
A ONN Principles

A.1 Mach-Zehnder Interferometers (MZIs)

A basic coherent optical component used in this work is an MZI. One of the most general MZI
structures is shown in Figure 15, consisting of two 50-by-50 optical directional couplers and four
phase shifters θT , θL, ωP , and ωW . An MZI can achieve arbitrary 2×2 unitary matrices SU(2). The
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Figure 15: 2-by-2 MZI with top (T), left (L), upper (P), and lower (W) phase shifters.

physical transfer matrix R(θg,∆θ,∆ω) of an MZI shown in Fig. 15 is,
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where the global phase θg is determined by the common mode θ̄ and ω̄, and the light splitting is
determined by the differential mode ∆θ and ∆ω. To achieve the 2-D planar rotator R(2) in the real
space parametrized by ϕ, we let θT = π/2, θL = 3π/2, ω̄ = π. To convert the simplified transfer
matrix M(∆ω) to the planar rotator, we set ∆ω = π − 2ϕ as follows,
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A.2 MZI-based Photonic Tensor Core Architecture

By cascading N(N − 1)/2 MZIs into a triangular mesh (Recks-style) or rectangular mesh (Clements-
style), we can construct arbitrary N ×N unitary U(N).

As a simple example, we show the principle of Recks-style MZI array for a simple demonstration. A
similar decomposition can be derived for the Clements style. It decomposes an M ×N weight matrix
using SVD, i.e., W = UΣV ∗. The diagonal matrix Σ can be simply implemented by on-chip
attenuators, e.g., single-port MZIs, to perform signal scaling. The unitary matrices U and V ∗ can be
realized by a cascaded MZI triangular array [39]. The unitary group parametrization is given by,

U(N) = D

2∏
i=N

i−1∏
j=1

Rij(ϕij), (8)

where D is a diagonal matrix with ±1 on its diagonal entries, and the 2-dimensional planar rotator
Rij(ϕij) is an n-dimensional identity matrix where entries on (i,i), (i,j), (j,i), (j,i) are cosϕij ,
-sinϕij , sinϕij , cosϕij , respectively. Each rotator Rij can be implemented by a 2×2 MZI that
produces unitary interference of input light signals with a rotation angle ϕ as we show before.

A.3 Optical Circuit Non-ideality

Rotation Quantization. Given the control resolution limits, we can only achieve discretized MZI
rotation phase configurations. We assume the phases ϕ is uniformly quantized into b-bit within [0,2π],
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Q(ϕ) = Round
( ϕ mod 2π

2π/(2b − 1)

) 2π

2b − 1
. (9)

We assume 8-bit quantization for phases of U and V ∗. For Σ matrices, we assume larger bitwidths
can be affordable and practical.

Phase shifter Variation. Due to manufacturing error and thermal noises, the phase shift ϕ caused by
a phase shifter is proportional to the device-related parameter, ϕ ∝ γ. Assume the real coefficient
drifts from the theoretical value γ by ∆γ, the real phase shift will become ϕ̃ = γ+∆γ

γ ϕ. We assume
∆γ ∼ N (0, 0.0022). We denote this multiplicative error for all phase shifters as a diagonal Γ matrix,
such that the non-ideal phase shifts become Φv = ΓΦ.

MZI Crosstalk. Due to signal crosstalk, adjacent MZIs will have mutual coupling effects, such that
the part of the phase shift ϕ for the i-th MZI will partially contribute to its neighboring MZI ϕj with
a factor of ωi,j . This crosstalk effect can be simply modeled as coupling matrix Ω,
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0 ≤ ωi,j < 1, ∀ i ̸= j and ϕj ∈ A.

The diagonal factor ωi,j , i = j is the self-coupling coefficient. ωi,j , i ̸= j is the mutual coupling
coefficient [31, 20, 17]. We assume the self-coupling coefficient to be 1, and the mutual coupling
coefficient is 0.005 for adjacent MZIs.

B Intractable Gradients for MZI Rotations

To optimize the MZI meshes, a straightforward idea is to use first-order methods to optimize all
rotations phases ΦU , ΦV , and ΦΣ. The analytical gradients for phases in unitary matrices are shown
as,
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Therefore, it is prohibitively expensive to derive the analytical phase gradients, which is one of the
key motivations for our subspace optimization method.

C Detailed Description of the Proposed Parallel Mapping Algorithm

We give a detailed description of our parallel mapping algorithm. Zeroth-order coordinate descent
(ZCD) is used as an example. In line 4, we first derive and implement the optimal theoretical singular
values and initialize ΦU and ΦV using the decomposed values. In lines 8-13, we use ZCD to alternately
optimize phases in U and V ∗ under all non-ideal effects till convergence. The step size is strictly
bounded by the smallest phase control resolution. Exponential decay is used to quickly reduce the
learning rate to avoid divergence. Note that cosine-annealing will not work since the ZO descent will
rapidly converge given its greedy search nature. Then at the end, due to the suboptimality in ZCD, we
will perform OSP to find the current optimal singular values that minimize the mapping error given
the trained UT and V ∗,T .
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Algorithm 1: Parallel Mapping with ZCD and OSP

Input :Mapping loss LM , mapping target W , total iterations T , inner ZCD iterations S, step
size decay factor β, ZCD step size upper bound δϕu = 2π

2min(bl,b)−1
, ZCD step size

lower bound δϕl =
2π

2min(bm,b)−1

1 δϕ = δϕu;
2 for Weight block Wpq ∼W do
3 Step 1: SVD and Parametrization via Eq. (1);
4 Upq(Φ

U
pq),Σpq(Φ

S
pq),V

∗
pq(Φ

V
pq) = UP

(
SVD(Wpq)

)
;

5 Step 2: ZCD on Upq,V
∗
pq;

6 for t← 0 · · ·T − 1 do
7 for s← 0 · · ·S − 1 do
8 Randomly sample a phase ϕ ∼ {ΦU

pq,Φ
V
pq};

9 if LM
pq(ϕ

tS+s + δϕ) < LM
pq(ϕ

tS+s) then
10 ϕtS+s+1 ← ϕtS+s + δϕ;
11 else
12 ϕtS+s+1 ← ϕtS+s − δϕ;
13 δϕ← max(δϕ/β, δϕl);
14 Step 3: Optimal Projection on Σpq;
15 Σpq ← diag(Ĩ∗U∗

pqWpqVpqĨ);
Output :Converged phases ΦM

D Prove of Unbiased Gradient Approximation with Feedback and Feature
Sampling

Claim 2. Considering the l-th layer with input x ∈ RN and pre-activation y ∈ RM , we denote

the blocking weight matrix as W = {Wpq}
P=M

k ,Q=N
k

p,q=1,1 and nonlinear activation as σ. During
backward, we randomly sample the feedback matrix W T ∈ RN×M with a structured sparse mask
PW = cW (SW ⊗ 1). A similar sampling matrix Px is applied to input features. The estimated
gradients are unbiased, i.e., E[
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E Training Details

We implement ONN simulation, all models, and training logic in PyTorch 1.8.1. All experiments are
conducted on a machine with an Intel Core i7-9700 CPU and an NVIDIA Quadro RTX 6000 GPU. For
identity calibration, we set the epoch to 400 with an initial learning rate of 0.1, a decay rate of 0.99, and
a phase resolution of 8 bit. For parallel mapping, we set the epoch to 300 with an initial learning rate
of 0.1, a decay rate of 0.99, and a phase resolution of 8 bit. For subspace learning, we adopt AdamW
as the optimizer with a learning rate of 0.002 and a weight decay rate of 0.01 for subspace learning
from scratch. Epochs are set to 100 for MNIST, FashionMNIST training, 200 for CIFAR-10/100,
and TinyImageNet. For subspace learning after mapping, we reduce the epoch to 20 and the learning
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rate to 0.0002. We use cosine-annealing as the learning rate scheduler. When compared with prior
on-chip learning protocols, we adopt the recommended settings for FLOPS and MixedTrn in [21, 17].
For FLOPS, the total epochs are set to 50, the initial learning rate is 2, and the gradient samples are set
to 5. For MixedTrn, we train for 20 epochs, the mixed-training sparsity is set to 0.4, the parameter
sparsity is set to 0.1, and the initial learning rate is set to 0.02. When compared with prior sampling
methods, we apply uniform spatial sampling with expectation-maintained normalization for RAD [36].
For SWAT-U [38], we apply uniform spatial feature sampling without normalization and uniform
weight matrix sampling with expectation-maintained normalization. Since we only perform efficient
training, we turn off any sampling in inference.

F MZI Array Scaling

A single MZI array has a limited size due to its high area cost, e.g., up to 32 or 64. However, this is not
an issue for our framework. Multi-core systems with small subarrays are trends for analog computing,
which is the design concept of our accelerator in Figure 3. Multiple PTCs are interconnected to
support a large tensor computation in parallel. Therefore, our system’s performance will not be
limited by the scale of a single PTC. Actually, partitioning a large tensor operation into small chunks
is widely adopted and recently considered as a better solution than large array sizes due to noise
robustness consideration.

We adopt 9×9 blocks based on the following considerations.

Hardware practicality. The largest commercial demonstration of optical neural chips is 32×32 so
far. 9×9 is a practical, robust, and efficient setting according to recent experimental demonstrations.

Robustness. Larger MZI arrays will cause severe phase error accumulation effects. Cascaded phase

Blk size 8 9 12 16 24 32

Rel. Err. 0.025 0.032 0.043 0.061 0.094 0.126
std. 2e-4 3e-4 3e-4 5e-4 9e-4 1e-3

Table 3: Relative matrix error with different MZI
array sizes.

error will cause non-trivial fidelity and robust-
ness issues as block size increases. 9×9 is
generally a robust design configuration when
cascaded noises are still tolerable. Here we
show a table of noise-induced errors (relative
matrix distance) with various block sizes on
a 256×256 weight matrix. Std. is calculated
based on 20 runs. Phase shifter gamma noise std=0.002, crosstalk factor=0.005, quantization
bitwdith=8-bit. We observe large array sizes are noise-sensitive in general.

ZOO Convergence. IC and PM are zeroth-order optimization techniques. Each block indicates an
optimization instance. A larger block size will have negative impacts on the optimization convergence

Blk size 8 9 12 16 24 32

(MSEU +MSEV )/2 0.0135 0.013 0.03 0.039 0.04 0.045

Table 4: IC optimality with different array sizes.

and solution optimality, which is the in-
trinsic limitation of most zeroth-order op-
timizers. In the IC procedure, for relatively
large block sizes, our ZO optimizers, unfor-
tunately, will have solution quality degra-
dation due to the curse of dimensionality and efficiency degradation due to low parallelism. Here we
show how solution quality in identity calibration changes with various block sizes. 9×9 block is a
good selection with high solution quality.

Parameter Space. Subspace learning only optimizes the singular values while U and V are fixed.
For an N ×N weight matrix with k × k blocks, only N2/k singular values are trainable. Increasing

Blk size 8 9 12 16 24 32

Accuracy 84.26 84.45 83.36 81.27 80.68 78.40

Table 5: Subspace learning accuracy with different
block sizes.

the block size k will decrease the param-
eter space. According to the experience
from the field of structured/subspace neu-
ral networks, e.g., block-circulant neu-
ral nets, the block size is typically set
to a number around 8. Here we add
new results on L2ight-SL (αW =αC=0.6,
αD=0.5) CIFAR-10 VGG8 with various block sizes. According to our experiments below, 16×16
blocks already show inadequate trainability due to overly small parameter space, leading to a clear
accuracy drop. In conclusion, we recommend using multiple interconnected 9×9 PTCs for par-
allel computing, since this choice of 9×9 block balances both systematic performance, hardware
complexity, robustness, and on-chip trainability.
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G Hardware Cost Evaluation

G.1 PTC Energy Estimation

For simplicity, we count the number of PTC calls as the indicator to the total energy estimation
of the PTC cluster. For example, we focus on a 2-D convolutional layer with kernel shape of
Cout×Cin×K×K, input feature size B×Cin×H×W output feature size of B×Cout×H ′×W ′.
We partition the unfolded weight matrix into P×Q blocks with size of k×k and assign each to a PTC.
We have P = ⌈Cout

k ⌉ and Q = ⌈Cin×K2

k ⌉. Each PTC can utilize k wavelengths to achieve parallel
processing. Now we give detailed computation of energy breakdown per optimization iteration.

Forward Energy = CoutCinK
2BH ′W ′

Backward Weight Energy = 2Tr(ST
CSC)BPQ

Backward Input Energy = Tr(ST
WSW )BHW.

(14)

Note that in backward weight energy, we double the PTC call since the in-situ subspace gradient
acquisition requires 2 PTC calls.

G.2 Total Time Step Estimation

We assign k electrical adders for each PTC to implement sequential cross-PTC reduction and parallel
local accumulation. Each PTC call counts as one step, each partial product/gradient accumulation
stage counts as one step, and the Hadamard multiplication in gradient computation also counts as one
step. Given this assumption, we derive the time step as,

Forward Step = (Q− 1)+BH ′W ′ + ⌈BH ′W ′

k
⌉

Backward Weight Step = 4Tr(ST
CSC)B

Backward Input Step =


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P
⌉⌈log2 2k⌉⌈
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+
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+

)
BH ′W ′, K = 1

(15)

G.3 WDM Dispersion Discussion

Theoretically, coherent photonic circuits will have slightly different phase responses to different
working wavelengths. However, we claim that this frequency-specific phase shift has minimum
impacts on our learning procedure.

Negligible Dispersion. Our PTC core is intentionally designed to have a small-scale, i.e., 9×9.
Hence we require 9 wavelengths in our framework. This avoids too many wavelengths being used.
Therefore, the spectrum range will be relatively small. Conservatively we assume 8 nm between
the furthest two wavelengths. Based on the phase response equation, ∆ϕ(λ) = 2πneff (λ)L/λ, this
leads to a maximum 1-2% phase difference for the furthest two wavelengths. On a small MZI array,
this phase difference will only cause negligible transfer function drift. We simulate this effect when
the weight block size is set to 9×9 and inject 1-2% dispersion-induced MZI phase response drift; the
transfer matrix has 0.5% relative error and 0.5% mean square error. Compared with the gradient
approximation error caused by our three-level sparse sampling, phase variation, and thermal crosstalk,
shown in Fig. 8, this slight drift caused by WDM dispersion is negligible.

High Non-ideality Tolerance. Our experiments show that first-order subspace learning is very
robust to all these gradient approximation errors. With all the above non-ideality, the approximated
gradient directions are still well-aligned with the true gradients. The on-chip learning procedure
works as expected even when WDM dispersion effects are considered. This effect can be considered
in-situ when using WDM on MZI array training, therefore, the model can tolerate this non-ideal
effect without inference accuracy degradation.

Dispersion-free Devices. In the literature, there are WDM dispersion-free MZI devices being
proposed [12]. Within the 45nm range, the coefficient of phase shifters can be maintained. Thus, the
phase response to 9 different wavelengths can be compensated to almost the same response. This
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further shows that WDM dispersion is not a major concern for our assumed ONN architecture and
proposed training flow.
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