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Here, we first provide the pseudocodes, proof of the proposition and the derivation of Hessian. Later
we give additional experiments, analysis and the details of our experimental setting.

A PSEUDOCODE

We provide pseudocode for PGD++ with NJS in Algorithm 1 and PGD++ with HNS in Algorithm 2.

Algorithm 1 PGD++ with NJS with L∞, T iterations, radius ε, step size η, network fw∗ , input
x0, label k, one-hot y ∈ {0, 1}d, gradient threshold ρ.

Require: T, ε, η, ρ,x0,y, k
Ensure: ‖xT+1 − x0‖∞ ≤ ε

1: β1 = (M d)/
(∑M

i=1

∑d
j=1 µj(Ji)

)
. β1 computed using Network Jacobian.

2: x1 = P ε∞(x0 + Uniform(−1, 1)) . Random Initialization with Projection
3: for t← 1, . . . T do
4: β2 = 1.0
5: p′ = softmax(β1(fw∗(xt)))
6: if 1− p′k ≤ ρ then . ρ = 0.01
7: β2 = − log(ρ/(d− 1)(1− ρ))/γ . γ computed using Proposition 1
8: ` = −yT log(softmax(β2β1(fw∗(xt))))
9: xt+1 = P ε∞(xt + η sign(∇x`(x

t))) . Update Step with Projection

Algorithm 2 PGD++ with HNS with L∞, T iterations, radius ε, step size η, network fw∗ , input
x0, label k, one-hot y ∈ {0, 1}d, gradient threshold ρ.

Require: T, ε, η,x0,y, k
Ensure: ‖xT+1 − x0‖∞ ≤ ε

1: x1 = P ε∞(x0 + Uniform(−1, 1)) . Random Initialization with Projection
2: β∗ = argmaxβ>0

∥∥∂2`(β)/∂(x0)2
∥∥
F

. Grid Search
3: for t← 1, . . . T do
4: ` = −yT log(softmax(β∗(fw∗(xt))))
5: xt+1 = P ε∞(xt + η sign(∇x`(x

t))) . Update Step with Projection

B DERIVATIONS

B.1 DERIVING β GIVEN A LOWERBOUND ON 1− pk(β)

Proposition 1. Let aK ∈ IRd with d > 1 and aK1 ≥ aK2 ≥ . . . ≥ aKd and aK1 − aKd = γ.
For a given 0 < ρ < (d− 1)/d, there exists a β > 0 such that 1− softmax(βaK1 ) > ρ, then
β < − log(ρ/(d− 1)(1− ρ))/γ.
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Proof. Assuming aK1 − aKd = γ, we derive a condition on β such that
1− softmax(βaK1 ) > ρ.

1− softmax(βaK1 ) > ρ , (1)

softmax(βaK1 ) < 1− ρ ,

exp(βaK1 )/

d∑
λ=1

exp(βaKλ ) < 1− ρ ,

1/
(
1 +

d∑
λ=2

exp(β(aKλ − aK1 ))
)
< 1− ρ .

Since, aK1 − aKλ ≤ γ for all λ > 1,

1/
(
1 +

d∑
λ=2

exp(β(aKλ − aK1 ))
)
≤ 1/

(
1 +

d∑
λ=2

exp(−βγ)
)
. (2)

Therefore, to ensure 1/
(
1 +

∑d
λ=2 exp(β(aKλ − aK1 ))

)
< 1− ρ, we consider,

1/
(
1 +

d∑
λ=2

exp(−βγ)
)
< 1− ρ , aK1 − aKλ ≤ γ for all λ > 1 , (3)

1/
(
1 + (d− 1) exp(−βγ)

)
< 1− ρ ,

exp(−βγ) > ρ/(d− 1)(1− ρ) ,

−βγ > log(ρ/(d− 1)(1− ρ)) , exp is monotone ,
β < − log(ρ/(d− 1)(1− ρ))/γ .

Therefore for any β < − log(ρ/(d− 1)(1− ρ))/γ, the above inequality
1− softmax(βaK1 ) > ρ is satisfied.

B.2 DERIVATION OF HESSIAN

We now derive the Hessian of the input mentioned in Eq. (8) of the paper. The input gradients can be
written as:

∂`(β)

∂x0
=
∂`(β)

∂p(β)

∂p(β)

∂āK(β)
βJ = ψ(β)βJ . (4)

Now by product rule of differentiation, input hessian can be written as:

∂2`(β)

∂(x0)2
= β

[
ψ(β)

∂J

∂x0
+

(
∂ψ(β)

∂x0

)T
J

]
, (5)

= β

[
ψ(β)

∂J

∂x0
+

(
∂p(β)

∂x0

)T
J

]
, ψ(β) = −(y − p(β))T ,

= β

[
ψ(β)

∂J

∂x0
+ β

(
∂p(β)

∂āK
J

)T
J

]
.

C ADDITIONAL EXPERIMENTS

In this section we first provide more experimental details and then some ablation studies.

C.1 EXPERIMENTAL DETAILS
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Method
ResNet-18 VGG-16

APGD
Square PGD++

APGD
Square PGD++

Attack NJS HNS Attack NJS HNS

REF 0.00 0.55 0.00 0.00 0.79 2.25 0.00 0.00
BNN-WQ 0.00 0.41 0.00 0.00 8.23 1.98 0.00 0.00
BNN-WAQ 6.32 21.45 0.03 0.04 0.38 16.67 0.01 0.02

Table 2: Adversarial accuracy for REF, BNN-WQ and BNN-WAQ trained on CIFAR-10 using ResNet-18.
Both our NJS and HNS variants consistently outperform Auto-PGD (APGD) (Croce & Hein (2020))
performed using Difference of Logits Ratio (DLR) loss and a gradient free attack namely, Square
Attack (Andriushchenko et al. (2020)) under L∞ bound (8/255).

Dataset Attack ε η T

CIFAR-10
FGSM 8 8 1
PGD (L∞) 8 2 20
PGD (L2) 120 15 20

CIFAR-100
FGSM 4 4 1
PGD (L∞) 4 1 10
PGD (L2) 60 15 10

Table 1: Attack parameters (ε& η in pixels).

We first mention the hyperparameters used to perform
FGSM and PGD attack for all the experiments in the
paper in Table 1. To make a fair comparison, we keep
the attack parameters same for our proposed variants
of FGSM++ and PGD++ attacks. For PGD++ with HNS
variant, we maximize Frobenius norm of Hessian with
respect to the input as specified in Eq. (8) of the pa-
per by grid search for the optimum β. We would like
to point out that since only ψ(β) and p(β) terms are
dependent on β, we do not need to do forward and
backward pass of the network multiple times during the grid search. This significantly reduces the
computational overhead during the grid search. We can simply use the same network outputs aK
and network jacobian J (as computed without using β) for the grid search, while computing the
other terms at each iteration of grid search. We apply grid search to find the optimum beta between
100 equally spaced intervals of β starting from β1 to β2. Here, β1 and β2 are computed based on
Proposition 1 in the paper where ρ = 1e− 72 and ρ = 1− (1/d)− (1e− 2) respectively, where d is
number of classes and γ = aK1 − aK2 so that 1− softmax(βaK1 ) < ρ. Also, note that we estimate
the optimum β for each test sample only at the start of the first iteration of an iterative attack and then
use the same β for the next iterations.

Computational Overhead of NJS and HNS. Our Jacobian calculation takes just a single backward
pass through the network and thus adds a negligible overhead. Our NJS approach for scaling estimates
β as inverse of mean JSV using 100 random test samples, which is similar to 100 backward passes.
For HNS, in Eq. (8) Jacobian J can be computed in single backward pass. Moreover, for piecewise
linear networks (eg, relu activations), ∂J/∂x0 = 0 almost everywhere (Yao et al. (2018)). Thus
PGD++ with NJS and HNS is almost as efficient as PGD.

C.2 COMPARISONS AGAINST AUTO-PGD ATTACK AND GRADIENT FREE ATTACK

We also compared our proposed PGD++ variants against recently proposed Auto-PGD (APGD) with
Difference of Logits Ratio (DLR) loss (Croce & Hein (2020)) and gradient free Square Attack (An-
driushchenko et al. (2020)) on different networks trained using ResNet-18 and VGG-16 on CIFAR-10
dataset and the results are reported in Table 2. The attack parameters for this experiment are the same
as reported in the paper. It can be clearly seen that our proposed variants perform much better than
both APGD with DLR loss and Square Attack, consistently achieving 0% adversarial accuracy. Infact,
much computationally expensive Square attack is unable to achieve 0% adversarial accuracy in any
of the cases under the enforced L∞ bound.

C.3 OTHER EXPERIMENTS

We provide adversarial accuracy comparisons for different attack methods on CIFAR-100 using ResNet-
18, VGG-16, ResNet-50 and DenseNet-121 in Table 3. Again similar to the results in the paper, our
proposed PGD++ and FGSM++ outperform original form of PGD and FGSM consistently in all the
experiments on floating point networks. We also provide adversarial accuracy comparison of our
proposed variants against stronger attacks namely DeepFool (Moosavi-Dezfooli et al. (2016)) and
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Network
Adversarial Accuracy (%)

FGSM
FGSM++

PGD (L∞) PGD++ (L∞)
PGD (L2) PGD++ (L2)

NJS HNS NJS HNS NJS HNS

ResNet-18 9.06 9.23 2.70 0.14 0.14 0.00 5.38 0.17 0.15
VGG-16 16.28 17.24 9.19 1.53 0.95 0.25 4.87 1.50 1.38
ResNet-50 12.95 12.95 11.94 0.12 0.00 0.00 31.01 4.43 4.14
DenseNet-121 11.41 11.41 10.74 0.00 0.00 0.00 6.10 3.09 2.76

Table 3: Adversarial accuracy on the test set of CIFAR-100 for REF (floating point networks). Both our
NJS and HNS variants consistently outperform original FGSM and PGD (L∞/L2 bounded) attacks.

Network PGD
Deep BBA PGD++
Fool NJS HNS

ResNet-18 8.57 18.92 0.81 0.03 0.04
VGG-16 78.01 12.12 0.10 0.01 0.02

Table 4: Adversarial accuracy on the test set of CIFAR-10 for BNN-WAQ. Here, we compare our
proposed variants against much stronger attacks namely DeepFool (Moosavi-Dezfooli et al. (2016))
and BBA (Brendel et al. (2019)). Both our variants outperform stronger attacks. Note, DeepFool and
BBA are much slower in practise requiring 100-1000 iterations. BBA specifically requires even an
adversarial start point that needs to be computed using another adversarial attack.

BBA (Brendel et al. (2019)) on BNN-WAQ trained on CIFAR-10 dataset in Table 4. In this experiment,
our proposed variants again outperform even the stronger attacks which take 100-1000 iterations with
adversarial start point (instead of random initial perturbation). It should be noted that although BBA
performs much better than DeepFool and PGD, it still has inferior success rate than ours considering
the fact that it takes multiple hours to run BBA whereas our proposed variants are almost as efficient
as PGD attack.

Step Size Tuning for PGD attack. We would like to point out that step size η and temperature scale
β have different effects in the attacks performed. Notice, PGD and FGSM attack under L∞ bound only
use the sign of input gradients in each gradient ascent step. Thus, if the input gradients are completely
saturated (which is the case for BNNs), original forms of PGD or FGSM will not work irrespective of
the step size used. To illustrate this, we performed extensive step size tuning for original form of PGD
attack on different ResNet-18 models trained on CIFAR-10 dataset and the adversarial accuracies are
reported in Fig. 1. It can be observed clearly that although tuning the step size lowers adversarial
accuracy a bit in some cases but still cannot reach zero for BNNs unlike our proposed variants.
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Figure 1: Adversarial accuracy using
PGD attack under L∞ bound (8/255)
with varying step size (η) on ResNet-18
trained on CIFAR-10. Notice, PGD at-
tack is unable to reach zero adversarial
accuacy for BNNs with any step size.

Adversarial training using PGD++. We also investigate
the potential application of PGD++ for adversarial training
to improve the robustness of neural networks. PGD++
attack is most effective when applied to a network with
poor signal propagation. However, adversarial training is
performed from random initialization (Glorot & Bengio
(2010)) exhibiting good signal propagation. Thus, PGD
and PGD++ perform similarly for adversarial training. We
infer these conclusions from our experiments on adversarial
training using PGD++.

CLEVER Scores. Recently CLEVER Scores (Weng et al.
(2018)) have been proposed as an empirical estimate to
measure robustness lower bounds for deep networks. It
has been later shown that gradient masking issues cause
CLEVER to overestimate the robustness bounds (Goodfellow (2018)). Here we try to improve the
CLEVER scores using different ways of choosing β in temperature scaling. For this experiment, we
use CLEVER implementation of Adversarial Training Toolbox1 (Nicolae et al. (2018)). We set number

1https://github.com/Trusted-AI/adversarial-robustness-toolbox
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Original Heuristic NJS HNS

BNN-WQ 0.8585 0.8845 0.4139 0.3450
BNN-WAQ 0.7239 3.1578 0.3120 0.2774

Table 5: CLEVER Scores (Weng et al. (2018)) for BNN-WQ and BNN-WAQ trained on CIFAR-10 using
ResNet-18. We compare CLEVER Scores returned for L1 norm perturbation using different ways of
temperature scaling applied. Here, Original refers to original network without temperature scaling
and Heuristic denotes temperature scale with small β = 0.01.

Methods PGD++ (NJS) - Varying ρ
1e− 05 1e− 04 1e− 03 1e− 02 1e− 01 2e− 01

REF 0.00 0.00 0.00 0.00 0.00 0.00
BNN-WQ 0.00 0.00 0.00 0.00 0.00 0.00
BNN-WAQ 0.15 0.08 0.04 0.03 0.04 0.02

Table 6: Adversarial accuracy on the test set for binary neural networks using L∞ bounded PGD++
attack using NJS with varying ρ. For different values of ρ, our approach is quite stable.

of batches to 50, batch size to 10, radius to 5, and chose L1 norm as hyperparameters (based on
the Weng et al. (2018)). We compare our variants namely NJS and HNS against heuristic choice of
small β = 0.01 and original CLEVER Scores for BNN-WQ and BNN-WAQ (trained on CIFAR-10 using
ResNet-18) in Table 5. It can be clearly seen that our proposed variants improve the robustness bounds
computed using CLEVER whereas a heuristic choice of β = 0.01 performs even worse.

C.4 STABILITY OF PGD++ WITH NJS WITH VARIATIONS IN ρ

We perform ablation studies with varying ρ for PGD++ with NJS in Table 6 for CIFAR-10 dataset
using ResNet-18 architecture. It clearly illustrates that our NJS variant is quite robust to the choice of
ρ as we are able to achieve near perfect success rate with PGD++ with different values of ρ. As long
as value of ρ is large enough to avoid one-hot encoding on softmax outputs (in turn avoid ‖ψ(β)‖ to
be zero) of correctly classified sample, our approach with NJS variant is quite stable.

C.5 SIGNAL PROPAGATION AND INPUT GRADIENT ANALYSIS USING NJS AND HNS

We first provide an example illustration in Fig. 2 to better understand how the input gradient norm
i.e., ‖∂`(β)/∂x0‖2, and norm of sign of input gradient, i.e., ‖sign(∂`(β)/∂x0)‖2 is influenced by
β. It clearly shows that both the plots have a concave behavior where an optimal β can maximize
the input gradient. Also, it can be quite evidently seen in Fig. 2 (b) that within an optimal range of
β, gradient vanishing issue can be avoided. If β → 0 or β →∞, it changes all the values in input
gradient matrix to zero and inturn ‖sign(∂`(β)/∂x0)‖2 = 0.

We also provide the signal propagation properties as well as analysis on input gradient norm before
and after using the β estimated based on NJS and HNS in Table 7. For binarized networks as well
floating point networks tested on CIFAR-10 dataset using ResNet-18 architecture, our HNS and NJS
variants result in larger values for ‖ψ‖2, ‖∂`(β)/∂x0‖2 and ‖sign(∂`(β)/∂x0)‖2. This reflects the
efficacy of our method in overcoming the gradient vanishing issue. It can be also noted that our
variants also improves the signal propagation of the networks by bringing the mean JSV values closer
to 1.

C.6 ABLATION FOR ρ VS. PGD++ ACCURACY

In this subsection, we provide the analysis on the effect of bounding the gradients of the network
output of ground truth class k, i.e. ∂`(β)/∂āKk . Here, we compute β using Proposition 1 for all
correctly classified images such that 1− softmax(βaKk ) > ρ with different values of ρ and report
the PGD++ adversarial accuracy in Table 8. It can be observed that there is an optimum value of ρ at
which PGD++ success rate is maximized, especially on the adversarially trained models. This can
also be seen in connection with the non-linearity of the network where at an optimum value of β,
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Figure 2: Plots to show how variation in β affects (a) norm of input gradient, i.e., ‖∂`(β)/∂x0‖2,
(b) norm of sign of input gradient, i.e., ‖sign(∂`(β)/∂x0)‖2 on a random correctly classified image.
Notice that, both input gradient and signed input gradient norm behave similarly, showing a concave
behaviour. This plot is computed for BNN-WQ network on CIFAR-10, ResNet-18. (b) clearly illustrates
how optimum β can avoid vanishing gradient issue since ‖sign(∂`(β)/∂x0)‖2 will only be zero if
input gradient matrix has only zeros.

Methods REF Adv. Train BNN-WQ BNN-WAQ

JSV (Mean)
Orig. 8.09e+00 5.15e−01 3.53e+01 1.11e+00
NJS 9.51e−01 5.70e−01 9.95e−01 2.24e−01
HNS 2.38e+00 6.11e+00 1.19e+01 4.65e+00

JSV (Std.)
Orig. 6.27e+00 4.10e−01 3.53e+01 1.97e+00
NJS 7.58e−01 6.34e−01 9.71e−01 6.73e−01
HNS 4.41e+00 5.34e+02 2.13e+02 1.24e+02

‖ψ‖2‖ψ‖2‖ψ‖2
Orig. 9.08e−03 2.33e−01 6.20e−03 9.46e−03
NJS 4.66e−01 2.35e−01 5.37e−01 1.20e−01
HNS 1.48e−01 2.57e−01 2.07e−01 2.44e−01

‖∂`/∂x0‖2‖∂`/∂x0‖2‖∂`/∂x0‖2
Orig. 2.42e−01 8.52e−02 2.27e−01 6.33e−02
NJS 9.52e−01 1.10e−01 8.91e−01 1.24e−01
HNS 7.49e−01 8.18e−01 3.70e−01 2.70e−01

‖sign
(

∂`
∂x0

)
‖2‖sign

(
∂`
∂x0

)
‖2‖sign

(
∂`
∂x0

)
‖2

Orig. 5.55e+01 5.54e+01 4.39e+01 5.55e+01
NJS 5.55e+01 5.54e+01 5.55e+01 5.55e+01
HNS 5.55e+01 5.54e+01 5.55e+01 5.55e+01

Table 7: Mean and standard deviation of Jacobian Singular Values (JSV), mean ‖ψ‖2, mean
‖∂`/∂x0‖2 and mean ‖sign(∂`/∂x0)‖2 for different methods on CIFAR-10 with ResNet-18 com-
puted with 500 correctly classified samples. Note here for NJS and HNS, JSV is computed for scaled
jacobian i.e. βJ. Also note that, values of ‖ψ‖2, ‖∂`(β)/∂x0‖2 and ‖sign(∂`(β)/∂x0)‖2 are larger
for our NJS and HNS variant (for most of the networks) as compared with network with no β, which
clearly indicates better gradients for performing gradient based attacks.

even for robust (locally linear) (Moosavi-Dezfooli et al. (2019); Qin et al. (2019)) networks such as
adversarially trained models, non-linearity can be maximized and better success rate for gradient
based attacks can be achieved. Our HNS variant essentially tries to achieve the same objective while
trying to estimate β for each example.
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