp(t, x)]dt+ g(t)dw̄
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, where t ∈ [0, 1], f is an affine and w, w̄ represent forward and backward Brownian motion, respec-
tively. Among these, the VP process is particularly notable for its connection to DDPMs, where:
f(t, x) = − 1

2β(t)x, g(t) =
√
β(t). They demonstrate that diffusion models train score network

sθ(·, ·) to learn a gradient of log likelihood, score function, by using following score matching loss:

LSM (θ) = EtExt∼p(xt)[λ(t)||sθ(t, xt)−∇xt logp(xt)||2]

However, directly using score matching loss is computationally prohibitive since calculating exact
score function of xt needs statistical method (Hyvärinen, 2005; Song et al., 2020). Thanks to specific
formulation of f and g, we can derive a following denoising score matching loss, which can be
calculated by using given formula (Vincent, 2011; Øksendal, 2014):

LDSM (θ) = EtEx∼p(x)Ext∼p(xt|x)[λ(t)||sθ(t, xt)−∇xt logp(xt|x)||2]

We can directly derive the equivalence between LDDPM (θ) and LDSM (θ) by considering the struc-
ture of the forward SDE. The drift term f(·, ·) is affine and the diffusion term g(·) depends solely on
the diffusion step. This results in the conditional probability p(xt|x) being represented as a Gaussian
distribution, N (xt;µt(x), σt) (Øksendal, 2014). Therefore, we can compute the gradient of log like-
lihood, ∇xt logp(xt|x), as: ∇xt logp(xt|x) = −(xt − x)/σ2

t = −ϵ/σt, where the reparametrization
trick is used on xt = µt(xt) + σtϵ and ϵ ∼ N (0, I). Then by parameterizing the score network
sθ(t, xt) = −ϵθ(t, xt)/σt, we can show that LDDPM (θ) ∼ LDSM (θ) ∼ LSM (θ). Specifically,
note that ϵθ(t, xt) = −σtsθ(t, xt) ∼ −σt∇xt logp(xt), which will be used in our description of
classifier-free guidance (CFG) (Ho & Salimans, 2022) in Section 4.1.

Once the score network is trained, diffusion models proceed with the denoising step. At this stage,
there are two main sampling strategies: the predictor-corrector (PC) sampler and a deterministic
sampler based on the probability flow ordinary differential equation (ODE). In here, we explain PC
sampler that is used in our experiment. The PC sampler works by first estimating the next step
using a known numerical SDE solver, which is called predictor. Then refining the estimate with a
score-based MCMC strategy, which is named of corrector. A representative example of predictor is
an Euler-Maruyama sampling predictor, which is a discretization of backward SDE:

xt−1 = [f(t, xt)− g(t)2sθ(t, xt)]∆t+ g(t)∆w, t ∈ [1, 0] and ∆w ∼ N (0,∆tI)

, where ∆t is a time interval.

Song et al. (2020) achieved state-of-the-art results through extensive hyperparameter tuning of
various SDEs, predictors and correctors. However, for our experiments, we adopt the VP SDE and
use an Euler-Maruyama sampling predictor without corrector, which is a default setting of it (Song
et al., 2020). This allows us to isolate the performance of TF-score from other factors, ensuring that
other control variables remain fixed.

2.2 TIME-SERIES FORECASTING

Time-series forecasting involves predicting future values based on historical data (Lim & Zohren,
2021; Torres et al., 2021; Miller et al., 2024). Specifically, given a historical sequence x1:N , the
task is to forecast the future sequence xN+1:N+T , where N represents the length of the historical
data, and T represents the length of the prediction. Each data point x belongs to Rd. For clarity,
we define xhist by a sequence of history, x1:N , xpred by a future values, xN+1:N+T , and xtotal, a
total sequence x1:N+T . Time-series forecasting has been widely researched improve the accuracy
of future predictions. However, the complex, intertwined characteristics of time-series data make it
difficult to fully capture and understand its underlying patterns.

To address this challenge, researchers have increasingly turned to generative models, which aim
to model the conditional likelihood of time-series data and provide a more comprehensive under-
standing of its structure. As a result, many time-series diffusion models were appeared, which can
generally be classified into two categories: those that generate only future values (xpred) (Rasul
et al., 2021; Tashiro et al., 2021) and those that generate the entire sequence (xtotal) (Lim et al.,
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Figure 1: Overall framework of TF-score.

2023; Kollovieh et al., 2023; Lim et al., 2024). We provide a detailed explanation of their contribu-
tions and the rationale behind their target selection in Section 6. Therefore, those who apply DDPM
methods to forecasting problem optimize one of the following equations:

Lpred
DDPM (θ) = EtExpredEϵ∼N (0,I)[λ(t)||ϵ− ϵθ(t, xpredt , xhist)||2] (1)

Ltotal
DDPM (θ) = EtExtotalEϵ∼N (0,I)[λ(t)||ϵ− ϵθ(t, xtotal

t , xhist)||2] (2)

Based on our review, most existing forecasting methods leveraging diffusion models are derived
from DDPMs, and thus, the majority of diffusion-based forecasting approaches optimize one of
these loss functions.

3 GENERALIZATION OF EXISTING METHODS

In this section, we generalize two types of DDPM-based methods (Eq. 1 and 2) to a continuous
score SDE formulation and establish the connection between these two diffusion model approaches.

3.1 ANALYSIS OF EXISTING METHOD

In Section 2.2, we introduced two representative diffusion-based forecasting models, which optimize
Lpred
DDPM and Ltotal

DDPM . From a score-matching perspective, these models can be interpreted as
optimizing a score network sθ(·, ·, ·) through the following score-matching losses (c.f. Section 2.1):

Lpred
SM (θ) = EtExpredt

[||sθ(t, xpred
t , xhist)−∇xpredt

logp(xpredt |xhist)||22]

Ltotal
SM (θ) = EtExtotal

t
[||sθ(t, xtotalt , xhist)−∇xtotal

t
logp(xtotalt |xhist)||22]

, where t ∈ [0, 1]. Note that we ignore weights for computational convenience.

Although these equations optimize the conditional score function to generate target sequences,
directly computing them is computationally prohibitive due to the need for statistical meth-
ods (Hyvärinen, 2005; Song et al., 2020). Therefore, we derive the denoising score-matching losses
to train the score network sθ:

4
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Theorem 1 For each Lpred
SM (θ) and Ltotal

SM (θ), its denoising score matching are represented as fol-
lows:

Lpred
DSM (θ) = EtExtotalExtotal

t
[||sθ(t, xpredt , xhist)−∇xpredt

logp(xtotal
t |xtotal)||22] (3)

Ltotal
DSM (θ) = EtExtotalExtotal

t
[||sθ(t, xtotal

t , xhist)−∇xtotal
t

logp(xtotalt |xtotal)||22] (4)

Therefore, these models aim same conditional score function since ∇xtotal
t

logp(xtotalt |xtotal) =

∇[xhist
t ,xpredt ]logp(xtotalt |xtotal).

Table 1: Comparison of CRPSsum re-
sults between Lpred

DSM and Ltotal
DSM on Ex-

change and Electricity datasets.

Exchange Electricity

Lpred
DSM .013±.000 .032±.000

Ltotal
DSM .006±.000 .017±.000

A proof of Theorem 1 is provided in Appendix A. Based
on Theorem 1, we demonstrate that previous methods
have essentially optimized the same underlying model.
The key difference lies in the input; Ltotal

DSM (θ) considers
the diffused value of the entire sequence and this distinc-
tion introduces significant advantages. Specifically, con-
sidering diffused conditions holistically leads to perfor-
mance improvements (see Table 1) and enables the use of
guidance sampling, which will be discussed in Section 4.
This is because the denoising process considers both the
historical context and future predictions simultaneously
while the score network sθ(t, xtotalt , xhist) captures the
internal structure of total sequence, leading to a more meaningful denoising process. Therefore, we
suggest to use Ltotal

DSM for diffusion-based forecasting and propose TF-score, which optimize score
function for time-series forecasting.

Beyond Equation 4, we place additional emphasis on the prediction portion of the sequence. In
designing TF-score, we aim to ensure that it generates a predictive sequence that takes past history
into account but is not overly dominated by historical values. To achieve this balance, we introduce
a hyperparameter γ to control the influence of the past history, which is fixed by 0.1. The exact loss
function is then defined as:

l(θ) = ||sθ(t, xtotalt , xhist)−∇xtotal
t

logp(xtotalt |xtotal)||2,
L(θ) = EtExtotalExtotal

t
[||γm ⊗ l(θ) + (1− m)⊗ l(θ)||1]

, where ⊗ is a hadamard product and m = {xij}(N+T )×d is a mask vector that xij = 1 if i ≤ N
and 0 otherwise, dividing the past and future elements in our loss function.

3.2 EXPERIMENTS

In this section, we present the results of several experiments conducted to evaluate the performance
of TF-score. We outline the experimental setups and discuss the outcomes.

3.2.1 EXPERIMENTAL SETUPS

We first describe the diffusion architecture used in TF-score. To effectively capture the conditional
score function along the temporal axis, we adapt DiffWave (Kong et al., 2021) to our settings. Since
TF-score is based on DiffWave, we highlight the key differences. As derived in Theorem 1, the input
consists of the diffusion timestep, the diffused target data, and historical data, i.e. t, xhist, xtotalt .
Consistent with previous works (Ho et al., 2020; Kong et al., 2021), the timestep t is embedded into
a continuous domain using sinusoidal embedding:

embbeding(t) = [sin(t/N0/d, ..., sin(t/Nd−1/d), cos(t/N0/d), ..., cos(t/Nd−1/d)]

, where d is embedding dimension and N is hyperparameterset to 128 and 10,000, respectively. Fur-
thermore, since we generalize Equation 1, 2 to score SDE, we use VP SDE and an Euler-Maruyama
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sampling predictor without corrector, which are a generalized formulation of DDPM (c.f. Sec-
tion 2.1) and a default setting of VP SDE in Song et al. (2020), respectively.

For evaluation, we use the sum of continuous ranked probability score (CRPSsum), a widely recog-
nized metric for probabilistic forecasting. CRPS measures the compatibility between the cumulative
distribution function (CDF) F and an observation x as CRPS(F, x) =

∫
(F (z) − I(x ≤ z))2dz,

where I is an indicator function. To approximate CDF, we use an empirically estimated CDF
F̂ = 1

N

∑N
i=1 I(xi ≤ z), where xi are samples from F . Then we compute the sum of CRPS

over all features, denoted as CRPSsum,

CRPSsum(F, x) =
CRPS(F,

∑
i xi,t)∑

i,t |xi,t|

, where
∑

i,t |xi,t| means the summation of all target features at time t.

Next, we use TF-score on 6 widely-used time-series forecasting datasets: Exchange (Lai et al.,
2017), Solar (Lai et al., 2017), Electricity1, Traffic2, Taxi3, Wikipedia4. We give detailed description
of these datasets in Table 5, including dimension, total number of timesteps, domain and frequency
data of each dataset. We also report hyperparameters setting in Table 5: the history and prediction
lengths, the number of diffusion steps, and the number of iterations. Here, we point out that we
follow the common practice of training based on iteration count and saving checkpoints every 5,000
steps, as done in other diffusion models (Ho et al., 2020; Song et al., 2020).

After training TF-score on the selected datasets, we evaluate its performance against a wide range of
baseline models. These baselines include: i) classical multivariate methods such as VAR, VAR-
Lasso (Lütkepohl, 2005), GARCH (van der Weide, 2002), and VES (Hyndman et al., 2008);
ii) RNN-based methods like Vec-LSTM-ind-scaling, Vec-LSTM-lowrank-Copula, GP-scaling,
and GP-Copula (Salinas et al., 2019); iii) Transformer-based models, specifically Transformer-
MAF (Rasul et al., 2020); and iv) VAE and diffusion-based models, including KVAE (Fraccaro
et al., 2017), TimeGrad (Rasul et al., 2021), and CSDI (Tashiro et al., 2021). A detailed description
of these baseline models can be found in Appendix C.

3.2.2 EXPERIMENTAL RESULTS

We present the CRPSsum performance of TF-score and other baseline models in Table 4. We eval-
uate TF-score with 5 different seeds, and we report both the mean and standard deviation. As shown
in the table, TF-score consistently outperforms all competing models across every dataset, including
other diffusion-based forecasting models. Notably, while diffusion-based forecasting models like
TimeGrad and CSDI perform comparably on certain datasets, TF-score consistently delivers supe-
rior results across a wide range of data complexities, from relatively low-dimensional datasets (e.g.,
Exchange) to high-dimensional ones (e.g., Wiki).

4 APPLICATIONS OF GUIDANCE SAMPLING

In this section, we explore several guidance methods — classifier-free guidance (CFG) (Ho & Sali-
mans, 2022), replacement method (Song et al., 2020; Ho et al., 2022), and observation self guidance
(OSG) (Kollovieh et al., 2023) — and their application within our score-based diffusion framework.

4.1 CLASSIFIER FREE GUIDANCE

To incorporate an auxiliary classifier in naı̈ve conditional generation, Dhariwal & Nichol (2021)
introduced classifier guidance, modifying the standard denoising process by adjusting the esti-
mated noise. Originally, ϵ(xt|c) ∼ −σt∇xt log p(xt|c) is replaced with ϵ̃(xt|c) = ϵ(xt|c) −

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2https://archive.ics.uci.edu/ml/datasets/PEMS-SF
3https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
4https://github.com/mbohlkeschneider/gluon-ts/tree/mv release/datasets

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: CRPSsum results on evaluation datasets. The best scores are in boldface.

Exchange Solar Electricity Traffic Taxi Wiki

VES .005±.000 .900±.003 .880±.004 .350±.002 - -

VAR .005±.000 .830±.006 .039±.001 .290±.005 - -

VAR-Lasso .012±.000 .510±.006 .025±.000 .150±.002 - 3.10±.004

GARCH .023±.000 .880±.002 .190±.001 .370±.002 - -

KVAE .014±.002 .340±.025 .051±.019 .100±.005 - .095±.012

Vec-LSTM ind-scaling .008±.001 .391±.017 .025±.001 .087±.041 .506±.005 .133±.002

Vec-LSTM low-copula .007±.000 .319±.011 .064±.008 .103±.006 .326±.007 .241±.033

GP scaling .009±.000 .368±.012 .022±.000 .079±.000 .183±.395 1.48±1.03

GP copula .007±.000 .337±.024 .025±.002 .078±.002 .208±.183 .086±.004

Transformer MAF .005±.003 .301±.014 .021±.000 .056±.001 .179±.002 .063±.003

TimeGrad .006±.001 .287±.020 .021±.001 .044±.006 .114±.020 .049±.002

CSDI .007±.001 .298±.004 .017±.000 .020±.001 .123±.003 .047±.003

TF-score .005±.000 .224±.008 .017±.000 .020±.000 .113±.001 .046±.001

wσt∇xt log p(c|xt), where w is a weighting term, and an additional classifier is trained to calcu-
late p(c|xt). From the perspective of score-based SDEs, this approach can be interpreted as al-
tering the score function ∇xt logp(xt|c) to ∇xt logp̃(xt|c) = ∇xt logp(xt|c) + w∇xt logp(c|xt) =
∇xt logp(xt|c)p(c|xt)w, which means p̃(xt|c) ∼ p(xt|c)p(c|xt)

w and effectively incorporating the
classifier into the generative process.

To address the dependency on an additional classifier, Ho & Salimans (2022) proposed classifier-
free guidance (CFG), allowing the generation process to be guided without the need for a separately
trained classifier. In CFG, the model learns the modified noise estimate ϵ̃(xt|c) = (1 + w)ϵ(xt|c)−
wϵ(xt) by training a single model that handles both conditional and unconditional generations. This
is achieved by training with zero-padding for the unconditional case, resulting in ϵ̃θ(xt, c) = (1 +
w)ϵθ(xt, c)− wϵθ(xt, 0).

From a score matching perspective, this can be understood as ∇xt logp̃(xt|c) = ∇xt logp(xt|c) +
w∇xt logp(c|xt) = ∇xt logp(xt|c) + w∇xt(logp(xt|c) − logp(xt)) = (1 + w)∇xt logp(xt|c) −
w∇xt logp(xt). And this formulation leads to the generalized score function used in CFG:
s̃θ(xt, c) = (1 + w)sθ(xt, c) − wsθ(xt, 0), where 0 means zero padding. We use this generalized
CFG sampling. As the formulation shows, CFG should train both conditional and unconditional
sampling to single model. In line with Ho & Salimans (2022), we adopt a proportional training
strategy, where with probability pcond, the model trains the conditional score network sθ(xt, c), and
with probability 1− pcond, it trains the unconditional score network sθ(xt, 0).

4.2 OBSERVATION SELF GUIDANCE

Traditional forecasting models typically employ an architecture where the historical data (xhist) is
provided as input, and the model outputs future predictions (xpred). However, if we design diffusion
models to the entire time-series sequence (xtotal = [xhist, xpred]), the generation process can be
continuously guided by the history.

Previous works, such as Song et al. (2020) and Ho et al. (2022), suggest generating the entire
sequence xtotal by continually replacing the historical part during the diffusion process. More
specifically, for a diffusion model pθ(xtotal

t |xhist) at a denoising step t, the history part of xtotalt
is sequentially replaced with the corresponding diffused historical values from the forward SDE,
xhist
t . We denote this approach as the replacement method.

However, naı̈vely applying replacement method cannot give meaningful results. This may occur be-
cause the forward SDE applied to xhist is not fully aligned with the backward SDE used for denois-
ing xtotal

t , mainly due to the stochastic nature of the Brownian motion driving both processes. There-
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fore, alternative strategies must be considered, such as observation self guidance (OSG) proposed
by Kollovieh et al. (2023). Similar to controllable generation of (Song et al., 2020), Kollovieh et al.
(2023) starts from bayes’ rule: pθ(xtotalt |xhist) ∼ pθ(xhist|xtotal

t )pθ(xtotal
t |xhist), which means

∇xtotal
t

logpθ(xtotalt |xhist) ∼ ∇xtotal
t

logpθ(xhist|xtotalt ) +∇xtotal
t

logpθ(xtotal
t |xhist).

Thus, the posterior score function ∇xtotaltlogpθ(xhist|xtotalt ) enables more accurate sampling in the
diffusion process. To estimate this posterior, Kollovieh et al. (2023) assumes that the posterior
distribution follows a multivariate Gaussian distribution (refer to Kollovieh et al. (2023) for other
assumption): pθ(xhist|xtotalt ) = N (xhist; x̂hist, I), where x̂hist represents the restored historical
values and can be computed as follows (adapted from Song et al. (2022)): x̂total = (xtotalt −√
1− ᾱtϵθ(t, xtotalt , xhist))/

√
ᾱt, where αt = 1 − βt, ᾱt =

∏t
i=1 αi. This leads to the posterior

score function ∇xtotal
t

logpθ(xhist|xtotal
t ) being expressed as the mean-squared error (MSE) between

xhist and x̂hist.

Building upon this idea, we incorporate the posterior score correction into TF-score. Inspired by the
energy-based sampling approach in Kollovieh et al. (2023), we propose a modified score function:

s̃θ(t, xtotal
t , xhist) = sθ(t, xtotalt , xhist)− w∇xtotal ||x̂hist − xhist||22

, where w is a weighting term that controls the influence of the correction. This approach ensures
that the model better aligns the historical part of the sequence during the denoising process.

4.3 EXPERIMENTAL SETTINGS AND RESULTS

In this section, we present the experimental results of TF-score using three different guidance sam-
pling strategies: classifier-free guidance (CFG), the replacement method, and observation self-
guidance (OSG). For each strategy, we vary the weight parameter w between 0.01 and 0.1, and
evaluate the model’s performance using the CRPSsum metric on several representative datasets.
All experiments are conducted with five different random seeds to compute the mean and standard
deviation for robustness.

Especially on OSG, due to its computational complexity which requires calculating the gradient of
the mean-squared error (MSE), we were unable to perform experiments using this method on larger
datasets like Electricity and Traffic. It is important to note that OSG in Kollovieh et al. (2023) is
designed for univariate sequences, where the MSE gradient calculation is feasible. In contrast, our
experiments deal with multivariate time-series, which significantly increases the computational cost
for OSG.

The experimental results are summarized in Table 3. As shown in the table, OSG and replace-
ment method demonstrate some improvements on the Solar dataset, while CFG performs better on
Electricity and Traffic datasets. However, each method has its own limitations: OSG incurs a high
computational cost, especially for multivariate time-series, and replacement method is the simplest
method that makes inferior results on the other baselines, whereas CFG requires a modified training
procedure. This aligns with the ”No Free Lunch” (NFL) theorem, highlighting that no single method
is optimal for all cases, and trade-offs are inevitable.

Table 3: Results of each guidance sampling.

Original CFG0.01 CFG0.1 OSG0.01 OSG0.1 Replacement

Exchange .0054±.0002 .0059±.0005 .0057±.0001 .0055±.0003 .0062±.0003 .0057±.0001

Solar .2241±.0080 .3121±.0031 .2997±.0020 .2230±.0094 .2270±.0120 .2211±.0081
Electricity .0168±.0003 .0166±.0002 .0163±.0004 - - .0173±.0005

Traffic .0202±.0004 .0195±.0001 .0199±.0002 - - .0223±.0006

8
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5 ABLATION EXPERIMENTS

In this section, we present ablation studies conducted across several datasets to analyze the impact
of varying the diffusion steps in TF-score. We experiment with different numbers of diffusion steps:
50, 100, 200, 250, 500, and report the corresponding CRPSsum results.

As indicated by the results, there are optimal ”sweet spots” for the number of steps depending
on the dataset. For example, TF-score requires relatively fewer diffusion steps on datasets like
Exchange and Electricity, whereas it benefits from higher steps on the Solar dataset to achieve the
best performance. However, since lots of diffusion steps increase sampling time of TF-score, we
compromise them by hyperparameters in Table 5 in Appendix B.

We also point out that an notable distinction of TF-score, compared to other diffusion-based fore-
casting models such as CSDI (Tashiro et al., 2021) and TimeGrad (Rasul et al., 2021), is its ability
to adjust the number of sampling steps without the need for additional training at each specific step.
This flexibility offers a significant advantage, as it allows TF-score to adapt more efficiently across
varying datasets and conditions, without incurring extra computational costs for retraining.

Table 4: Results of ablation study varying the number of sampling steps

50 100 200 250 500

Exchange 0057±.0003 .0054±.0002 .0057±.0002 .0059±.0004 .0057±.0002

Electricity .0168±.0003 .0165±.0005 .0168±.0007 .0166±.0005 .0166±.0002

Solar .4540±.0125 .2829±.0090 .2241±.0080 .2313±.0059 .2155±.0089

6 RELATED WORKS

In this section, we review diffusion-based time-series models, focusing on their use of score func-
tions and categorizing them based on their target score objectives.

As introduced in Sections 2.2 and 3, existing diffusion-based models for time-series fore-
casting can be broadly divided into two categories: those that learn the score function
∇xpredt

logp(xpredt |xhist), which focuses solely on the predicted sequence, and those that learn the
score ∇xtotalt logp(xtotalt |xhist), which models the entire sequence. Below, we discuss these cate-
gories in detail.

Models targeting ∇xpredt
logp(xpredt |xhist) focus on generating the predicted sequence from the his-

tory. Two prominent models in this category are TimeGrad (Rasul et al., 2021) and CSDI (Tashiro
et al., 2021). TimeGrad, a well-known diffusion-based forecasting model, generates predictions
autoregressively. Given a historical sequence xhist = x1:N , it generates the next value xN+1.
Then, using the sequence x2:N+1, it generates xN+2, recursively continuing this process to achieve
xpred = xN+1:N+T . In this setup, TimeGrad can be seen as learning ∇xpredt

logp(xpred
t |xhist) for

single-step prediction. CSDI (Tashiro et al., 2021), on the other hand, generates the entire prediction
sequence xpred in one shot, given the historical data xhist. While one-shot generation may appear
more efficient than autoregressive methods, it can introduce higher variance in the generated sam-
ples due to the randomness of the backward SDE. To mitigate this, CSDI evaluates the model by
averaging results over 100 generated sequences to ensure stability.

Next, we explain models targeting ∇xtotal
t

logp(xtotalt |xhist). Kollovieh et al. (2023) focus on gener-
ating the entire sequence, including both historical and predicted values, with the goal of improving
conditional generation through history-guided sampling. TSDiff (Kollovieh et al., 2023) introduces
this approach, generating the complete sequence xtotal and guiding the generation process using the
history sequence xhist. The guidance mechanisms employed in these models are discussed in detail
in Section 4.

Although designed for time-series generation, Lim et al. (2023) and Lim et al. (2024) take a dif-
ferent approach by generating the full time-series autoregressively within a latent space, specifically

9
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for handling irregularly sampled time-series data. This latent space generation allows for better
modeling of complex time dependencies, offering an alternative to standard methods. Therefore, re-
searchers have focused on total generation to take account of additional techniques, such as guidance
sampling or generation in latent space.

Our proposed method, TF-score, can be seen as a unified framework that leverages the strengths of
both categories: it generates high-quality predictions while incorporating guidance sampling mech-
anisms to enhance performance and flexibility. By combining both aspects, TF-score provides a
more comprehensive approach to time-series forecasting with diffusion models.

7 CONCLUSION

We presented a score-based forecasting model, TF-score, for generalized diffusion framework.
Through the proposed methods, our method considers both the historical context and future pre-
dictions simultaneously and thereby captures the internal structure of total sequence, leading to a
more robust denoising process. We also extend existing guidance strategies used in diffusion models
into a score-based form, exploring their performance in time-series forecasting. Through a series of
experiments, we demonstrate that these approaches enhance model performance for several datasets
while shows trade-off relationship across datasets.
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A DETAILED PROOF

In this section, we give detailed proof of Theorem 1.

We prove denoising score matching loss of prediction, Ltotal
DSM (θ). The result of Lpred

DSM (θ) can be
derived similarly. We start from decomposing it:

Ltotal
SM (θ) = −2 · EtExtotal

t
⟨sθ(t, xtotal

t , xhist),∇xtotal
t

logp(xtotalt |xhist)⟩

+EtExtotal
t

[∥∥sθ(t, xtotalt , xhist)
∥∥2
2

]
+ C1

Here, C1 is a constant that does not depend on the parameter θ, and ⟨·, ·⟩ means the inner product.
Then, the first part’s expectation of the right-hand side can be expressed as follows:

EtExtotal
t

⟨sθ(t, xtotalt , xhist),∇xtotal
t

logp(xtotal
t |xhist)⟩

=

∫
xtotal
t

⟨sθ(t, xtotalt , xhist),∇xtotal
t

logp(xtotal
t |xhist)⟩p(xtotalt |xhist)dxtotal

t

=

∫
xtotal
t

⟨sθ(t, xtotalt , xhist),
1

p(xhist)

∂p(xtotal
t , xhist)

∂xtotalt

⟩dxtotal
t

=

∫
xtotal

∫
xtotal
t

⟨sθ(t, xtotalt , xhist),
1

p(xhist)

∂p(xtotal
t , xhist, xtotal)

∂xtotalt

⟩dxtotal
t dxtotal

=

∫
xtotal

∫
xtotal
t

⟨sθ(t, xtotalt , xhist),
∂p(xtotalt |xtotal))

∂xtotal
t

⟩p(xhist, xtotal)
xhist

dxtotalt dxtotal

=

∫
xtotal

∫
xtotal
t

⟨sθ(t, xtotalt , xhist),
∂p(xtotalt |xtotal))

∂xtotal
t

⟩p(xtotal|xhist)dxtotalt dxtotal

= Extotal

[∫
xtotal
t

⟨sθ(t, xtotalt , xhist),
∂p(xtotalt |xtotal))

∂xtotalt

⟩dxtotalt

]

= Extotal

[∫
xtotal
t

⟨sθ(t, xtotalt , xhist),∇xtotal
t

log p(xtotalt |xtotal)⟩p(xtotal
t |xtotal)dxtotal

t

]
= ExtotalExtotal

t
[⟨sθ(t, xtotalt , xhist),∇xtotal

t
log p(xtotal

t |xtotal)⟩]

= ExtotalExtotal
t

[⟨sθ(t, xtotalt , xhist),∇xtotal
t

log p(xtotal
t |xtotal)⟩]

The second part’s expectation of the right-hand side can be rewritten similarly, therefore we can
derive following result:

Ltotal
SM (θ) = −2 · EtExtotalExtotal

t
⟨sθ(t, xtotal

t , xhist),∇xtotal
t

logp(xtotalt |xhist)⟩

+EtExtotalExtotal
t

[∥∥sθ(t, xtotalt , xhist)
∥∥2
2

]
+ C1

= Ltotal
DSM (θ) + C1

C is a constant that does not depend on the parameter θ.

B DESCRIPTIONS OF DATASETS AND HYPERPARAMETERS

In this section, we describe detailed explanations about datasets and hyperparameters.
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Table 5: Description of datasets and hyperparameters.

Dimension Timesteps Domain Lhist Lpred Nstep Niter /5000

Exchange 8 6071 R+ 90 30 100 36

Solar 137 7009 R+ 72 24 200 67

Electricity 370 5833 R+ 72 24 50 53

Traffic 963 4001 (0,1) 72 24 50 31

Taxi 1214 1488 N 48 24 50 17

Wiki 2000 792 N 90 30 250 6

C DETAILED EXPLANATIONS ABOUT BASELINES

In this section, we describe brief explanation about baselines.

• VAR : a multivariate linear auroregressive model
• VAR-Lasso : VAR regularized by Lasso
• GARCH : a multivariate heteroskedastic model
• VES : a sort of state space model
• KVAE : a variational autoencoder (VAE) to describe dyamics of data
• Vec-LSTM : connect dynamics of input and gaussian distribution of output by using RNN
• Transformer-MAF : transformer-based forecasting model by conditioning temporal dynam-

ics and masked autoregressiveness flow
• TimeGrad : a representative diffusion-based forecasting model
• CSDI : a representative diffusion-based imputation model, which can be applied to fore-

casting task
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