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Supplement to “Learning Temporally Causal Latent Processes
from General Temporal Data”

The supplementary materials are divided into five main sections. In Appendix A, we provide the
explanations of each assumption and give the proof of the identifiability theory. We also give side-
by-side comparisons, by providing the mathematical formulations of the closest works and making
comparisons in terms of problem setups and critical assumptions. Finally, how the theory is con-
nected to the training framework is discussed. In Appendix B, we provide the details of the synthetic
and real-world datasets and explain the evaluation metrics. In Appendix C, we describe our network
architecture, hyperparameters setting, and training details. The additional experiment results are
given in Appendix D. The related work is summarized in Appendix E.

A Identifiability Theory 14
A.l1 Notation and Terminology . . . . . . .. . ... .. ... .. ... . ... ... 14
A.2 Discussion of our Assumed Conditions . . . . . ... ... ... ... . ..... 14

A.2.1 Independent Noise (IN) Condition . . . . . . ... ... ... ....... 14
A.2.2 Nonstationary Noise and Sufficient Variability Condition . . . . . . . . .. 15
A.2.3 Generalized Laplacian Noise Condition . . . . . ... ... ... ..... 16
A.2.4 Nonsingular State Transitions Condition . . . . . . . ... ... ... ... 16
A.3 Proof of Identifiability Theory . . . . .. ... .. ... ... .. ........ 17
A3.1 Preliminaries . . . . . . . . . ... 17
A32 Proofof Theorem 1. . . ... ... ... ... .. . ... ... . ... 18
A33 Proofof Theorem?2 . . . ... .. ... ... ... .. ... . ... ..., 20
A.4 Comparisons with Existing Theories . . . . . . ... ... ... ... ...... 22
A.5 Connecting Theoriesto Model . . . . . .. .. ... ... ... ... ...... 23

B Experiment Settings 23
B.1 SyntheticDataset . . . . . . . .. . . ... 23
B.2 Real-world Dataset . . . . ... ... ... ... ... ... . 24
B.3 Evaluation Metrics . . . . . . . . ... 25

C Implementation Details 25
C.1 Network Architecture . . . . . . . . . . ... 25
C.2 Hyperparameters and Training Details . . . . . . .. .. ... ... ... ..... 27

C.2.1 Hyperparameter Selection and Sensitivity Analysis . . . . . ... .. ... 27
C22 Training . . . . . . . o . .o e 29

D Additional Experiment Results 29
D.1 Comparisons between LEAP and Baselines on CMU-Mocap Dataset . . . . . . . . 29
D.2 Mass-Spring Systems . . . . . . ... e e e e e 30

E Extended Related Work 31

13



Published as a conference paper at ICLR 2022

A IDENTIFIABILITY THEORY

A.1 NOTATION AND TERMINOLOGY
We summarize the notations used throughout the paper in Table A.1.

Table A.1: List of notations.

Index
t Time index
1,7 Variable element (channel) index
T Time lag index
perm Random permutated variable index across the data batch
Variable

X Observation data
X Reconstructed observation
u Auxiliary nonstationary regime variable
Zt Underlying sources
ZHx Time-delayed latent causal variables
Pa(z;t) Set of direct cause nodes/parents of node z;;
e Measurement error
ﬁ, ﬁ Forward or backward embeddings in bidirectional RNN
o(7) Soft mask vector
w Modulation parameter vector
B State transition matrix
€it Process noise term
€it Estimated process noise term
Zit Estimated sources
Zit True underlying sources

Function and Hyperparameter
P Distribution function (e.g., pe,, is the distribution of €;;.)
g Arbitrary nonlinear and injective mixing function
fi Nonlinear transition function for z;;
h Indeterminancy mappings between z; and z,
T Learned inverse transition function for residual ¢;
Siu Spline flow function for residual €; in regime u

B,v,0 Weights in the augmented ELBO objective
n Latent size

L Maximum time lag

T Total length of time series

T Permutation operation

T Component-wise invertible nonlinearities
q Log density function

A« Parameters of Laplacian distribution

A.2 DISCUSSION OF OUR ASSUMED CONDITIONS

We first explain and justify each critical assumption in the proposed conditions. We then discuss
how restrictive or mild the conditions are in real applications.

A.2.1 INDEPENDENT NOISE (IN) CONDITION

The IN condition was introduced in the Structural Equation Model (SEM), which represents effect
Y as a function of direct causes X and noise E:

Y=fXE) with XL1E. (10)

IN condition
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If X and Y do not have a common cause, as seen from the causal sufficiency assumption of structural
equation models in Chapter 1.4.1 of Pearl’s book (Pearl et al., 2000), the IN condition states that the
unexplained noise variable E is statistically independent of cause X . IN is a direct result of assuming
causal sufficiency in SEM. The main idea for the proof is that if IN is violated, then by the common
cause principle (Reichenbach, 1956), there exist hidden confounders that cause their dependence,
thus violating the causal sufficiency assumption. Furthermore, for a causally sufficient system with
acyclic causal relations, the noise terms in different variables are mutually independent. The main
idea is that when the noise terms are dependent, it is customary to encode such dependencies by
augmenting the graph with hidden confounder variables (Pearl et al., 2000), which means that the
system is not causally sufficient.

In this paper, we assume the underlying latent processes form a casually-sufficient system without
latent causal confounders. Then, the process noise terms ¢;; are mutually independent, and more-
over, the process noise terms ¢;; are independent of direct cause/parent nodes Pa(z;;) because of
time information (the causal graph is acyclic because of the temporal precedence constraint).

Applicability Loosely speaking, if there are no latent causal confounders in the (latent) causal
processes and the sampling frequency is high enough to observe the underlying dynamics, then the
IN condition assumed in this paper is satisfied in a causally-sufficient system and, moreover, there
is no instantaneous causal influence (because of the high enough resolution). At the same time, we
acknowledge that there exist situations where the resolution is low and there appears to be instan-
taneous dependence. However, there are several pieces of work dealing with causal discovery from
measured time series in such situations; see. e.g., Granger (1987); Gong* et al. (2015); Danks & Plis
(2013); Gong et al. (2017). In case there are instantaneous causal relations among latent causal pro-
cesses, one would need additional sparsity or minimality conditions to recover the latent processes
and their relations, as demonstrated in Silva et al. (2006); Adams et al. (2021). How to address the
issue of instantaneous dependency or instantaneous causal relations in the latent processes will be
one line of our future work.

A.2.2 NONSTATIONARY NOISE AND SUFFICIENT VARIABILITY CONDITION

Nonstationary Noise For nonparametric processes, temporal constraints are not sufficient for the
identification of latent causal transition dynamics whose functional or distributional form is not con-
strained. Otherwise, there is no need for Theorem 2 to assume the generalized Laplacian noise and
the full-rankness of state transitions at all. In this paper, an alternative way is to exploit the (tem-
poral) nonstationarity of the data caused by changing noise distribution (hence called nonstationary
noise condition). We assume the functions of the temporal causal influences denoted by f; remain
the same across across the |u| regimes or domains of data we have observed, but the distributions
Pe;|u> Of Noise terms that serve as arguments to the structural equation models, may change. One
special case of this principle uses nonstationary variances, i.e., the noise variances change across
nonstationary regimes. This kind of perturbation has been widely used in linear ICA (Matsuoka
et al., 1995). Additionally, the nonstationary noise condition in this paper allows for any kinds of
modulation of noise distribution by nonstationary regimes u, such as changing distributional forms,
scale, and location by u, as long as the modulated sources satisfy sufficient variability condition
described below.

Sufficient Variability The sufficient variability condition was introduced in GCL (Hyvarinen
et al., 2019) to extend the modulated exponential families (Hyvarinen & Morioka, 2016) to gen-
eral modulated distributions. Essentially, the condition says that the nonstationary regimes u must
have a sufficiently complex and diverse effect on the transition distributions. In other words, if the
underlying distributions are composed of relatively many domains of data, the condition generally
holds true. For instance, in the linear Auto-Regressive (AR) model with Gaussian innovations where
only the noise variance changes, the condition reduces to the statement in (Matsuoka et al., 1995)
that the variance of each noise term fluctuates somewhat independently of each other in different
nonstationary regimes. Then the condition is easily attained if the variance vector of noise terms in
any regime is not a linear combination of variance vectors of noise terms in other regimes.

We further illustrate the condition using the example of modulated conditional exponential families
in (Hyvarinen et al., 2019). Let the log-pdf ¢(z:|{z:—-},u) be a conditional exponential family
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distribution of order k given nonstationary regime u and history zyx = {z;— . }:

k
q(zit|zZnx, u) = qi(za) + ZQij(zit)/\ij(ZHXa u) — log Z(zux, u), (11)

j=1

where g; is the base measure, g;; is the function of the sufficient statistic, );; is the natural parameter,
and log Z is the log-partition. Loosely speaking, the sufficient variability holds if the modulation of
by u on the conditional distribution ¢(z;¢|znx, 1) is not too simple in the following sense:

1. Higher order of k (k > 1) is required. If k£ = 1, the sufficient variability cannot hold;

2. The modulation impacts );; by u must be linearly independent across regimes u. The
sufficient statistics functions g;; cannot be all linear, i.e., we require higher-order statistics.

Further details of this example can be found in Appendix B of (Hyvarinen et al., 2019). In summary,
we need the modulation by u to have diverse (i.e., distinct influences) and complex impacts on the
underlying data generation process.

Applicability The nonstationarity of process noise seems to be prominent in many kinds of tem-
poral data. For example, nonstationary variances are seen in EEG/MEG, natural video, and closely
related to changes in volatility in financial time series (Hyvarinen & Morioka, 2016). As we assume
the transition functions f; are fixed across regimes, the data that most likely satisfy the proposed con-
dition is a collection of multiple trials/segments of data with slightly different temporal dynamics in
between, where the differences can be well modeled by different noise distributions. For instance, in
MEG data, temporal nonstationarity can be modeled by segmenting the measured data into different
sessions (e.g., stimuli, rest, etc.) where the session index modulates the noise variance.

A.2.3 GENERALIZED LAPLACIAN NOISE CONDITION

In the parametric (VAR) processes in Theorem 2, we exploit the non-Gaussianity of noise perturba-
tions to achieve identifiability. Specifically, we constrain the process noise distribution to be within
the generalized Laplacian distribution family in this paper. This L1-sparse temporal prior is moti-
vated by the natural statistics of video data, where the uncertainty could have sharp impacts on some
latent factors, but most other factors are not perturbed between two adjacent frames. This transi-
tion prior has strong connections with slow feature analysis (Sprekeler et al., 2014; Klindt et al.,
2020) which measures slowness in terms of the L2 distance between temporally adjacent encod-
ings as temporal constraints for nonlinear ICA. Note that although the Laplacian-like distributional
form is pre-defined, the generalized Laplacian distrbution can still be used to fit a broad family of
perturbations with different shapes by changing o and A of the distribution.

Applicability L1-sparse transition priors are widely used to model video datasets and natural
scene measurements. This condition is applicable to video datasets where the external factors have
sharp effects on some but not all latent factors in two adjacent frames.

A.2.4 NONSINGULAR STATE TRANSITIONS CONDITION

Nonsingularity is a standard assumption made in the previous studies (Zhang & Hyvérinen, 2011)
to achieve identifiability of linear state-space models. We give a two-dimensional low-rank vector
autoregressive (VAR) process example below to illustrate the concept. Define a low-rank VAR
process with time lag L = 1 below:

. b 1
Zy = BZt_l + €4 with B = |:Ot (:; a a X b:| = |:a:| X [a b} 5 (12)

where z; = [214, 29¢] | and ¢; = [e1, €2¢] | . Multiplying both sides of the VAR process with a row
vector [a, b], we have:
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o b xz=a b]xmx[a bze1+]a b xe (13)

=(a+ba)la b Xzi_1+[a b Xe. (14)

Zt—1 €t

Hence, the two-dimensional VAR process reduces to a single linear AR process with z; = [a  b] X
Z; = az1t + bz and € = [a U] X €; = aeyy + begt, which is a linear combination of the original
two processes. In this case, we cannot recover z; at all, but only the linear combination z;.

In summary, when the state transition matrices are not of full rank, there exist low-dimensional
projections of the underlying latent processes that satisfy the observational equivalence everywhere.
By assuming the nonsingular state transitions, one could prevent from recovering low-dimensional
projections of latent causal factors and time-delayed relations.

A.3 PROOF OF IDENTIFIABILITY THEORY
A.3.1 PRELIMINARIES

Equivalent Relations on Latent Space Our proof of identifiability starts from deriving relations
on estimated latent space from observational equivalence: the joint distribution Py 7 p. (XHx, X¢t)
matches py s, (Xnx, X;) everywhere. Note that we consider only one future time step x; for sim-
plicity as the joint probability of the whole sequence can be decomposed into product of these terms.
Since the learned mixing function x; = §(z;) can be written as x; = (g o (9)~! o §)(z¢) because
of injective properties of (g, §), we can see that § = g o ((g)_1 o g) = g o h for some function
h = (g)~! o g on the latent space. Our goal here is really to show that this function h, which
represents the indeterminancy of the learned latent space, is a permutation with component-wise
nonlinearities. It has been proved in (Klindt et al., 2020) that:

1. Indeterminancy h on latent space can only be a bijection on the latent space if both g and g
are injective functions, and h preserves the prior distribution in the latent space. The proofs
are in Appendix A.1 of (Klindt et al., 2020) on Page 18;

2. Eq. 15 can be directly derived from observational equivalence using the injective properties
of (g, §). The proofs are in Appendix A.1 of (Klindt et al., 2020) on Page 19:

e I O B O P N ()

Identifiability of Linear Non-Gaussian State-Space Model Linear State Space Model (SSM)
defined below has been proved to be fully identifiable in (Zhang & Hyvérinen, 2011) when both the
process noise €; and measurement error e; are temporally white and independent of each other, and
at most one component of the process noise €; is Gaussian. The observation error e; can be either
Gaussian or non-Gaussian:

x; = Az + ey, (16)
L

z1=>» B,z +e. (17)
T=1

We will make use of this property of linear non-Gaussian SSM for deriving Theorem 2. The main
idea is if we can prove h of parametric conditions (which also has vector autoregressive processes
as in Eq. 17 with non-Gaussian noise) is within affine transformations, the componentwise identifi-
ability of true latent variables can be directly derived because we can treat the affine indeterminacy
as a “high-level” affine mixing of sources same as A in Eq. 16 without measurement error.
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A.3.2 PROOF OF THEOREM 1

Theorem A.1 (Nonparametric Processes) Assume nonparametric processes in Eq. 18, where the
transition functions f; are third-order differentiable functions and mixing function g is injective and
differentiable almost everywhere; let Pa(z;;) denote the set of (time-delayed) parent nodes of z;;:

xt = 9(z¢), zi=fi ({Zj,t77|zj,t77' € Pa(Zit)}7 €it) With €~ Peilu - (18)
——
Nonlinear mixing Nonparametric transition Nonstationary noise

Here we assume:

1. (Nonstationary Noise): Noise distribution p, |y is modulated (in any way) by the observed cate-
gorical auxiliary variables u, which denotes nonstationary regimes or domain index;

2. (Independent Noise): The noise terms €;; are mutually independent (i.e., spatially and temporally
independent) in each regime of u (note that this directly implies that ¢;; are independent from
Pa(z;t) in each regime);

3. (Sufficient Variability): For any z; € R" there exist 2n + 1 values for u, ie., u; with
j =0,1,...,2n, such that the 2n vectors w(z¢, u;1) — W(z¢,u;), with j = 0,1, ...,2n, are
linearly independent with w(z;, 1) defined below, where q; is the log density of the conditional
distribution and zy, = {z_.} denotes history information up to maximum time lag L:

9q1 (21t |28, 1) OGn(2nt|2m, 1) 0%q1 (21t 28y, 1) 02 (2nt| 28y, 1)
£ A ’ A ! . (19
W(Zh u) ( 82115 ) ) 8Znt ) 82% ) ) azit ( )

Then the componentwise identifiability property of temporally causal latent processes is ensured.

Proof: We first extend Eq. 15 to include conditioning on the nonstationary regime u. We then
show that if sufficient variability condition is satisfied, the indeterminancy function & can only be
permutation with component-wise nonlinearities.

Step1 We first derive equivalent relations on the latent space by conditioning on the nonstationary
regime u. This can be directly achieved by applying the change of variable formula on the L + 1
invertible maps: z; = h™1(z;), z2e-1 = h"Y(Z¢—1), ..» Ze—1, = h™1(z_1). W.lo.g, let’s assume
L =1 for now. We then have the following three equalities:

oOh~1 Oh—(z;_
p(2t,2¢—1,1) :p(h_l(zt),h_l(zt_l),u) det azizt) 'det aziftl ) , (20)
Oh—1
p(ze) = p(h™ ) aer LD, @)
Zy
Oh~(z,_
p(zi—1,u) = p(h™ (2z4—1),u) det# . (22)
Zi—1

Solving for the determinant terms in Eq. 21 and Eq. 22 and plugging them into Eq. 20, we have:

p(zt)
p(h=1(ze))

It is straightforward to see that this relation holds for multiple time lags where L > 1. We take logs
on both sides, and we now define G(z;) = q(z;) as the marginal log-density of the components z;
when u is integrated out. We then have:

p(z¢|zi—1,u) = p (A~ (z¢)|h " (2-1), ) (23)

q(zil{ze—-}, 1) — g(h™ (z0) W™ ({ze—r 1 0)) = G(ze) — @(h (zr)), (24)

and using the Independent Noise (IN) assumption, the conditional log-pdf ¢(z:|{z:—}, u) and its
estimated version q(h~*(z¢)|{h~1(2z;—,)},u) are conditional independent (note this has been en-
forced in causal process network as constraints) and LHS can be factorized as:
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ZQi(ZitHzth]ﬁ u) —g; ([h_l(zt)]i {h(ze—r)}, u)) = q(z:) — q(h~(z)).  (25)

where ¢ is the marginal log-density of the components z, when u is integrated out and it does not
need to be factorial.

Step 2 Now we do the following simplification of notations. Let h; ' (z;) = (™ 1(zt)] Denote
the first-order and second-order derivatives by a superscript as:

0qi(zit|{zi—~}, 1)

q; (zil{ze—+},0) = D2sr ; (26)
a qz(zzt‘{zt 'r} )
(Zzt‘{zt Hhu) = (92’” ) 27

and take derivatives of both sides of Eq. 25 with respect to z;;, we have:

Oh; !
¢ (zel{ze—r} 1) Zqz Ha)|{h (%%u)% (28)
J
i1 Ohy ' (z¢)
_zi:q](hi (Zt))Tjt- (29)

- _ j R;? i3 .
Denote the first order derivative of h™! as v](z;) = 3527(?*) and v}’ (z;) is the second-order
J

derivative with respect to a different component z;/, for any j # j’. Taking another derivative with
respect to z;; on both sides of Eq. 29, the first term on LHS vanishes and we have:

gl (h  (2) | {h (2o} W] (20)0] (20) + @b (B (2 [{h ™ (2eme)} 0ol (20) = &7 (30)

where /7" denotes the derivatives of RHS of Eq. 29 which does not depend on u. Same as (Hy-
varinen et al., 2019), we collect all these equations in vector form by defining a;(y) as a vector

collecting all entries v; (Zt)vf (z¢) for j € [1,n]and j' € [1,j — 1]. We omit diagonal terms, and by
symmetry, take only one half of the indices. Likewise, collect all the entries vj 7 (z¢) for j € [1,n]

and j' € [1,j — 1] in the vector b(z,). All the entries of ¢//’ are in c(z;). These n(n — 1)/2
equations can be written a single system of equations:

Zaz () {h T (Ze-r) 1 w) + bi(ze)g; (i (2) {7 (2e—r)} 0) = c(z0). (31
Now, collect the a and b into a matrix M:

M(Zt) = (a1 (Zt)7 . ,an(zt), bi(zt); ey bn(Zt)) . (32)
Eq. 31 takes the form of the following linear system:

M(z,)w(z¢, 1) = c(z), (33)

where w are the vectors defined in the sufficient variability assumption, and w is defined for any
input z;. Notice that the RHS of the linear system does not depend on u, so we fix z; and consider
the 2n + 1 points u given for that z; by the sufficient variability assumption.

Collect Eq. 33 above for 2n points starting from index 1:
M(Zt) (W<Zt’ 111), s 7W(Zta u2n)) = (C(Zt)a cee ,W(Zt, ul)) ) (34)
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and collect the equation starting from index O for 2n points:

M(z;) (w(z¢, ug), ..., W(z¢,uzn—1)) = (c(2¢),..., W(z¢,ug)) . (35)

Substract Eq. 35 from Eq. 34, we then have:

M(z¢) [w(ze,u1) — W(2zg, ug), - .., W(2Zt, U2, ) — W(2¢, ug)] = 0. (36)

\%%

By the suffienct variability assumption, the matrix W that has linearly independent columns and is
a square matrix so is nonsingular. The only solution to the linear system above is thus:

M(z:) = (ai(zt), ..., an(z), bi(2t), ..., bn(ze)) = 0. (37

Following (Hyvarinen et al., 2019), a(z;) being zero implies no row of the Jacobian of h~!(z;) can
have more than one non-zero entry. This holds for any z;. By continuity of the Jacobian and its in-
vertibility, the non-zero entries in the Jacobian must be in the same places for all z;: If they switched
places, there would have to be a point where the Jacobian is singular, which would contradict the
bijection properties of h~! derived in Section A.3.1. This means that each h; 1(zt) is a function of
only one z; for k € [1,n]. The bijection h~! also implies that each of the componentwise func-
tions is invertible. Thus, we have proven that latent variables are identifiable up to permutation and
componentwise invertible transformations and temporally causal latent processes with conditions
required by Theorem 1 are proved to be identifiable from observed variables. l

A.3.3 PROOF OF THEOREM 2

Theorem A.2 (Parametric Processes) Assume the vector autoregressive process in Eq. 38, where
the state transition functions are linear and additive and mixing function g is injective and differ-
entiable almost everywhere. Let B, € R™ "™ be the state transition matrix at lag 7. The process
noises €;; are assumed to be stationary and both spatially and temporally independent:

L
xt=g(z¢), 2= Z B.z,_. + ¢ with €4 ~Dpe, . (38)
———— ——

T=1

Nonlinear mixing Independent noise

Linear additive transition

Here we assume:

1. (Generalized Laplacian Noise): Process noises €;; ~ pe, are mutually independent and follow
i) with a; < 2;

the generalized Laplacian distribution p., = #ﬁ‘%) exp (— A€

2. (Nonsingular State Transitions): For at least one T, the state transition matrix B, is of full rank.

Then the componentwise identifiability property of temporally causal latent processes is ensured.

Proof: The following proof is inspired by Theorem 1 in (Klindt et al., 2020). The key differences
are (i) allowing temporal causal relations B, among the sources instead of independent sources
assumption, (ii) extending the single time lag restriction to multiple time lags case.

Identifiability on Causally-Related Sources Let us start from the simple case where the time lag
7 = 1. In this case, the transition dynamic in Eq. 38 can be simplified as

xt = g(2¢), 2z =Bz 1 +e. (39)

Using Eq. 15 and by applying the distributional forms of generalized Laplacian noise, we have:

B N S PN CO N
p(zt|zt—1) _p<h ( t)|h’ ( t_l))p(hfl(zt)) (40)
—1 —1 o (zt)
= Mllz; — Bz ||2 — N|[h~ (z) — Bh~ (ze—)[[§ = log —-"

p(h=(z1))’
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where M and N are the constants appearing in the exponentials in p(z:z:—;) and
p(h=(ze)|h ™ (z¢-1))-

Taking the derivative w.r.t z,_; on both sides, we obtain
Ollze —Bzi—ally _ 0llh~ (z¢) — Bh~'(ze—1)la

41
0241 0241 “h
For the left hand of the Eq. 41, we can derive
O||ze — Bzi—1|lg Ollze — Bzia|la _ Ollh~"(z0) — Bh~(zi—1)lla
5'||Zt - BZt—lHa 0241 0241
—Bz;_1l|a Al —Bh1(z;_1)||
g Bay oo e = Bralla _ Ol e0) (o)l
0zt 0z¢_1
_ —1 _ —1 a
N Olletlla 02e =Bz _ O||h™ (2:) = Bh™ (z-1)l[5 @2)
Oey 0z¢_1 0241
_19/let]]a ANh~(z) —Bh ' (z—1)lla
= — — B _ a—1 B = (&3
al|zy zi-1llo e, 921
Ah~"(ze) = Bh ' (z—1)ll2

= —a(zt —Bzi1) Oz — th,1|a_2B =

0741
Making the same derivation process on the right hand, we obtain
—a(z; —Bz;_1) O |z, — Bz,_1/*°B
Ohl(z 1)  (43)

Zi 1

= —a(h ™ z) —Bh Y (z,_1)) © |h  (z;) — Bh ! (z,_1)|*°B

For any z; we can choose z; = Bz;_; and thus the Eq. 43 can be written as:
Oh~Y(z_1)

Zi—1

(h"Y(zy) = Bh Y (z_1)) © |h " (2z;) — Bh 1(z;_1)|*°B =0. (44)

Considering the nonsingularity of matrix B (by assumption) and bijection of h, we can derive
(h™H(z) = Bh ™ (24-1)) © |h 7} (2¢) = Bh™H(ze-1)[* 2 = 0

(45)
= (hi '(z0) = Bhi '(ze-1))|h; ' (ze) — Bhy H(z-1)* 7 = 0.
foralli = 1,...,d. Apparently h=!(z;) = Bh~'(z;_1) is the only solution, thus
h~'(Bzi_1) = Bh (z;_1). (46)
Substitute Eq. 46 to the right hand of Eq. 40, we have
2 — Bz 1|2 = ||h (z) = BR™H(z-1)||2
|22 t—1lla = [1h7"(z) (ze-1)lla 47

= |z = Balla = [[h7 (z) = B (Ba—)lla-

This indicates that h~! preserves the a-distances between points. Since h is bijective, then by
Mazur-Ulam theorem Mazur & Ulam (1932), h must be an affine transform. According to Theorem
2 in (Zhang & Hyvirinen, 2011), the model is identifiable, which proves the theorem.

Extension to Multiple Time Lags We can extend the result in Eq. 41 and have
Ollze — r_y Brz—olla _ Ollh (2e) = 37 B~ (ze-r) I
0z 0z, ’

where z;_; is any lag latents with the limitation that the B; corresponding to z;_; is of full rank.
Following the same above-mentioned derivation process, we can obtain

L L
(Zt - Z BTZt—T) © |Zt - Z BTZt—T‘Oé72Bi
T=1 T=1

L L

=(h""(2:) = Y Brh (i) O [h ™ (2e) = > Brh ™ (ze-r)|?B,

T=1 T=1

(48)

49)
Oh~(211)

Zi—;
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For any z; we can choose z;, = Zle B.z;_., thus the Eq. 49 can be written as:

1 - 1 1 - 1 o 00 (2
h™*(z:) — B,h z:_7)) ©|h  (ze) — B A7 (z_)|**B,————2 =0. (50
() = 3B ) © )~ DB )
As mentioned above, h~1(z;) = S.F_ B,h~(z,_,) is the only solution, thus
L L
h_l(z B,z ;) = ZBTh—l(zt,T). (51)
T=1 T=1

Following the same procedure in the simple case, the theorem is proven. l

A.4 COMPARISONS WITH EXISTING THEORIES

The closest work to ours includes (1) PCL (Hyvarinen & Morioka, 2017), which exploited tempo-
ral constraints to separate independent sources, (2) SlowVAE (Klindt et al., 2020), which leveraged
sparse transition of adjacent video frames to separate independent sources, and (3) iVAE (Khe-
makhem et al., 2020), which leveraged the nonstationarity by the modulation of side information
u on the prior distribution p(z|u) of conditional factorial latent variables. Our work extends the
theories to the discovery of the conditional independent sources with time-delayed causal relations
in between by leveraging nonstationarity, or functional and distribution forms of temporal statistics.
To the best of our knowledge, this is one of the first works that successfully recover time-delayed
latent processes from their nonlinear mixtures without using sparsity or minimality assumptions.

PCL The sources z;; in PCL were assumed to be mutually independent (see Assumption 1 of
Theorem 1 in PCL). In contrast, we allow the sources to have time-delayed causal relations in
between, which is much more realistic in real-world applications. They further assumed the sources
are stationary, while we allow nonstationarity in the nonparametric setting (the nonstationary noise
assumption). The underlying processes of PCL are described by Eq. 52:

log p(zit)zii—1) = G(zit — pzit—1) or logp(zitlzii—1) = —A(zit —r(zic-1))° + const. (52)

where G is some non-quadratic function corresponding to the log-pdf of innovations, p < 1 is re-
gression coefficient, r is some nonlinear, strictly monotonic regression, and ) is a positive precision
parameter. Both theorems of our work extend the theory to the discovery of the conditional inde-
pendent sources with time-delayed causal relations in between. Furthermore, in the nonparametric
process condition, we do not restrict the functional and distributional forms of underlying transitions.
Our proposed nonparametric condition naturally includes PCL as a special case.

SlowVAE Inspired by slow feature analysis, SlowVAE assumes the underlying sources to have
identity transitions with generalized Laplacian innovations described in Eq. 53:

d

al .
p(z¢|z_1) = H m exp—(Azie — zi—1]%) with a<2. (53)
i=1

Our proposed parametric condition (Theorem 2) in Eq. 4 is a natural extension to the Laplacian
innovation model above by allowing time-delayed vector autoregressive transitions in the latent
process with multiple time lags. Consequently, temporally causally-related latent processes with
linear transition dynamics can thus be modeled and recovered from their nonlinear mixtures with
our parametric condition.

iVAE Similar to TCL (Hyvarinen & Morioka, 2016) and GIN (Sorrenson et al., 2020), iVAE ex-
ploits the nonstationarity brought by the side information (i.e., class label) on the prior distribution
of latent variables z;. As one can see from Eq. 54, the latent variables are conditionally indepen-
dent, without causal relations in between while both of our theorems consider (time-delayed) causal
relations between latent variables. In addition, iVAE exploits the nonstationarity brought by side
information (i.e., class label) on the prior distribution of latent variables z. On the contrary, our non-
parametric condition, instead of relying on the change in the prior distribution of latent variables,
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exploits the nonstationarity in the noise distribution, which is more natural in real-world datasets.
Finally, iVAE assumes modulated exponential families in Eq. 54 while our nonparametric condition
(Theorem 1) allows any kinds of modulation by side information u without those strong assumptions
on the transition functions or distributions.

k
%; exp [3 T3y (z0) i 5 (w)] (54)

proa(zlu) = H

In terms of architecture innovations, to remove distributional and functional form constraints of
iVAE, we design a novel causal transition prior network for nonparametric transitions by injecting
the IN condition inside reparameterization trick, resulting in an efficient scoring mechanism of tran-
sition prior which only needs to compute the determinant of a low-triangular Jacobian matrix. This
module was never seen in previous work.

A.5 CONNECTING THEORIES TO MODEL

As one can see from the proofs in Appendix A.3, what have been assumed for the estimation frame-
work are the conditional factorial properties of q(2¢|{Z;_, },u) where z; = h~*(z;) and the model
of temporal nonstationarities through nonstationary noises. The conditional factorial properties have
been injected using the reparameterization trick (Eq. 7) with the IN condition in causal transition
prior and the enforcing of spatiotemporal independence of estimated residuals through contrastive
learning. The nonstationary noises are modeled with flow-based density estimators. We share the
weights of the other modules (e.g., encoder, transition function, decoder, inference network, etc.)
across nonstationary regimes while using separate flow models to estimate the density of residuals
and evaluate the prior scores in each regime. We also use componentwise flow models so the learned
residuals will not interact with each other in the estimation framework. Finally, in nonparametric
processes, we warm-start the flow models to generate standard Gaussian noise. In parametric pro-
cesses, the flow models are initialized to generate standard Laplacian noise. Note that the other
assumed conditions in the two theorems, such as sufficient variability and nonsingular state transi-
tions, are data properties and do not need to be encoded as constraints in the estimation framework.

B EXPERIMENT SETTINGS

B.1 SYNTHETIC DATASET

Seven synthetic datasets, including two datasets (NP and VAR) which satisfy our assumptions, and
five datasets, which violate each of the assumption in the proposed theorems, are used in this paper.
We set the latent size n = 8 and the lag number of the process L = 2. The mixing function g is a
random three-layer MLP with LeakyReLU units.

Nonparametric (NP) Dataset For nonparametric processes, we generate 150,000 data points ac-
cording to Eq. 2. In particular, we use a Gaussian additive noise model as the latent processes. The
noises €;; are sampled from i.i.d. Gaussian distribution with variance modulated by 20 different
nonstationary regimes. In each regime, the variance entries are uniformly sampled between 0 and
1. A 2-layer MLP with LeakyReLU units is used as the state transition function f;. When we need
sparse causal structure for visualization, a random binary mask is added to the input nodes.

(Violation) Insufficient Variability For this dataset, we create datasets that violate the nonsta-
tionary noise condition and sufficient variability by restricting the number of nonstationary regimes
observed in the NP dataset. When only one regime is observed, we violate the nonstationary noise
condition by using stationary noise. Furthermore, we vary the number of the observed regimes
lu| € {1,5,10,15,20} to assess the impacts of variability on the recovery of nonparametric pro-
cesses.

Parametric (VAR) Dataset For parametric processes, we generate 50,000 data points according
to Eq. 4. The noises ¢;; are sampled from i.i.d. Laplacian distribution (¢ = 0.1). The entries of
state transition matrices B are uniformly distributed between [—0.5, 0.5].
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(Violation) Low-rank State Transition For this dataset, the transition matrix B in Eq. 4 is low-
rank instead of full-rank. The datasets are created following the steps in the VAR dataset, but we
restrict the rank of state transition matrix B to 4 and time lag L = 1. The full matrix rank is 8.

(Violation) Gaussian Noise Distribution For this dataset, the noise terms ¢;; in Eq. 4 follow the
Gaussian distribution («; = 2) instead of Generalized Laplacian distribution («; < 2). In particular,
the noise terms ¢;; are sampled from i.i.d. Gaussian distribution (¢ = 0.1).

(Violation) Regime-Variant Causal Relations For regime-variant causal relations, we generate
240,000 data points according to Eq. 55:

L
xt = g(2z¢), 2zt = ZB;‘zt_T +e with ey~ pe,. (55)

T=1

The noises ¢;; are sampled from i.i.d. Laplace distribution (¢ = 0.1). In each regime u, the entries
of state transition matrices BY are uniformly distributed between [—0.5, 0.5].

(Violation) Instantaneous Causal Relations For instantaneous causal relations, we generate
45,000 data points according to Eq. 56:
L
Xt = g(z¢), 2zt = Az + Z Brzi r + € with €y ~ pe,, (56)
T=1
where matrix A is a random Directed Acyclic Graph (DAG) which contains the coefficients of the

linear instantaneous relations. The noises €;; are sampled from i.i.d. Laplacian distribution with
o = 0.1. The entries of state transition matrices B, are uniformly distributed between [—0.5, 0.5].

B.2 REAL-WORLD DATASET

Three public datasets, including KiTTiMask, Mass-Spring System, and CMU MoCap database, are
used. The observations together with the true temporally causal latent processes are showcased in
Fig. B.1. For CMU MoCap, the true latent causal variables and time-delayed relations are unknown.
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Figure B.1: Real-world datasets: (a) KiTTiMask is a video dataset of binary pedestrian masks, (b)
Mass-Spring system is a video dataset with ball movement rendered in color and invisible springs,
and (c) CMU MoCap is a 3D point cloud dataset of skeleton-based signals.

KiTTiMask The KiTTiMask dataset consists of pedestrian segmentation masks sampled from the
autonomous driving vision benchmark KiTTi-MOTS. For each given frame, the position (vertical
and horizontal) and the scale of the pedestrian masks are set using measured values. The difference
in the sample time (e.g., At = 0.15s) generates the sparse Laplacian innovations between frames.

Mass-Spring System The Mass-Spring system is a classical physical system that several objects
are connected by some visible/invisible spring, which follows Hooke’s law. In this work, we consid-
ered the system with five degrees of freedom and made linearization on the state without calculating
the Euclidian distance between objects. Thus, there are ten causal relations, six of which were
set connected, and the other four were disconnected. The rest length of the spring was uniformly
distributed between [1, 10], and the stiffness of the spring relation was set as 20. The action was
a; = 300e;, where e; followed the Laplacian distribution with mean x4 = 0 and variance o = 1.
We assumed there was no damping in the system and randomly assigned the objects in different
positions at the beginning of each episode.
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CMU MoCap CMU MoCap (http://mocap.cs.cmu.edu/) is an open-source human mo-
tion capture dataset with various motion capture recordings (e.g., walk, jump, basketball, etc.) per-
formed by over 140 subjects. In this work, we fit our model on 12 trials of “walk” recordings (Sub-
ject 7). Skeleton-based measurements have 62 observed variables corresponding to the locations of
joints (e.g., head, foot, shoulder, wrist, throat, etc.) of the human body at each time step.

B.3 EVALUATION METRICS

SHD: Structural Hamming Distance We use SHD (de Jongh & Druzdzel, 2009) to measure the
distance between two causal graphs. It computes the number of edge insertions, deletions, or flips
in order to transform one graph to another graph. SHD is one variant of Minimum Edit Distance
(MED) in causal discovery area by allowing only insertions, deletions, and flips of edges.

MCC: Mean Correlation Coefficient MCC is a standard metric for evaluating the recovery of
latent factors in ICA literature. MCC first calculates the absolute values of correlation coefficient
between every ground-truth factor against every estimated latent variable. Depending on whether
componentwise invertible nonlinearities exist in the recovered factors, Pearson correlation coeffi-
cients or Spearman’s rank correlation coefficients can be used. The possible permutation is adjusted
by solving a linear sum assignment problem in polynomial time on the computed correlation matrix.

In this work, we use the Pearson correlation coefficient for the VAR processes and Spearman’s
correlation coefficient for the NP processes.

C IMPLEMENTATION DETAILS

In this section, we first provide the network architecture details of LEAP. The hyperparameter selec-
tion criteria and sensitivity analysis results are presented. The training settings are summarized.

C.1 NETWORK ARCHITECTURE

‘We summarize our network architecture below and describe it in detail in Table C.1 and Table C.2.

* (1,2) MLP-Encoder and MLP-Decoder: These modules are used for the synthetic and mo-
tion capture datasets. They are composed of a series of fully-connected neural networks with
LeakyReLU as the activation function. The universal approximation theorem guarantees that our
model can approximate the mixing function. The encoder maps the raw observations into features,
while the decoder maps the latent variables back to the inputs.

¢ (3,4) CNN-Encoder and CNN-Decoder: For the KiTTiMask dataset, vanilla CNNs are used for
both the encoder and decoder. For the Mass-Spring system dataset, the time-delayed causal vari-
ables use objects as the building blocks to factorize the scene. The object-centric representations
contain object locations and some other attributes (e.g., color, size, etc.). We thus use two separate
CNNs, one for extracting visual features (see Feature Extractor in Table C.2) and the other for
locating object locations with a spatial softmax unit (see Keypoint Predictor in Table C.2). The
decoder retrieves object features from feature maps using object locations and reconstructs the
scene (see Refiner in Table C.2).

* (5) Inference Network: We apply the bidirectional Gated Recurrent Unit (GRU) (Cho et al.,
2014) to preserve both the past and the future information. It processes the input sequence X; in
both directions: one for the forward pass and one for the backward pass. We denote the forward

and backward embeddings as ﬁ and H. The other inference module (see TemporalDynamics
in Table C.1) uses the sampled/inferred past latent variables to compute the posterior of z;. We
insert skip-connections (He et al., 2016) between the two inference modules to avoid the vanishing
gradient problem and obtain better model convergence performances. Note that for the first L
temporally-earliest latent variables in the sequence, there is no time-delayed information, and we
use isotropic Gaussian A (0, 1) as their prior distributions. The prior of the remaining sequence is
evaluated with the learned transition prior network described below.

* (6,7) Causal Process Prior Network This module contains three components. (i) Inverse tran-
sition functions. For the NP transitions, we use MLPs to compute the estimated noises. For
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the VAR transitions, a group of state transition matrices, one for each time lag, is used. (ii)
log (|det (J)|) computation. For the NP transitions, the Jacobian matrix entries 7% are com-
puted using torch.autograd. functional. jacobian method. The log determinant is
then evaluated by summing over log transformations of absolute values of Jacobian terms for Z;;.
For the VAR transitions, because of the additive noise assumption, the log determinant is directly
0. (iii) Spline flow model. Componentwise spline flow models use monotonic linear rational
splines to transform standard Gaussian distribution to the estimated noise distribution. We use
eight bins for the linear splines and set the bound as five so data points lying outside [—5, 5] are
evaluated using A(0, 1) directly while the data points within the region are evaluated by spline
flow models. For the nonparametric processes, we always warm-start the spline flows by training
it on a dataset of standard Gaussian noises with steps=5000 and learning rate=0.001. For the para-
metric processes, we warm-start it instead on a dataset of standard Laplacian noises. All the three
components of the transition prior network are set to be learnable during the VAE updates.

Table C.1: Architecture details. BS: batch size, T: length of time series, i_dim: input dimension,
7_dim: latent dimension, LeakyReLLU: Leaky Rectified Linear Unit.

| Configuration Description Output

| 1. MLP-Encoder Encoder for Synthetic/MoCap Data
Input: x;1.1 Observed time series BS x T x i_dim
Dense 128 neurons, LeakyReLLU BS x T x 128
Dense 128 neurons, LeakyReLLU BS x T x 128
Dense 128 neurons, LeakyReLLU BS x T x 128
Dense Temporal embeddings BS x T x z_dim

| 2. MLP-Decoder Decoder for Synthetic/MoCap Data
Input: z1.7 Sampled latent variables BS x T x z_dim
Dense 128 neurons, LeakyReLU BS x T x 128
Dense 128 neurons, LeakyReLU BS x T x 128
Dense i_dim neurons, reconstructed X1.7 BS x T x i_dim

5. Inference Network

Bidirectional Inference Network

Input Sequential embeddings BS X T x z_dim
GRUInference Bidirectional inference BS x T x 2%z_dim
TemporalDynamics Use past {Z;—. } to infer posteriors of z; BS X T x 2xz_dim
ResidualBlock Skip-connection of the two inferences BS x T x 2%z_dim
Bottleneck Compute mean and variance of posterior W11, 01.7
Reparameterization Sequential sampling Z1.7

\ 6. Causal Process Prior (VAR) Linear Transition Prior Network
Input Sampled latent variable sequence 1.1 BS x T x z_dim
InverseTransition Compute estimated residuals €;; BS x T x z_dim
SplineFlow Score the likelihood of residuals BS

\ 7. Causal Process Prior (NP) Nonlinear Transition Prior Network
Input Sampled latent variable sequence 1.1 BS x T x z_dim
InverseTransition Compute estimated residuals é;; BS x T x z_dim
JacobianCompute Compute log (|det (J)]) BS
SplineFlow Score the likelihood of residuals BS

Model Ablations

We start with BetaVAE and add our proposed modules successively as model

variants. When the causal process prior network is added to the baseline, this model variant is
equipped with the inference network and learned inverse transition functions. However, during the
estimation of KL divergence in the causal process prior network, we use Mean Squared Error (MSE)
directly, which corresponds to stationary Gaussian noise distribution, to replace the flow density esti-
mators that evaluate the prior likelihood scores across nonstationary regimes. This variant shows the
contributions of the learned causal transition functions. Furthermore, when the nonstationary flow
estimator is added to the variant, this variant is implemented by removing the noise discriminator
from LEAP while not changing any training settings.
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Table C.2: Architecture details on CNN encoder and decoder. BS: batch size, T: length of time
series, h_dim: hidden dimension, z_dim: latent dimension, F: number of filters, (Leaky)ReLU:

(Leaky) Rectified Linear Unit.

| Configuration Description Output

\ 3.1.1 CNN-Encoder Feature Extractor
Input: x;.7 RGB video frames BS xT x 3 x 64 x 64
Conv2D F: 16, BatchNorm2D, LeakyReLLU BS x T x 16 x 64 x 64
Conv2D F: 16, BatchNorm2D, LeakyReLU BS x T x 16 x 64 x 64
Conv2D F: 32, BatchNorm2D, LeakyReLLU BS x T x 32 x 32 x 32
Conv2D F: 32, BatchNorm2D, LeakyReLU BS x T x 32 x 32 x 32
Conv2D F: 64, BatchNorm2D, LeakyReLU BS x T x 64 x 16 x 16
Conv2D F: 5 = number of objects BSXxTx5x16x 16

| 3.1.2 CNN-Encoder Keypoint Predictor
Input: x;.7 RGB video frames BS xT x 3 x 64 x 64
Conv2D F: 16, BatchNorm2D, LeakyReLU BS x T x 16 x 64 x 64
Conv2D F: 16, BatchNorm2D, LeakyReLU BS x T x 16 x 64 x 64
Conv2D F: 32, BatchNorm2D, LeakyReLLU BS x T x 32 x 32 x 32
Conv2D F: 32, BatchNorm2D, LeakyReLU BS x T x 32 x32x32
Conv2D F: 64, BatchNorm2D, LeakyReLLU BS x T x 64 x 16 x 16
Conv2D F: 5 = number of objects BSXxTx5x16x 16
Conv2D SpatialSoftmax, lim=[-1,1,-1,1] BSxTx5x2

\ 3.2 KiTTiMask-Encoder Mask Encoder
Input: x;.7 Semantic-segmented video frames BSXxTx1x64x64
Conv2D F: 32, BatchNorm2D, ReL.U BS x T x 32 x 32 x 32
Conv2D F: 32, BatchNorm2D, ReLU BSxTx32x16 x 16
Conv2D F: 64, BatchNorm2D, ReLU BSxTx64 x8 x8
Conv2D F: 64, BatchNorm2D, ReLLU BSxTx64 x4 x4
Conv2D F: h_dim, BatchNorm2D, ReLU BSxTxhdimx1x1
Dense 2xz_dim neurons, features X.7 BS x T x 2%z_dim

| 4.1 CNN-Decoder Refiner
Input: z;.7 Sampled latent variable sequence BSXxTx64x2
ConvTranspose2D F: 64, BatchNorm2D, LeakyReLLU BS x T x 64 x 32 x 32
Conv2D F: 64, BatchNorm2D, LeakyReLU BS X T x 64 x 32 x 32
ConvTranspose2D F: 32, BatchNorm2D, LeakyReLLU BS x T x 32 x 64 x 64
Conv2D F: 32, BatchNorm2D, LeakyReLU BS x T x 32 x 64 x 64
Conv2D F: 3, estimated scene X1.7 BS X T x 3 x 64 x 64

\ 4.2 KiTTiMask-Decoder Mask Decoder
Input: z;.7 Sampled latent variable sequence BS X T x z_dim
Dense h_dim neurons BSxTxhdimx1x1
ConvTranspose2D F: 64, BatchNorm2D, ReLU BSxTx64x4x4
ConvTranspose2D F: 64, BatchNorm2D, ReLU BSxTx64 x8 x8
ConvTranspose2D F: 32, BatchNorm2D, ReLLU BS x T x 32 x 16 x 16
ConvTranspose2D F: 32, BatchNorm2D, ReLLU BS x T x 32 x 32 x 32
ConvTranspose2D F: 1, estimated scene X1.7 BSxTx1x64x64

C.2 HYPERPARAMETERS AND TRAINING DETAILS

We describe the hyperparameter selection criteria and discuss the impacts of hyperparameter values
on the model performances. The training details are provided.

C.2.1 HYPERPARAMETER SELECTION AND SENSITIVITY ANALYSIS

The hyperparameters of LEAP include [3, 7, o], which are the weights of each term in the augmented
ELBO objective, as well as the latent size n and maximum time lag L. We use the ELBO loss on
the validation dataset to select the best pair of [3, 7, o] because low ELBO loss always leads to high
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Figure C.1: Impacts of hyperparameters on VAR dataset.

MCC. We always set a larger latent size than the true latent size. This is critical in video datasets
because the image pixels contain more information than the annotated latent causal variables, and
restricting the latent size will hurt the reconstruction performances. For the maximum time lag L,
we set it by the rule of thumb. For instance, we use L = 2 for temporal datasets with a latent physics
process.

However, it is known (Mita et al., 2021) that the performances of VAEs might change drastically as
a function of the regularization strength. We thus conduct a sensitivity analysis on the impacts of
hyperparameters on our identifiability performances. We report the MCC scores for the synthetic
NP and VAR datasets on a hyperparameter grid. We found that the values of 5 and y have a larger
impact on the identifiability results, while the effects of o are relatively smaller. Furthermore, we
have verified the robustness of our approach under different maximum time lags L and latent size
n settings. The final MCC scores only show marginal differences, indicating that our approach is
robust to the choices of n and L. In summary, the performance of our approach is robust to the
values of some of the hyperparameters, and for the remaining hyperparameters, we use separate
validation data to set their values.

Parametric (VAR) Dataset We have performed a grid search of 8 € [3E-4,3E-3,3E-2] and
v € [9E-4,9E-3,9E-2] and reported the results in Fig. C.1(a). The best configuration is [3,~] =
[3E-3,9E-3]. We plot the final MCC score as a function of the value of the two hyperparameters
in Fig. C.1(b). For o, we compare the MCC scores under different ¢ € [SE-7, 1E-6, 1E-5] with the
optimal (3, v) value. The optimal configuration for o is 1E-6 as shown in Fig. C.1(c). Furthermore,
we verify the robustness of our approach under different time lags L € [2, 3, 4] and latent dimen-
sions n € [4,6,8] with [§, v, o] = [3E-3,9E-3, 1E-6] and the results are shown in Fig. C.1(d). We
can see that the final MCC scores in all cases are around 0.9 with marginal differences, indicating
that latent recovery performances of our approach is robust to the choices of n and L.

Nonparametric (NP) Dataset Similarly, we have performed a grid search of 5 €
[2E-4,2E-3,2E-2] and v € [2E-3,2E-2,2E-1] on the NP dataset and reported the results in
Fig. C.2(a). The best configuration is [, y] = [2E-3, 2E-2]. The final MCC scores under parameter
grids of [3,~] are shown in Fig. C.2(b). The optimal configuration for o is 1E-6 in the search space
o € [1E-7, 1E-6, 1E-5] with the optimal [3, ] value, as shown in Fig. C.2(c). We verify the robust-
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ness in terms of latent size n € [6, 7, 8] and the maximum time lags L € [1,2, 3] with the optimal
configuration [, 7, o] = [2E-3,2E-2, 1E-6] and the results are shown in Fig. C.2(d). The final MCC
scores in all cases are around or higher than 0.85 with marginal differences.
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Figure C.2: Impacts of hyperparameters on NP dataset.

C.2.2 TRAINING

Training Details The models were implemented in PyTorch 1.8.1. The VAE network is trained
using AdamW optimizer for a maximum of 200 epochs and early stops if the validation ELBO loss
does not decrease for five epochs. A learning rate of 0.002 and a mini-batch size of 32 are used.
For the noise discriminator, we use SGD optimizer with a learning rate of 0.001. We have used
four random seeds in each experiment and reported the mean performance with standard deviation
averaged across random seeds.

Computing Hardware We used a machine with the following CPU specifications: Intel(R)
Core(TM) i7-7700K CPU @ 4.20GHz; 8 CPUs, four physical cores per CPU, a total of 32 logi-
cal CPU units. The machine has two GeForce GTX 1080 Ti GPUs with 11GB GPU memory.

Training Stability We have used several standard tricks to improve training stability: (1) we use
a slightly larger latent size than the true latent size for real-world datasets in order to make sure
the meaningful latent variables are among the recovered latents; (2) we use AdamW optimizer as
a regularizer to prevent training from being interrupted by overflow or underflow of variance terms
of VAE; (3) we use a larger learning rate for the VAE than for the noise discriminator to prevent
extreme extrapolation behavior of discriminator.

D ADDITIONAL EXPERIMENT RESULTS

D.1 COMPARISONS BETWEEN LEAP AND BASELINES ON CMU-MOCAP DATASET
Because the true latent variables for CMU-Mocap are unknown, we visualize the latent traversals

and the recovered skeletons, qualitatively comparing our nonparametric method with baselines in
terms of the how intuitively sensible the recovered processes and skeletons are.

29



Published as a conference paper at ICLR 2022

Latent variable index

IR IR S N AN A
JEE BN BN BN N B R R B B B B N SN N S I
o L
JNE TR TN TR T T T T T TR O T NN T N B

() M "

%ﬁsfﬁ";%*‘:‘%%%??ﬁ'ﬁﬁé . I I |

>

[

Sk R R I I I N BN N A B b %

s | ! ‘ ,

&

AL JNE JNE IEE DEE NN NN BN BEUEE NN BN R BN R BEE B P b %

5

LEE K NN 2NN AN BT B B BN B N B BN B SN N . B |
(N N N N N B D R N B W BN B S N 4 9
(I S N B B R N P &5 v 5 A = & 3 b oA 4
NN B N S T WA A S & B
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Figure D.1: Latent traversal comparisons between LEAP and the baselines. LEAP represents the
data with causally-related factors, thus can represent the data with only much fewer latent variables
(three vs eight) with smooth transitions dynamics. Video demonstrations are in: https://bit.
1y/3KEVQhE.

Latent Traversal We fit LEAP and the baseline models using the same latent size n = 8 and the
maximum time lags L = 2. As shown in Fig. D.1, LEAP represents the data with causally-related
factors, thus explaining the data with fewer latent variables and smooth transitions dynamics. Only
three latent variables are in fact used by LEAP and while the other five latent variables only encode
random noise as seen from the video demonstration. BetaVAE and SlowVAE, however, need to
use all the latent variables to represent the data. Furthermore, we find the three latent variables
discovered by LEAP encode pitch, yaw, and roll rotations of walking cycles, which is close to how
human beings perceive walking movement.

Recovered Skeleton As shown in Fig. D.2, LEAP recovers the cross relations between causal
variables while BetaVAE and SlowVAE can only recover independent relations. The latent traver-
sals of LEAP have shown that the three recovered latent variables may be the pitch, yaw, and roll
rotations of the walk cycles. Therefore, the results of our approach indicate that the pitch (e.g.,
limb movement) and roll (e.g., shoulder movement) are causally-related while yaw has independent
dynamics, which is closer to reality than the independent transitions discovered by BetaVAE and
SlowVAE.

D.2 MASS-SPRING SYSTEMS

We render the recovered latent variables using keypoint heatmaps in Fig. D.3(a). The learned rep-
resentation successfully disentangles five objects in the scene, and the latent variables represent the
horizontal and vertical locations of the balls. We further visualize the recovered skeletons from
the estimated state transition matrices in Fig. D.3(b). The recovered skeleton is consistent with the
underlying processes described in Fig. B.1(b) with SHD=0.
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Figure D.2: Comparisons between LEAP and the baselines in terms of skeleton recovery. LEAP
recovers cross relations between causal variables while baselines can only recover independent re-
lations.
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(a) Latent variables for a fixed video frame. (b) Recovered causal skeletons.

Figure D.3: Visualization of recovered latent variables and the estimated skeletons for Mass-Spring
system dataset.

E EXTENDED RELATED WORK

Temporal dependencies and nonstationarities were recently used as side information u to achieve
identifiability of nonlinear ICA on latent space z. Hyvarinen & Morioka (2016) proposed time-
contrastive learning (TCL) based on the independent sources assumption. It gave the very first
identifiability results for a nonlinear mixing model with nonstationary data segmentation. Hyvari-
nen & Morioka (2017) developed a permutation-based contrastive (PCL) learning framework to
separate independent sources using temporal dependencies. Their approach learns to discriminate
between true time series and permuted time series, and the model is identifiable under the uniformly
dependent assumption. Hidlvd & Hyvarinen (2020) combined nonlinear ICA with a Hidden Markov
Model (HMM) to automatically model nonstationarity without the need for manual data segmen-
tation. Khemakhem et al. (2020) introduced VAEs to approximate the true joint distribution over
observed and auxiliary nonstationary regimes. The conditional distribution in their work p(z|u) is
assumed to be within exponential families to achieve identifiability on the latent space. A more
recent study in causally-related nonlinear ICA was given by (Yang et al., 2021), which introduced a
linear causal layer to transform independent exogenous factors into endogenous causal variables.
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