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A Appendix

A.1 Ethical Discussion

Our work addresses the problem of scaling GNNs for simulated locomotion control. As our data is
generated and models trained solely in a simulated physics engine, the direct ethical implications of
our work are minimal. However, we identify a number of potential risks emerging from extensions
and alternative applications of our work. These centre on safety and bias concerns relating to robotic
control, and transferring trained policies to new tasks/agents.

Robotic Control As we only ever conduct rollouts of the policy in simulation, our agent is not
trained with any safety constraints in mind, which would likely be a requirement for real-world
applications. Safety is particularly relevant in the wider context of our work, as the aim of scaling
GNNs to more complex and capable agents potentially gives rise to increasingly unsafe behaviours
and outcomes in the worst-case. Future work is required to assess if existing RL safety methods [see
13] are as effective when GNN policies are used.

Although there are many beneficial use-cases for robotic agents, there is also potential for negative
social outcomes. These may be through agents that are designed directly to do harm such as
autonomous weapons, or that are used in socially irresponsible applications. We encourage researchers
who use our methods in the pursuit of enabling new robotics applications to give consideration to
such outcomes.

Policy Transfer Although effective transfer has the benefit of reducing the need for further training
on the target task, the resulting policy is inevitably biased towards the original training task. Algorith-
mic bias has been highlighted as a key challenge in recent years for AI fairness, particularly in the
supervised setting [36], but also for RL algorithms [22].

In the case of GNN policy representations, this problem can arise if the graphs (and associated
labels) trained on contain harmful bias. For instance, consider a GNN policy trained on (graph-based)
traffic data to optimise an RL objective, such as cumulative journey time for route planning. If the
training data consists only of roads in certain geographical areas, then transferring the policy to
out-of-distribution areas may lead to unsuitable actions and a disparity in outcomes. Safety constraints
satisfied on the training roads (e.g. limiting the number of road accidents) may also no longer be
satisfied when transferring to new areas.

Ethical Conduct Our training data consists entirely of simulated physical observations from the
MuJoCo environment. There is no human-generated data used in our research, nor does any of our
data relate to real-world phenomena (beyond the laws of physics and design of our agents). We are
therefore satisfied that our use of data is appropriate and ethical.

A.2 Further Experimental Details

Here we outline further details of our experimental approach to supplement those given in Section 5.

Data Generation

As typical when training PPO on simulated environments, we train a policy by interleaving two
processes: first, we perform repeated rollouts of the current policy in the environment to generate
on-policy training data, and second, we optimise the policy with respect to the training data collected
to generate a new policy, then repeat.

To improve wall-clock training time, for larger agents we perform rollouts in parallel over multiple
CPU threads, scaling from a single thread for Centipede-6 to five threads for Centipede-20.
Rollouts terminate once the sum of timesteps experienced across all threads reaches the training batch
size. For our experiments the main computational cost as the agent size scales is the simulator, not
the training of the network. Our GNN implementation is therefore not highly optimised as this is not
our bottleneck.
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For optimisation we shuffle the training data randomly and split the batch into eight minibatches. We
perform ten optimisation epochs over these minibatches, in the manner defined by the PPO algorithm
[48] (see Section 2.2).

Each experiment is performed six times and results are averaged across runs. The exceptions to this
are Figure 5 where results are an average of three runs, and the Centipede-n tasks in Figure 6 where
results are an average of ten runs.

Hyperparameter Search

Our starting point for selecting hyperparameters is the hyperparameter search performed by Wang
et al. [55], whose codebase ours is derived from.

To ensure that we have the best set of hyperparameters for training on large agents, we ran our own
hyperparameter search on Centipede-20 for SNOWFLAKE, as seen in Table 2.

Hyperparameter Values
Batch size 512, 1024, 2048, 4096

Learning rate 1e-4, 3e-4, 1e-5
Learning rate scheduler adaptive, constant

ε clipping 0.02, 0.05, 0.1, 0.2
GNN layers 2, 4, 10

GRU hidden state size 64, 128
Learned action std shared, separate

Table 2: Hyperparameter search for SNOWFLAKE on Centipede-20. Values in bold resulted in the
best performance.

Across the range of agents tested on, we conducted a secondary search over just the batch size,
learning rate and ε clipping value for each model. For the latter two hyperparameters, we found that
the values in Table 2 did not require adjusting.

For the batch size, we used the lowest value possible until training deteriorated. Using NERVENET,
a batch size of 2048 was required throughout, whereas using SNOWFLAKE a batch size of 1024
was best for Walker, Centipede-20 and Centipede-12, 512 was best for Centipede-8 and
Centipede-6, and 2048 for all other agents.

Wang et al. [55] provide experimental results for the NERVENET model, which we use as a baseline
for our experiments. Out of the Centipede-n models, they provide direct training results for
Centipede-8 (see the non-pre-trained agents in their Figure 5). Our performance results are
comparable, but taken over many more timesteps. Their final MLP results appear slightly different to
ours at the same point (they attain roughly 500 more reward), likely due to hyperparameter tuning for
performance over a different time-frame.

They also provide performance metrics for trained Centipede-4 and Centipede-6 agents across
the models compared (their Table 1). The results reported here are significantly less than the best
performance we attain for both MLP and NERVENET on Centipede-6. We suspect this discrepancy
is due to running for fewer timesteps in their case, but precise stopping criteria is not provided.

Computing Infrastructure

Our experiments were run on four different machines during the project, depending on availability.
These machines use variants of the Intel Xeon E5 processor (models 2630, 2699 and 2680), containing
between 44 and 88 CPU cores. As running the agent in the MuJoCo environment is CPU-intensive,
we observed little decrease in training time when using a GPU; hence the experiments reported here
are only run on CPUs.

Runtimes for our results vary significantly depending on the number of threads allocated and batch
size used. Our standard runtime for Centipede-6 (single thread) for ten million timesteps is around
24 hours, scaling up to 48 hours for our standard Centipede-20 configuration (five threads). Our
experiments on the default MuJoCo agents also take approximately 24 hours for a single thread.
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State Space Description

The following is a breakdown of the information sent by the environment at each timestep to the
different MuJoCo node types for the Centipede-n benchmark. Each different body and joint
node receives its own version of this set of data:

Node Type Observation Type Axis

body

force x
force y
force z

torque x
torque y
torque z

joint position x
velocity x

root

orientation x
orientation y
orientation z
orientation a

velocity x
velocity y
velocity z

angular velocity x
angular velocity y
angular velocity z

position z
force x
force y
force z

torque x
torque y
torque z

Table 3: Description of the state space.

The root’s z-position (height) is relative to the (global) floor of the environment. For this benchmark
the joints are hinge joints, meaning that there is only one degree of freedom, and its position value
reflects the joint angle (note that x-axis here refers to the joint’s relative axis, not the global coordinate
frame).

Our algorithm only strictly considers observations to come from joints rather than from body and
root nodes. In this we follow the example set by NERVENET, which for the sake of simplicity
concatenates body node observations with neighbouring joint observations, treating the resulting
vector as a combined joint representation, which is then fed to the GNN.

A.3 Sources

Our source code can be found at https://github.com/thecharlieblake/snowflake/, along-
side documentation for building the software and its dependencies. Our code is an extension of
the NERVENET codebase: https://github.com/WilsonWangTHU/NerveNet. This repository
contains the original code/schema defining the Centipede-n agents.

The other standard agents are taken from the Gym [8]: https://github.com/openai/gym.
The specific hopper, walker and humanoid versions used are Hopper-v2, Walker2d-v2 and
Humanoid-v2.

For our MLP results on the Gym agents, as state-of-the-art performance baselines have been well
established in this case, we use the OpenAi Baselines codebase (https://github.com/openai/
baselines) to generate results, to ensure the most rigorous and fair comparison possible.
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The MuJoCo [53] simulator can be found at: http://www.mujoco.org/. Note that a paid license is
required to use MuJoCo. The use of free alternatives was not viable in our case as our key benchmarks
are all defined for MuJoCo.
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A.4 Supplementary Figures

Encode

Message Fn

Update Fn

Decode

R
epeat for

Figure 10: A visual representation of the NERVENET architecture. Updated representations at each
step are indicated in purple. Given an input vector v at each node, NERVENET computes scalar
outputs v′ through a series of propagation steps. Initially, the encoder is used to compute hidden
states h at each node. These are passed into the message function, which computes an incoming
message m for each node based on the hidden states of its neighbours. The update function then
computes a new hidden state representation for each node based on the incoming message and the
previous hidden state. The message function and update function then repeat their operations T times,
before feeding the final hidden states to the decoder, which produces outputs v′.
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Message Fn

Encode

Update Fn

Decode

Figure 11: A visual representation of our SNOWFLAKE algorithm, as outlined in Section 3.4. Prior to
training we select a fixed subset Z ⊆ {F 1

θ , . . . , F
n
θ } of the GNN’s functions. For our experiments

we use ζ = {Fin, Fout,M
τ}. Their parameters are then placed in SNOWFLAKE’s frozen set ζ =

{θ | Fθ ∈ Z}. During training, SNOWFLAKE excludes parameters in ζ from being updated by the
optimiser.

0.05 0.10 0.15 0.20
PPO  clipping parameter

800

1000

1200

1400

1600

Fi
na

l A
ve

ra
ge

 R
ew

ar
d

0.1

0.2

0.3

0.4

0.5

Po
lic

y 
U

pd
at

e 
KL

 D
iv

er
ge

nc
e

0.1

0.2

0.3

0.4

0.5

batch size: 2048 4096

Figure 12: The effect of increasing the batch size on the influence of NERVENET’s ε clipping
hyperparameter (see Figure 3) after ten million timesteps. Increasing the batch size reduces the
underlying policy divergence. This makes the algorithm less sensitive to high values of ε (i.e. low
clipping), but also leads to a drop in sample efficiency, reducing the maximum reward attained within
this time-frame.
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(b) SNOWFLAKE

Figure 13: Accompanying KL divergence plots for Figure 9. As SNOWFLAKE reduces the policy
divergence between updates, smaller batch sizes can be used before the KL divergence becomes
prohibitively large. This effect underlies the improved sample efficiency demonstrated.
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Figure 14: Ablation demonstrating the effect of only training single parts of the network (freezing the
rest). The configuration of SNOWFLAKE we use for our experiments is equivalent to only training
the update function, which is the most effective approach here, and all approaches are superior to
training the entire GNN. For this experiment, we train on Centipede-6 using the small batch size
of 256 in all cases. This setting was chosen as it demonstrates the difference in performance for these
approaches most clearly.
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