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A REPRODUCING EXPERIMENTS AND FIGURES

In this section, we present training and optimization details needed to reproduce our empirical
validation of Theorem We also published notebooks and check-pointed weights for two crucial
experiments that investigate the result in the small and massive scale regimes, for Figureand GPT-2
(ANONYMIZED).

A.1 Ficure[]

We provide a Jupyter notebook and model checkpoints for reproducing Figure[T] Please refer to this
for hyperparameter settings. In short, we implemented a model (Mnih and Teh}|2012) in the family
of Sectionand trained it on the Billion Word dataset (Chelba et al.||2013). This is illustrative of the
property of Theorem because the relatively modest size of the parameter space (see notebook) and
massive dataset minimizes model convergence and data availability restrictions, e.g., approaches the
asymptotic regime.

The word embedding space is 2-D for ease of visualization. We selected a subset of words, mapped
them into their learned embeddings, and visualized them as points in the left and middle panes.
We then regress pane one onto pane two in order to learn the best linear transformation between
them. Note that if the two are linear transformations of each other, regression will recover that
transformation exactly.

A.2 SIMULATION STUDY: CLASSIFICATION BY DNNS

Remaining training details are as follows.

Because our theory requires that the data generating process be expressible by the true generative
model, we simulate this by training a 4 hidden layer MLP with two 2° unit layers, and a 2-dimensional
“bottle neck" layer. We optimize weights using Adam with a learning rate of 10~# for 5% 10* iterations.

To make the classification problem more challenging, we additionally add 20 input dimensions of
random noise. The Adam optimizer with a learning rate of 3 - 10~% is used.

A.3 SELF-SUPERVISED LEARNING FOR IMAGE CLASSIFICATION

To compute linear similarity between representations, we train two independent models in parallel.
For each model we define both fs and gg as a 3-layer fully connected neural network with 2% units
per layer and a fixed output dimensionality of 26. We define our model following Eq. |1| where
S is the set of the other image patches from the current minibatch and optimize the objective of
(Hénaff et al.}[2019). We augment both sampled patches independently with randomized brightness,
saturation, hue, and contrast adjustments, following the recipe of (Hénaff et al.||[2019). We train on
the CIFAR10 dataset (Krizhevsky et al., 2009) with batchsize 28, using the Adam optimizer with a
learning rate of 10~* and the JAX (Bradbury et al.|[2018) software package. For each model, we
early stop based on a validation loss failing to improve further.

Additional details about the experiments that generated Figure

Figurea. Patches are sampled randomly from training images.

Figureb. For each model, we train for at most 3 * 10* iterations, early stopping when necessary
based on validation loss.

Figurec. For each model, we train for at most 3 * 10* iterations, early stopping when necessary
based on validation loss.

Figured. Error bars show standard error computed over 5 pairs of models after 1.5 * 10* training
iterations.
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A.4 GPT-2

We include all details through a notebook in the code release. Pretrained GPT-2 weights as specified
in the main text are publicly available from HuggingFace Wolf et al.|(2019).

B PROOF THAT LINEAR SIMILARITY IS AN EQUIVALENCE RELATION

We claim that ~ is an equivalence relation. It suffices to show that it is reflexive, transitive, and
symmetric.

Proof. Consider some function gg and some @', 8*,07 C ©. Suppose 8’ ~ 6*. Then, there exists
an invertible matrix B such that gg:(x) = Bgg- (x). Since gg« (x) = B~ 'gg/ (x), ~ is symmetric.
Reflexivity follows from setting gg+ to gg- and B to the identity matrix. To show transitivity, suppose
also that 8* ~ @7. Then, there exists an invertible C such that gg« (x) = Cggi(x). Since gg/ ~ gor,
B~ 'ge (x) = Cgg+ (x). Rearranging terms, gg (x) = BCgg+ (x), so that 8’ ~ 07 as required.

O

C SECTION[3.2]CONTINUED: CASE OF CONTEXT REPRESENTATION
FUNCTION g

Our derivation of identifiability of gg is similar to the derivation of fg. The primary difference is that
the normalizing constants in Equation (6) do not cancel out. First, note that we can rewrite Equation[T]
as:

po(y[x,8) = exp(fo(x,S) "o (y)) ©)
where:
fo(x,S) = [~Z(x,S); fo(x)] (10)
go(y) = [Liga(y)] (11)
Z(x,8) = log Z exp(fo(x) " go(y)). (12)
y'eS

Below, we will show that for the model family defined in Section
per =pe- = go'(y) = Bgoe-(y), (13)

where B is an invertible (M x M )-dimensional matrix, concluding the proof of the linear identifiability
of models in the family defined by Equation We adopt the same shorthands as in the main text.

C.1 DIVERSITY CONDITION

We assume that for any (6’,6*) C © for which it holds that p’ = p*, and for any given y, there exist
M +1 tuples {(x, S)IM such that pp (x,y, S(H) > 0, and such that the ((M +1) x (M +1))
matrices M’ and M* are invertible, where M’ consists of columns £/ (x(9), §()), and M* consists of
columns £* (x| 8(®).

This is similar to the diversity condition of Section[3.2]but milder, since a typical dataset will have
multiple x for each y.

C.2 PROOF
With the data distribution pp (x,y, S), for a given y, there exists a conditional distribution pp (x, S|y).

Let (x, S) be a sample from this distribution. From equation and the statement to prove, it follows
that:

P'(yx,8) = p*(y|x,8) (14)
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Substituting in the definition of our model from equation (9), we find:

exp(f'(x,8) '€/ (v)) = exp(*(x,5) 8" (¥)), (15)
which, evaluating logarithms, becomes
F(x,9) g (y) =1(x9) g ), (16)

which is true for any triple (x,y, S) where pp(y|x,S) > 0.
From M’ and M* (Section and equation we form a linear system of equations, collecting the
M + 1 relationships together:
M g(y) = Mg () (17)
g(y) =Ag"(y), (18)
where A = (M*M'~1) T an invertible (M + 1) x (M + 1) matrix.

It remains to show the existence of an invertible M x M matrix B such that
g'(y) =Bg"(y). (19)

We proceed by constructing B from A. Since A is invertible, there exist j elementary matrices
{E1,...,E;} such that their action R = E;E;_; ... E; converts A to a (non-unique) row echelon
form. Without loss of generality, we build R such that the a; ; entry of A is the first pivot, leading to
the particular row echelon form:

a1 G2 @13 ... (1mx1
0 az2 a3 ...  G2mx1
RA-| O 0 asz ... G2mx1 : (20)
0 0 - 0  amxi,mx1

where @, ; indicates that the corresponding entry in RA may differ from A due to the action of R.
Applying R to Equation , we have

Rg'(y) = RAg"(y). (1)

We now show that removing the first row and column of RA and R generates matrices of rank M.
Let RA and R denote the (M x M) submatrices formed by removing the first row and column of
R A and R respectively.

Equation shows that RA has a pivot in each column, and thus has rank M. To show
that R is invertible, we must show that removing the first row and column reduces the rank of
R = E;E;_; ... E; by exactly 1. Clearly, each Ej, is invertible, and their composition is invertible.
We must show the same for the composition of Ey.

There are three cases to consider, corresponding to the three unique types of elementary matrices.
Each elementary matrix acts on A by either (1) swapping rows ¢ and j, (2) replacing row j by a
multiple m of itself, or (3) adding a multiple m of row 7 to row j. We denote elementary matrix types
by superscripts.

In Case (1), E} is an identity matrix with row i and row j swapped. For Case (2), E? is an identity
matrix with the j, j*" entry replaced by some m. For each E} and E? in R, where 1 < k,1 < j, we
know that the indices ¢, j > 2, because we chose the first entry of the first row of A to be the pivot,
and hence do not swap the first row, or replace the first row by itself multiplied by a constant. This
implies that removing the first row and column of E} and E? removes a pivot entry 1 in the (1, 1)

position, and removes zeros elsewhere. Hence, the (M x M) submatrices Ei}€ and E12 are elementary
matrices with rank M.

For Case (3), E‘é has some value m € R in the j, ith entry, and 1s along the diagonal. In this case,
we may find a non-zero entry in some E3 , so that, e.g., the second row has a pivot at position (2, 2).
Without loss of generality, suppose ¢ = 1, j = 2 and let m be some nonzero constant. Removing the
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first row and column of Eif removes this m also. Nevertheless, E? = Iy, the rank M identity matrix.
For any other Ei 1<i< M+1,5 > 2because we chose a1 as the first pivot, and hence do not
swap the first row, or replace the first row by itself multiplied by a constant. In both cases, removing

the first row and first column creates an E7i that is a rank M elementary matrix.

We have shown by the above that R is a composition of rank M matrices. We now construct the
matrix B by removing the first entries of g’ and g*, and removing the first row and first column of R
and RA in Equation (equation. Then, we have

Rg'(y) = RAg*(y), (22)
g'(y) =R 'RAg"(y). (23)

Choosing B = R~ ' RA proves the result.
O

D REDUCTIONS TO CANONICAL FORM OF EQUATION

In the following, we show membership in the model family of Equation using the mathematical
notation of the papers under discussion in Section Note that each subsection will change notation to
match the papers under discussion, which varies quite widely. We employ the following colour-coding
scheme to aid in clarity:

log pe(y|x, S) =fo(x) "g8o(y) — > exp(fa(x) " ga(¥)).
y'€S

where fg(x) is generalized to a |datarepresentation function, gg(y) is generalized to a
context representation function, and Zy, cs exp(fo (x) "go(y’)) is some(constant,

D.1 CPC

Formally, consider a sequence of points x;. We wish to learn the parameters ¢ to maximize the
k-step ahead predictive distribution p(x¢.|Xt, ¢). In the image patch example, each patch center i, j
is indexed by ¢. Each x; is mapped to a sequence of feature vectors z; = fy(x;) An autoregressive
model, already updated with the previous latent representations z<;—1, transforms the z; into a
“context" latent representation ¢, = gar(z<;). Instead of predicting future observations & steps
ahead, x;, directly through a generative model py,(x;4x|c;),|Oord et al.|(2018) model a density
ratio in order to preserve the mutual information between x; and c;.

Objective Let X = {x1,...,xx} be a set of N random samples containing one positive sample
from p(x¢4x|c:) and N — 1 samples from the proposal distribution p(xy ). /Oord et al.|(2018) define

the following link function: Iy (x4, Ct) £ exp (th i kact). Then, CPC optimizes

Iy : exp (zerr | Wie
—Ex |log k(Xetk, C1) — _Ex XPp (241 _ KCt)
D asex (xj,ct) > ox;ex €XP (zj Wic)
Substituting in the definition of [; makes equation identical to the model family (Equation.

log 24)

D.2 AUTOREGRESSIVE LANGUAGE MODELS (E.G. GPT-2)

Let U = {uq,...,u,} be a corpus of tokens. Autoregressive language models maximize a log-
likelihood L(U) = >, log P(u;|u;—k, - . ., u;—1; ©), Concretely, the conditional density is mod-
elled as

log P(u;|u;—:i—1;0)

=W, h; — logy_ exp(W;.h;).
J
where h; is the m x 1 output of a function approximator (e.g. a Transformer decoder (Liu et al.;
2018)), and W, is the ’th row of the |[I/| X m token embedding matrix.
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D.3 BERT

Consider a sequence of text x = [z1,...,27|. Some proportion of the symbols in x are extracted
into a vector X, and then set in x to a special null symbol, “corrupting” the original sequence. This
operation generates the corrupted sequence x. The representational learning task is to predict x
conditioned on x, that is, to maximize w.r.t. 9:

T

log po(X|x) ~ th log pg(z¢|x) = me (Hg x); ' e(wy) — logZexp (Hg()_();re(g;’)) )’
t=1 !

where H is a transformer, e is a lookup table, and m; = 1 if symbol x; is masked. That is, corrupted

symbols are “reconstructed” by the model, meaning that their index is predicted. As noted in|Yang

et al.[(2019), BERT models the joint conditional probability p(X|x) as factorized so that each masked

token is separately reconstructed. This means that the log likelihood is approximate instead of exact.

D.4 QUICKTHOUGHT VECTORS

Let f and g be functions that take a sentence as input and encode it into an fixed length vector. Let
s be a given sentence, and S.¢;; be the set of sentences appearing in the context of s for a fixed
context size. Let S.4,,q be the set of candidate sentences considered for a given context sentence
Sctat € Setat- Then, Scqnq contains a valid context sentence S¢¢,¢ as well as many other non-context
sentences. S¢qnq is used for the classification objective. For any given sentence position in the context
of s (for example, the preceding sentence), the probability that a candidate sentence S¢qng € Scand 1S
the correct sentence for that position is given by

log p(8candl$, Scand) = f9(5)T90(Scand)) — log Z €xXp (fO(S)TQG(SIcand)) .
S,escand

D.5 DEEP METRIC LEARNING

The multi-class N-pair loss in|Sohn|(2016) is proportional to

N

log N — % > log | 14 exp{fa(xi) "fo(y;) — folx:) "fa(yi)} | .
i=1 i

which can be simplified as

£ exp{fo(ai) foly;) — fol:) Tfo(y:)}

exp{fo (i) "o (i)} ) |
£ 3% exp{fo(x:) Tfoly;)}

Setting N to 1 and evaluating the log gives

|
2|~
E

v 1 )
<

K

£o (i) folyi) — ZeXp (fo(x:) " fo(yy))-
] 1

which is Equation Where fo = go.

D.6 NEURAL PROBABILISTIC LANGUAGE MODELS (NPLMS)

Figure|1|shows results from a neural probabilistic language model as proposed in|Mnih and Teh
(2012). Mnih and Teh|(2012) propose using a log-bilinear model (Mnih and Hinton,|2009) which,
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given some context h, learns a context word vectors r,, and target word vectors q,,. Two different
embedding matrices are maintained, in other words: one to capture the embedding of the word
and the other the context. The representation for the context vector, ¢, is then computed as the
linear combination of the context words and a context weight matrix C; so that ¢ = Z?;ll CiTw,
The score for the match between the context and the next word is computed as a dot product, e.g.,
sop(w,h) =4" (jand substituting into the definition of P}'(w), we see that

log P (w) =" Guw — log Z exp (4" Gu)
wl

shows thatMnih and Teh|(2012) is a member of the model family.

Interestingly, a touchstone work in the area of NPLMs, Word2Vec (Mikolov et al.;[2013), does not
fall under the model family due to an additional nonlinearity applied to the score of|Mnih and Teh
(2012).

"'We have absorbed the per-token baseline offset b into the g, defined in|Mnih and Teh|(2012), forming the
vector ¢, whose 4’th entry is (quw )i = (qw)i + bw/(§)s
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