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1. Introduction
All-solid-state batteries (SSBs) with lithium (Li)

metal anodes are promising candidates for high-
capacity, rechargeable energy storage systems due
to their improved volumetric andgravimetric energy
densities [1, 2, 3, 4, 5] and reduced safety risks com-
pared to conventional Li-ion batteries [6, 7]. How-
ever, the performance and capacity of SSBs are lim-
ited by the solid electrolyte (SSE)-anode interface,
which generates products that hinder ionic trans-
port [8, 9, 10]. This limitation emphasizes the need
for modeling the initial stages of solid-state reactiv-
ity at this interface to enhance our understanding
and improve performance. While first-principles
methods, such as density functional theory (DFT)
[11, 12], provide accurate predictions of thermody-
namic properties, reactivity, and electronic struc-
ture, they are constrained by high computational
costs that scale unfavorably with system size [13]. In
this work, we present a computational framework
that uses machine learning interatomic potentials
(ML-IAPs) and active learning to systematically gen-
erate an interfacial reactivity dataset, enabling ex-
tended spatial and temporal atomistic descriptions
beyond traditional DFT methods.

2. Machine Learning for Chemistry
Current state-of-the-art ML-IAPs encounter chal-

lenges inmolecular dynamics (MD), including insta-
bilities such as void formation and phase separation.
Although increasing dataset size has been a com-
mon strategy to enhance sampling along the poten-
tial energy landscape (PES), it often results in longer
training times and decreased efficiency [14]. This
work addresses the challenges of using machine
learning interatomic potentials (ML-IAPs) for reac-
tive chemical systems by generating datasets specif-
ically for binary reactions and incorporating active
learning techniques inherent to the model architec-
ture [15, 16, 17]. By identifying undersampled re-
gions of the PES and employing active learning sam-
pling strategies, we curate a refined dataset that is
recalculated using DFT for quantum-mechanical ac-
curacy [11, 12]. This iterative active learning process
captures configurations relevant to chemical reac-
tions while minimizing the time and data required
for accurate predictions of thermodynamic and ki-

Fig. 1: ML-MD simulation demonstrating unphysical
phase separation in a crystalline structure over
time. The instability of ML-IAPs can manifest as
improper phase separation, void formation, and
ballistic atomicmobility, highlighting the need for
improved ML-IAPs through enhanced training on
high-quality data. Such improvements are essen-
tial for achieving more accurate atomic interac-
tions and reliable predictions ofmaterial behavior.

netic properties. We also introduce validation met-
rics to assess the model’s ability to access states be-
yond equilibrium, comparing them to DFT bench-
marks. Once finalized, the ML-IAP can be applied to
ML-MD simulations, maintaining DFT-level chem-
ical accuracy while effectively mapping transport
properties, transition states, phase transformations,
and interphase morphology.

3. Our Approach
We develop a machine learning framework de-

signed to understand the atomic-level mechanisms
driving surface reactivity and influencing material
performance inLimetal batteries, specifically focus-
ing on the Li/Li7P3S11 system. Recognizing the sig-
nificant impact of training data on the performance
of ML-IAPs [14], we implement high-throughput
dataset generation using active learning sampling
strategies tailored for Li-P-S reactivity, supported by
the computational infrastructure of the Materials
Project [18]. This approach incorporates both crys-
talline and noncrystalline structures, ensuring com-
prehensive dataset coverage and avoiding configura-
tions that fall outside the training dataset. The re-
sulting dataset, comprising static and dynamic DFT
data, characterizes the initial states of the solid-
state interface, including both equilibrium and non-

https://orcid.org/0000-0001-5482-509X
https://orcid.org/0000-0003-2495-5509
mailto:bryantli@lbl.gov
mailto:kapersson@lbl.gov


AI4X 2025, Singapore, 8–11 July 2025

equilibrium conditions. The ML-IAP-based atomic
cluster expansion (ACE) method extends solid-state
reaction simulations and scales linearly with sys-
tem size. We employ active learning within the ACE
framework to identify essential structures and train
ACE potentials on local site-specific multibody in-
teractions, facilitating efficient learning of the rel-
evant chemical space. Additionally, fine-tuned uni-
versal interatomic potentials are tested and found
to be viable substitutes, underscoring their potential
for generalization across various ML-based chemi-
cal reactivity applications.

4. Our Findings
Our results indicate that the reaction between

Li and Li7P3S11 leads to the formation of a het-
erogeneous, amorphous interphase with a layered
morphology, characterized by alternating regions of
higher concentrations of phases such as Li2S and
LixP. These experimentally identified phases re-
duce ionic transport efficiency across the battery
system. The ML-aided simulations facilitate spa-
tially resolved modeling to identify the layering,
crystallinity, andmorphology of these phases, which
can now be validated with available in-situ X-ray
photoelectron spectroscopy (XPS) observations [19,
20]. Our model aligns well with other ML-IAP mod-
els for similar systems while also predicting sta-
ble amorphous and non-equilibrium structures, di-
verging from the crystallization behavior observed
in other models [21, 22]. The implementation of
the ML-IAP model enables us to predict ionic trans-
port properties, which typically require extended
timescale MD simulations, particularly for corre-
lated ionic mobility. Through ML-MD, we can ob-
tain correlated ionic fluxes in both crystalline and
amorphous phases and derive transport properties
such as the Onsager transport coefficients. Our find-
ings suggest that the correlatedmobility of P ions be-
tween Li and S ions creates effective ’kinetic traps’
for P ions, leading to the kinetic passivation of the
solid-state interface (SSI). This insight enhances our
understanding of the atomistic mechanisms under-
lying the formation of passivating interphases in
the Li/Li7P3S11 system. Finally, ML-aided MD ex-
tends the spatio-temporal regimes that can be sim-
ulated. We find that the interplay of thermodynam-
ics and kinetics influences themorphology of the in-
terface, driven by correlated ionic motion through
the amorphous and crystalline interphase domains.
Our results indicate that interphase formation oc-
curs in two stages: a fast diffusion regime followed
by a slow diffusion regime, during which nanocrys-
tallization and bulk distortion take place. Our ML-
driven framework for simulating and modeling SSI
formation provides a foundation for extending first-
principles-informed chemical reactivity simulations
tomore complex phenomena and experimental con-
ditions, facilitating a detailed atomic description of
elusive underlying mechanistic behavior.

Fig. 2: NpT simulation of the (100)/(100) Li/Li7P3S11
interface over 10 ns using ML molecular dynam-
ics with the final generation of fitted ML-IAPs.
The snapshots showcase the evolution of the sim-
ulation at specific timestamps. The fast diffu-
sion regime, observed within the first 20 ps, indi-
cates the initial formation of the interphase and its
growth across the original interface boundary. In
contrast, the slowdiffusion regime reflects the sta-
bilization of the interphase region, characterized
by periodic atomic movement, extending up to 10
ns.
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Appendix A. Generalized Workflow for Interfa-
cial Reactivity Datasets
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Fig. A1: Illustration of the modeling framework which includes 1) initial configurational sampling: user-
specified samples of equilibrium and non-equilibrium structural configurations based off of the reactant
compositional space and thermodynamically predict phase presence, 2) model training: iterative ML-IAP
training with an active learning schema and validation from RDFs, EOS, pairwise interactions and stability
screening, 3) applications: direct simulations of interfacial structures in ML-molecular dynamics at ex-
tended length and timescales.
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