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1 TRAINING DETAILS

Table 1 provides all the hyperparameters used to train our models across both modalities. In Table 2, we detail the
architecture of our models.

For class-to-image generation, we employed an architecture similar to DiT-XL (Peebles & Xie, 2023), utilizing a patch
size of 2 to reduce the number of tokens from 32×32 to 16×16. Due to GPU memory constraints, we opted not to use
Exponential Moving Averages (EMA). Additionally, we used the ’tie_word_embedding’ technique, where the input and
output layers share weights, reducing the number of trainable parameters.

We used the T5-XL encoder for text-to-image synthesis, which processes 120 text tokens per input, resulting in a text
embedding of size [120, 2048] for each sentence. To integrate text conditioning, we employed a transformer architecture
similar to DiT-L (Peebles & Xie, 2023), the largest model we could fit on our GPU with EMA. The condition is
incorporated using classical cross-attention.

Condition text-to-image class-to-image

Training steps 5× 105 2× 106

Batch size 2048 256
Learning rate 5× 10−5 1× 10−4

Weight decay 0.05 5× 10−5

Optimizer AdamW AdamW
Momentum β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.96
Lr scheduler Cosine Cosine

Warmup steps 2500 2500
Gradient clip norm 0.25 1

EMA 0.999 −
CFG dropout 0.1 0.1

Data aug. No Horizontal Flip
Precision bf16 bf16

Table 1: Hyper-parameters used in the training of text-to-img and class-to-img models.

2 INTERMEDIATE GENERATION

An interesting property of our approach is shown in Figure 1 depicting the intermediate construction of the macaw
(088). It highlights that most images are already fixed after a few steps. First, the bird’s blue color and the white
background are completely set after only four steps with 25/1024 ≈ 2% unmasked tokens. The shape is fixed at the 8th
step (8% tokens unmasked), and the texture starts to appear at 12 steps (16% tokens unmasked). This means that the
rest of the token will only influence the high-frequency details of the generated image. We push the analysis further
by computing the FID and IS for these intermediate samples (see Table 3), where we evaluate the results given the
generated intermediate images. While the first 16 steps significantly increase both the FID and the IS, the last 12 steps
only decrease the FID score by 0.14 points.
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Condition text-to-image class-to-image
Parameters 479.8M 705.0M
Input size 32 × 32 32 × 32

Hidden dim 1024 1152
Codebook size 16384 16384

Depth 24 28
Heads 16 16

Mlp dim 4096 4608
Patchify (p=) 2 2

Dropout 0.0 0.0
Conditioning Cross-attention AdaLN

Table 2: Architecture design of the text-to-img and class-to-img models.

01/32 04/32 08/32 12/32 16/32 20/32 24/32 28/32 32/32

Figure 1: Evolution of the sampling using Halton scheduler. The macaw’s (088) color, texture, and shape, as well as
the background, are set after only 12 steps, with only ∼16% tokens predicted. That showcases the ability of the Halton
scheduler to extract information from the tokens by reducing their correlation.

Steps Percentage of tokens FID ↓ IS ↑
4/32 2% - -
8/32 8% 146.2 7.31

12/32 16% 76.7 24.1
16/32 28% 24.9 79.6
20/32 43% 8.85 142.2
24/32 61% 6.25 174.3
28/32 82% 6.12 182.2
32/32 100% 6.11 184.0

Table 3: Evaluation of intermediate generated samples on ImageNet 512×512. Most of the gains are on early steps,
which are crucial to achieve good FID and IS. Later steps keep improving but may be skipped as a compromise between
quality and compute.
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Algorithm 1: Compute the Halton sequence
1 Parameters:
2 b: the base of the Halton sequence,
3 n′: the number of points in the sequence to compute
4 Results:
5 S: the first n′ points of the Halton sequence in base b

6 n← 0
7 d← 1
8 S ← []

9 for i← 0 to n′ do
10 x← d− n
11 if x = 1 then
12 n← 1
13 d← d× b
14 end
15 else
16 y ← d÷ b
17 while y ≥ x do
18 y ← y ÷ b
19 end
20 n← ((b+ 1)× y)− x
21 end
22 S.append(n÷ d)
23 end
24 return S

3 PSEUDO-CODE FOR HALTON SEQUENCE

In algorithm 1, we detail the generation of the Halton sequence, producing a sequence of size n′ with a base b. In
practice, we generate two sequences with b = 2 and b = 3, respectively, representing 2D coordinates of the points to
select. We then discretize the space in a 32 × 32 grid. Duplicate points are discarded, ensuring complete grid coverage
by setting n′ appropriately. The coordinates of the remaining points determine the order of token unmasking during
sampling.

4 TEXT PROMPTS

Prompt use for our text-to-image model, from left-top to bottom-right:

1. A robot chef expertly crafts a gourmet meal in a high-tech futuristic kitchen, intricate details.

2. An old-world galleon navigating through turbulent ocean waves under a stormy sky lit by flashes of lightning.

3. A cozy wooden cabin perched on a snowy mountain peak, glowing warmly in the night, styled like a classic Disney
movie, featured on ArtStation.

4. A blue sports car is parked. The sky above is partly cloudy, suggesting a pleasant day. The trees have a mix of green
and brown foliage. There are no people visible in the image.

5. An oil painting of rain in a traditional Chinese town.

6. Volumetric lighting, spectacular ambient lights, light pollution, cinematic atmosphere, Art Nouveau style illustration
art, artwork by SenseiJaye, intricate detail.

7. A mystical fox in an enchanted forest, glowing flora, and soft mist, rendered in Unreal Engine.

8. Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is
wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be
an urban setting with a building facade, and the sunlight casts a warm glow on her face.

9. Photo of a young man in a black suit, white shirt, and black tie. He has a neatly styled haircut and is looking directly
at the camera with a neutral expression. The background consists of a textured wall with horizontal lines. The
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photograph is in black and white, emphasizing contrasts and shadows. The man appears to be in his late twenties or
early thirties, with fair skin and short, dark hair.

10. Selfie photo of a wizard with a long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken
from a phone.

11. An image of Pikachu enjoying an elegant five-star meal with a breathtaking view of the Eiffel Tower during a golden
sunset.

12. A sleek airplane soaring above the clouds during a vibrant sunset, with a stunning view of the horizon.
13. A towering mecha robot overlooking a vibrant favela, painted in bold, abstract expressionist style.
14. Anime art of a steampunk inventor in their workshop, surrounded by gears, gadgets, and steam. He is holding a blue

potion and a red potion, one in each hand
15. Pirate ship trapped in a cosmic maelstrom nebula rendered in cosmic beach whirlpool engine.
16. A futuristic solarpunk utopia integrated into the lush Amazon rainforest, glowing with advanced technology and

harmonious nature.
17. A teddy bear wearing a blue ribbon taking a selfie in a small boat in the center of a lake.
18. Digital art, portrait of an anthropomorphic roaring Tiger warrior with full armor, close up in the middle of a battle.

5 RANDOM SAMPLES FROM OUR CLASS CONDITIONED MODEL

In Figure 2, we show that our model can generate diverse images and more intricate details compared to the confidence
scheduler. Furthermore, a comparison with the Confidence sampler reveals that the latter produces overly simplistic
and smooth images, often with poorly defined backgrounds. In contrast, our approach consistently produces greater
diversity, particularly in rendering background elements.
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(a) MaskGIT using our Halton scheduler.

(b) MaskGIT using the Confidence scheduler.

Figure 2: Scheduler comparison on random samples generated by a class-to-image model. The Halton scheduler
demonstrates a higher level of detail, capturing finer features than the Confidence scheduler, which lacks details,
especially in the background.
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