
Under review as a conference paper at ICLR 2021

A REPRODUCING EXPERIMENTS AND FIGURES

In this section, we present training and optimization details needed to reproduce our empirical
validation of Theorem 1. We also published notebooks and check-pointed weights for two crucial
experiments that investigate the result in the small and massive scale regimes, for Figure 1 and GPT-2
(ANONYMIZED).

A.1 FIGURE 1

We provide a Jupyter notebook and model checkpoints for reproducing Figure 1. Please refer to this
for hyperparameter settings. In short, we implemented a model (Mnih and Teh, 2012) in the family
of Section 2 and trained it on the Billion Word dataset (Chelba et al., 2013). This is illustrative of the
property of Theorem 1 because the relatively modest size of the parameter space (see notebook) and
massive dataset minimizes model convergence and data availability restrictions, e.g., approaches the
asymptotic regime.

The word embedding space is 2-D for ease of visualization. We selected a subset of words, mapped
them into their learned embeddings, and visualized them as points in the left and middle panes.
We then regress pane one onto pane two in order to learn the best linear transformation between
them. Note that if the two are linear transformations of each other, regression will recover that
transformation exactly.

A.2 SIMULATION STUDY: CLASSIFICATION BY DNNS

Remaining training details are as follows.

Because our theory requires that the data generating process be expressible by the true generative
model, we simulate this by training a 4 hidden layer MLP with two 26 unit layers, and a 2-dimensional
“bottle neck" layer. We optimize weights using Adam with a learning rate of 10�4 for 5⇤104 iterations.

To make the classification problem more challenging, we additionally add 20 input dimensions of
random noise. The Adam optimizer with a learning rate of 3 · 10�4 is used.

A.3 SELF-SUPERVISED LEARNING FOR IMAGE CLASSIFICATION

To compute linear similarity between representations, we train two independent models in parallel.
For each model we define both f✓ and g✓ as a 3-layer fully connected neural network with 28 units
per layer and a fixed output dimensionality of 26. We define our model following Eq. 1, where
S is the set of the other image patches from the current minibatch and optimize the objective of
(Hénaff et al., 2019). We augment both sampled patches independently with randomized brightness,
saturation, hue, and contrast adjustments, following the recipe of (Hénaff et al., 2019). We train on
the CIFAR10 dataset (Krizhevsky et al., 2009) with batchsize 28, using the Adam optimizer with a
learning rate of 10�4 and the JAX (Bradbury et al., 2018) software package. For each model, we
early stop based on a validation loss failing to improve further.

Additional details about the experiments that generated Figure 3:

Figure 3 a. Patches are sampled randomly from training images.

Figure 3 b. For each model, we train for at most 3 ⇤ 104 iterations, early stopping when necessary
based on validation loss.

Figure 3 c. For each model, we train for at most 3 ⇤ 104 iterations, early stopping when necessary
based on validation loss.

Figure 3 d. Error bars show standard error computed over 5 pairs of models after 1.5 ⇤ 104 training
iterations.

11

Under review as a conference paper at ICLR 2021

A.4 GPT-2

We include all details through a notebook in the code release. Pretrained GPT-2 weights as specified
in the main text are publicly available from HuggingFace Wolf et al. (2019).

B PROOF THAT LINEAR SIMILARITY IS AN EQUIVALENCE RELATION

We claim that L⇠ is an equivalence relation. It suffices to show that it is reflexive, transitive, and
symmetric.

Proof. Consider some function g✓ and some ✓0
,✓?

,✓† ⇢ ⇥. Suppose ✓0 L⇠ ✓?. Then, there exists
an invertible matrix B such that g✓0(x) = Bg✓?(x). Since g✓?(x) = B�1g✓0(x), L⇠ is symmetric.
Reflexivity follows from setting g✓? to g✓0 and B to the identity matrix. To show transitivity, suppose
also that ✓? L⇠ ✓†. Then, there exists an invertible C such that g✓?(x) = Cg✓†(x). Since g✓0

L⇠ g✓? ,
B�1g✓0(x) = Cg✓†(x). Rearranging terms, g✓0(x) = BCg✓†(x), so that ✓0 L⇠ ✓† as required.

C SECTION 3.2 CONTINUED: CASE OF CONTEXT REPRESENTATION
FUNCTION g

Our derivation of identifiability of g✓ is similar to the derivation of f✓ . The primary difference is that
the normalizing constants in Equation (6) do not cancel out. First, note that we can rewrite Equation 1
as:

p✓(y|x,S) = exp(ef✓(x,S)>eg✓(y)) (9)

where:
ef✓(x,S) = [�Z(x,S); f✓(x)] (10)
eg✓(y) = [1;g✓(y)] (11)

Z(x,S) = log
X

y02S

exp(f✓(x)
>g✓(y

0)). (12)

Below, we will show that for the model family defined in Section 2,

p✓0 = p✓⇤ =) g✓0(y) = Bg✓?(y), (13)

where B is an invertible (M⇥M)-dimensional matrix, concluding the proof of the linear identifiability
of models in the family defined by Equation 1. We adopt the same shorthands as in the main text.

C.1 DIVERSITY CONDITION

We assume that for any (✓0
,✓⇤) ⇢ ⇥ for which it holds that p0 = p

⇤, and for any given y, there exist
M+1 tuples {(x(i)

,S(i))}Mi=0, such that pD(x(i)
,y,S(i)) > 0, and such that the ((M+1)⇥(M+1))

matrices M0 and M⇤ are invertible, where M0 consists of columns ef 0(x(i)
,S(i)), and M⇤ consists of

columns ef⇤(x(i)
,S(i)).

This is similar to the diversity condition of Section 3.2 but milder, since a typical dataset will have
multiple x for each y.

C.2 PROOF

With the data distribution pD(x,y,S), for a given y, there exists a conditional distribution pD(x,S|y).
Let (x,S) be a sample from this distribution. From equation 1 and the statement to prove, it follows
that:

p
0(y|x,S) = p

⇤(y|x,S) (14)

12

Under review as a conference paper at ICLR 2021

Substituting in the definition of our model from equation (9), we find:

exp(ef 0(x,S)>eg0(y)) = exp(ef⇤(x,S)>eg⇤(y)), (15)

which, evaluating logarithms, becomes

ef 0(x,S)>eg0(y) = ef⇤(x,S)>eg⇤(y), (16)

which is true for any triple (x,y,S) where pD(y|x,S) > 0.

From M0 and M⇤ (Section C.1) and equation 16 we form a linear system of equations, collecting the
M + 1 relationships together:

M0>eg0(y) = M⇤>eg⇤(y) (17)
eg0(y) = Aeg⇤(y), (18)

where A = (M⇤M0�1)>, an invertible (M + 1)⇥ (M + 1) matrix.

It remains to show the existence of an invertible M ⇥M matrix B such that

g0(y) = Bg⇤(y). (19)

We proceed by constructing B from A. Since A is invertible, there exist j elementary matrices
{E1, . . . ,Ej} such that their action R = EjEj�1 . . .E1 converts A to a (non-unique) row echelon
form. Without loss of generality, we build R such that the a1,1 entry of A is the first pivot, leading to
the particular row echelon form:

RA =

2

66664

a1,1 a1,2 a1,3 . . . a1,m⇥1

0 ã2,2 ã2,3 . . . ã2,m⇥1

0 0 ã3,3 . . . ã2,m⇥1
...

...
...

. . .
...

0 0 . . . 0 ãm⇥1,m⇥1

3

77775
, (20)

where ãi,j indicates that the corresponding entry in RA may differ from A due to the action of R.
Applying R to Equation (17), we have

Reg0(y) = RAeg⇤(y). (21)

We now show that removing the first row and column of RA and R generates matrices of rank M .
Let RA and R denote the (M ⇥M) submatrices formed by removing the first row and column of
RA and R respectively.

Equation (20) shows that RA has a pivot in each column, and thus has rank M . To show
that R is invertible, we must show that removing the first row and column reduces the rank of
R = EjEj�1 . . .E1 by exactly 1. Clearly, each Ek is invertible, and their composition is invertible.
We must show the same for the composition of Ek.

There are three cases to consider, corresponding to the three unique types of elementary matrices.
Each elementary matrix acts on A by either (1) swapping rows i and j, (2) replacing row j by a
multiple m of itself, or (3) adding a multiple m of row i to row j. We denote elementary matrix types
by superscripts.

In Case (1), E1
k is an identity matrix with row i and row j swapped. For Case (2), E2

l is an identity
matrix with the j, j

th entry replaced by some m. For each E1
k and E2

l in R , where 1  k, l  j, we
know that the indices i, j � 2, because we chose the first entry of the first row of A to be the pivot,
and hence do not swap the first row, or replace the first row by itself multiplied by a constant. This
implies that removing the first row and column of E1

k and E2
l removes a pivot entry 1 in the (1, 1)

position, and removes zeros elsewhere. Hence, the (M ⇥M) submatrices E1
k and E2

l are elementary
matrices with rank M .

For Case (3), E3
k has some value m 2 R in the j, i

th entry, and 1s along the diagonal. In this case,
we may find a non-zero entry in some E3

k, so that, e.g., the second row has a pivot at position (2, 2).
Without loss of generality, suppose i = 1, j = 2 and let m be some nonzero constant. Removing the

13

Under review as a conference paper at ICLR 2021

first row and column of E3
1 removes this m also. Nevertheless, E3

1 = IM , the rank M identity matrix.
For any other E3

k 1 < i  M + 1, j � 2 because we chose a1,1 as the first pivot, and hence do not
swap the first row, or replace the first row by itself multiplied by a constant. In both cases, removing
the first row and first column creates an E3

k that is a rank M elementary matrix.

We have shown by the above that R is a composition of rank M matrices. We now construct the
matrix B by removing the first entries of eg0 and eg?, and removing the first row and first column of R
and RA in Equation (equation 21). Then, we have

Rg0(y) = RAg⇤(y), (22)

g0(y) = R
�1

RAg⇤(y). (23)

Choosing B = R
�1

RA proves the result.

D REDUCTIONS TO CANONICAL FORM OF EQUATION (1)

In the following, we show membership in the model family of Equation 1 using the mathematical
notation of the papers under discussion in Section 4. Note that each subsection will change notation to
match the papers under discussion, which varies quite widely. We employ the following colour-coding
scheme to aid in clarity:

log p✓(y|x,S) = f✓(x)
>g✓(y)�

X

y02S

exp(f✓(x)
>g✓(y

0)),

where f✓(x) is generalized to a data representation function, g✓(y) is generalized to a
context representation function, and

P
y02S exp(f✓(x)>g✓(y0)) is some constant.

D.1 CPC

Formally, consider a sequence of points xt. We wish to learn the parameters � to maximize the
k-step ahead predictive distribution p(xt+k|xt,�). In the image patch example, each patch center i, j
is indexed by t. Each xt is mapped to a sequence of feature vectors zt = f✓(xt) An autoregressive
model, already updated with the previous latent representations zt�1, transforms the zt into a
“context" latent representation ct = gAR(zt). Instead of predicting future observations k steps
ahead, xt+k, directly through a generative model pk(xt+k|ct), Oord et al. (2018) model a density
ratio in order to preserve the mutual information between xt+k and ct.

Objective Let X = {x1, . . . ,xN} be a set of N random samples containing one positive sample
from p(xt+k|ct) and N�1 samples from the proposal distribution p(xt+k). Oord et al. (2018) define
the following link function: lk(xt+k, ct) , exp

�
z>t+kWkct

�
. Then, CPC optimizes

�EX

"
log

lk(xt+k, ct)P
xj2X lk(xj , ct)

#
= �EX

"
log

exp
�
zt+k

>Wkct
�

P
xj2X exp

�
z>j Wkct

�
#
. (24)

Substituting in the definition of lk makes equation (24) identical to the model family (Equation 1).

D.2 AUTOREGRESSIVE LANGUAGE MODELS (E.G. GPT-2)

Let U = {u1, . . . , un} be a corpus of tokens. Autoregressive language models maximize a log-
likelihood L(U) =

Pn
i=1 logP (ui|ui�k, . . . , ui�1;⇥), Concretely, the conditional density is mod-

elled as
logP (ui|ui�k:i�1;⇥)

= Wi:hi � log
X

j

exp(Wj:hi),

where hi is the m ⇥ 1 output of a function approximator (e.g. a Transformer decoder (Liu et al.,
2018)), and Wi: is the i’th row of the |U|⇥m token embedding matrix.

14

Under review as a conference paper at ICLR 2021

D.3 BERT

Consider a sequence of text x = [x1, . . . , xT]. Some proportion of the symbols in x are extracted
into a vector x̄, and then set in x to a special null symbol, “corrupting" the original sequence. This
operation generates the corrupted sequence

¯
x. The representational learning task is to predict x̄

conditioned on
¯
x, that is, to maximize w.r.t. ✓:

log p✓(x̄|¯x) ⇡
TX

t=1

mt log p✓(xt|¯x) =
TX

t=1

mt

H✓(¯

x)t
>
e(xt)� log

X

x0

exp
�
H✓(¯

x)>t e(x
0)
�
!
,

where H is a transformer, e is a lookup table, and mt = 1 if symbol xt is masked. That is, corrupted
symbols are “reconstructed" by the model, meaning that their index is predicted. As noted in Yang
et al. (2019), BERT models the joint conditional probability p(x̄|

¯
x) as factorized so that each masked

token is separately reconstructed. This means that the log likelihood is approximate instead of exact.

D.4 QUICKTHOUGHT VECTORS

Let f and g be functions that take a sentence as input and encode it into an fixed length vector. Let
s be a given sentence, and Sctxt be the set of sentences appearing in the context of s for a fixed
context size. Let Scand be the set of candidate sentences considered for a given context sentence
sctxt 2 Sctxt. Then, Scand contains a valid context sentence sctxt as well as many other non-context
sentences. Scand is used for the classification objective. For any given sentence position in the context
of s (for example, the preceding sentence), the probability that a candidate sentence scand 2 Scand is
the correct sentence for that position is given by

log p(scand|s, Scand) = f✓(s)
>
g✓(scand))� log

X

s02Scand

exp
�
f✓(s)

>
g✓(s

0
cand)

�
.

D.5 DEEP METRIC LEARNING

The multi-class N-pair loss in Sohn (2016) is proportional to

logN � 1

N

NX

i=1

log

0

@1 +
X

j 6=i

exp{f✓(xi)
>f✓(yj)� f✓(xi)

>f✓(yi))}

1

A ,

which can be simplified as

� 1

N

NX

i=1

log

0

@ 1

K

KX

j=1

exp{f✓(xi)
>f✓(yj)� f✓(xi)

>f✓(yi)}

1

A

=
1

N

NX

i=1

log

1

1
K

PK
j=1 exp{f✓(xi)>f✓(yj)� f✓(xi)>f✓(yi)}

!

=
1

N

NX

i=1

log

exp{f✓(xi)>f✓(yi)}

1
K

PK
j=1 exp{f✓(xi)>f✓(yj)}

!
.

Setting N to 1 and evaluating the log gives

f✓(xi)
>f✓(yi)�

1

K

KX

j=1

exp(f✓(xi)
>f✓(yj)),

which is Equation 1 where f✓ = g✓ .

D.6 NEURAL PROBABILISTIC LANGUAGE MODELS (NPLMS)

Figure 1 shows results from a neural probabilistic language model as proposed in Mnih and Teh
(2012). Mnih and Teh (2012) propose using a log-bilinear model (Mnih and Hinton, 2009) which,

15

Under review as a conference paper at ICLR 2021

given some context h, learns a context word vectors rw and target word vectors qw. Two different
embedding matrices are maintained, in other words: one to capture the embedding of the word
and the other the context. The representation for the context vector, q̂, is then computed as the
linear combination of the context words and a context weight matrix Ci so that q̂ =

Pn�1
i=1 Cirwi .

The score for the match between the context and the next word is computed as a dot product, e.g.,
s✓(w, h) = q̂

>
q̃w

1 and substituting into the definition of Ph
✓ (w), we see that

logPh
✓ (w) = q̂

>
q̃w � log

X

w0

exp
�
q̂
>
q̃w0
�

shows that Mnih and Teh (2012) is a member of the model family.

Interestingly, a touchstone work in the area of NPLMs, Word2Vec (Mikolov et al., 2013), does not
fall under the model family due to an additional nonlinearity applied to the score of Mnih and Teh
(2012).

1We have absorbed the per-token baseline offset b into the qw defined in Mnih and Teh (2012), forming the
vector q̃w whose i’th entry is (qw)i = (qw)i + bw/(q̂)i

16

