Object Agnostic 3D Lifting in Space and Time

Supplementary Material

A. Extra training details

We train our model with the Adam [17] optimizer using Ir =
1074, weight decay of 1075, 81 = 0.9, and B2 = 0.999. We
set the velocity loss term A = 5000. We train for a total of
1000 epochs and use the model with the lowest validation
error out of all epochs.

B. Dataset details
B.1. Statistics

An overview of our dataset can be seen in Tab. 7. We show-
case the number of joints, animations, and frames for each
animal category. Our dataset contains a variety of different
categories and rigs to facilitate class-agnostic training and
evaluation.

B.2. Examples

We provide an additional dataset_examples.mp4 video in
the supplementary zip file for viewing the 3D skeletons for
some animals.

C. Additional results
C.1. Examples

We provide an additional prediction_examples.mp4 video
in the supplementary zip file for viewing some predictions
over a series of video sequences. We provide a side-by-side
comparison between our approach and 3D-LFM. We also
provide examples of out-of-distribution predictions. We be-
lieve that these videos provide a more comprehensive com-
parison than that which can be obtained with 2D images.

C.2. Ablating 2D noise

Alongside Tab. 1 in the main paper, we provide additional
experiments on our dataset where we do not apply synthetic
noise to the 2D inputs. Tab. 8 shows that the improvements
provided by our approach over existing methods is not re-
stricted to situations with noisy 2D poses.

C.3. Human3.6M benchmark

We provide comparisons on the Human3.6M [13] bench-
mark containing 3.6 million video frames of real humans
performing simple tasks in a controlled indoor environ-
ment. Following previous lifting works [2, 36], we train
on subjects 1, 5, 6, 7, and 8, and hold out subjects 9 and
11 for testing. We use the noisy 2D skeletons provided
by [36] that were obtained using Stacked Hourglass Net-
works [24]. Every fifth frame is used for all experiments

with no significant degradation in performance. We addi-
tionally compare with the original MotionBERT [36], de-
noted with t in Tab. 11, that uses human-specific augmen-
tation during training and human-specific semantic corre-
spondences. We find that, when there is an abundance of
data for a single object, leveraging object-specific informa-
tion is preferred to class-agnostic training. Tab. 11 further
demonstrates the benefit of our approach over the current
SOTA class-agnostic method [8]. We outperform 3D-LFM
on each metric, translating to improved 3D object structure
and motion consistency across entire sequences. The class-
agnostic MotionBERT outperforms both our approach and
3D-LFM, likely due to the having twice as many parame-
ters and an architecture that was specifically designed for
large-scale human data.

C.4. Per-animal multi-category

Here we provide the per-animal results that correspond to
Tab. 2 in the main paper. Tab. 12 demonstrates the useful-
ness of training with all categories at once instead of spe-
cializing to a single category. We find that this holds true
for our model across all animal categories. The same is
seen for MotionBERT and 3D-LFM with exception of the
chicken category, where it is sometimes slightly better to do
chicken-only training.

C.5. Out-of-distribution categories and rigs

Here we provide tabulated results for our out-of-distribution
(OOD) experiments found in Sec. 4.2 in the main paper. We
show in Tabs. 9 and 10 that our model does indeed maintain
superior OOD performance across all metrics compared to
existing methods. In the case of unseen number of joints
(Tab. 10), we cannot evaluate MotionBERT as it is unable
to handle a number of joints that is more than the maximum
seen during training.

C.6. Extreme occlusion

We provide a visual comparison between our approach and
3D-LFM when there is an extreme (60%) occlusion of the
object. Fig. 7 demonstrates the robustness of our approach
in this scenario. While 3D-LFM fails to properly recon-
struct the 3D object structure (Fig. 7a) for even a single
frame, our method is capable of maintaining high-fidelity
reconstruction (Fig. 7b). We show FA-MPJPE results for
intermediate occlusion levels in Fig. 8.



Bear Buck Bunny Chicken Deer Dog Elk Fox Moose Puma Rabbit Raccoon Tiger | Total
Animations | 67 42 45 7 56 65 67 37 59 68 45 54 66 678
Frames 4,464 3,168 3,072 432 3,648 4,128 5,328 2,304 3,792 5,808 3,072 4,176 4,992 | 48,384
Joints 21 27 25 19 29 22 26 26 29 26 25 28 27 330

Table 7. An overview of our synthetic dataset. We measure the total number of animation sequences and frames for each animal. We
also provide the number of joints that constitute each animal.

Method Bear Buck Bunny Chicken Deer Dog Elk Fox Moose Puma Rabbit Raccoon Tiger Avg
MotionBERT | 94.9 216.1 17.7 110.7 1984 49.1 233.1 38.0 161.8 2574 28.1 83.1  220.8 1315
3D-LFM 49.8 1512 238 106.7 151.3 53.6 149.8 21.5 277.0 1574 404 62.3 162.9 108.0
Ours 28.7 1254 158 80.4 594 31.6 1224 13.7 982 937 17.6 454 93.1 635
MotionBERT | 90.9 205.3 17.0 98.6 1899 457 211.7 36.4 1433 2375 263 80.7 2109 122.6
3D-LFM 31.3 1004 127 97.6 674 338 1044 153 1135 1143 264 49.6 107.1 67.1
Ours 26.3 1089 10.6 70.5 528 262 986 118 78.6 87.6 151 43.9 81.6 54.8
MotionBERT | 2.6 9.1 0.9 3.9 71 20 94 12 130 9.1 1.8 3.4 85 55

3D-LFM 53 185 23 5.7 141 52 138 23 323 170 438 6.6 189 11.6
Ours 22 101 1.2 42 50 25 108 1.0 126 7.8 1.7 3.1 8.7 54

Table 8. Quantitative comparison when no artificial noise is applied to the 2D keypoints. We report, in millimeters, the Sequence-
Aligned MPJPE (top), Frame-Aligned MPJPE (middle), and Sequence-Aligned MPVE (bottom). Our approach (Ours) consistently out-

performs existing methods across all metrics.

Method FA-MPJPE| SA-MPJPE| SA-MPVE |
MotionBERT 132.0 142.5 6.8
3D-LFM 112.0 143.4 21.9
Ours 75.7 86.4 6.4

Table 9. OOD generalization on unseen data. We perform a
13-fold evaluation to assess each method’s ability to handle un-
seen animal categories. Our approach demonstrates superior pro-
ficiency in handling OOD 2D-3D lifting.

Method | FA-MPJPE| SA-MPJPE| SA-MPVE|
3D-LFM 234.4 321.7 49.0
Ours 143.0 172.9 14.5

Table 10. OOD generalization on unseen category and rig.
Models are trained on rigs with 28 or less joints and evaluated
on unseen deer and moose categories with 29 joints.
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Figure 7. A comparison of robustness in an extreme case of
60% occlusion. We showcase the predictions for a bear at 2
different views. Ground truth is orange, prediction is blue.



== 3D-LFM = OURS

200 A

150 4

100 4

FA-MPJPE (mm)

o
o
L

0 T T T

0 10 20 30

50

Object Occlusion (%)

80 90

Figure 8. A comparison of robustness at increasing levels of
object occlusion. Our approach maintains high-fidelity 3D recon-

struction, even at extreme levels of occlusion.

Method ‘ FA-MPIJPE| SA-MPIJPE| SA-MPVE]
MotionBERTY 34.8 37.2 8.8
MotionBERT 39.3 41.8 9.1
3D-LFM 48.4 63.2 29.8
Ours 42.9 49.0 11.1

Table 11. Results on the Human3.6M benchmark.
MotionBERTY} is the original human-specific model.  Mo-
tionBERT has twice as many parameters and is designed for
large-scale human data, while we are designed for small-scale

multi-object data.



Method ‘MC‘ Bear Buck Bunny Chicken Deer Dog Elk Fox Moose Puma Rabbit Raccoon Tiger Avg

MotionBERT | - | 1421 3155 364 1100 2975 1080 293.1 709 381.6 2881 942 1075 3537 1999
v | 945 2081 167 1082 2007 50 267.4 40.6 1892 2544 307 774 2118 134.6

ADLEM - | 581 1833 241 1013 1922 637 1689 252 3166 187.8 43.1 791 1993 1264
v | 476 1582 232 923 1568 539 147.8 222 2747 1634 378 700 1654 108.7

Our - | 704 2059 227 944 1522 78.8 193.0 387 2715 1580 470  67.6 269.0 1284
urs 292 1284 171 608 573 328 103.1 142 979 932 190 445 908 60.6
MotionBERT | - | 1275 2850 306 964 2644 909 2630 638 3059 2584 936 984 3096 1760
ouon v 1907 1981 160 990 1955 458 2468 399 1709 2350 28.6 749 2032 126.5
ADLEM - 1389 1383 137 899 1153 457 1239 21.0 1779 1525 270 673 1484 892
v | 279 1083 122 863 750 333 103.0 162 1197 1193 212 576 1077 68.3

Our - | 631 1685 169 850 130.1 56.1 1583 35.1 202.1 1425 348 600 2172 1054
urs 267 1073 112 542 509 279 861 124 81.6 859 154 428 798 525
_ - | 50 169 22 34 126 53 127 23 269 126 48 57 168 98
MotionBERT | 1 35 130 11 39 69 26 104 13 178 98 2.1 4.0 98 65
ADLEM - | 113 373 40 36 309 103 297 48 514 297 7.1 132 326 205
- v | 76 290 34 84 263 84 265 38 434 273 67 123 304 180
o | 64 193 24 43 134 7.1 147 22 282 132 54 590 204 11.0
urs vl 25 121 13 3.4 59 29 93 12 125 89 20 3.6 91 57

Table 12. Per-animal comparison of multi-category and single-category training. We use a v for models trained with multiple cat-
egories (MC). We report, in millimeters, the Sequence-Aligned MPJPE (top), Frame-Aligned MPJPE (middle), and Sequence-Aligned
MPVE (bottom). Top, middle, and bottom are separated by dual horizontal lines.



	. Introduction
	. Related Works
	. 3D Pose Estimation
	. Object-Specific Lifting
	. Object-Agnostic Lifting
	. Animal Datasets
	. Method
	. Dataset
	Animal joints
	Non-linear optimisation
	Perspective projection

	. Lifting model
	Keypoint features
	Motion encoder
	Space encoder
	Decoder and Procrustes-based loss
	Loss function

	. Experiments
	. Object-agnostic lifting
	. OOD generalization
	. Ablations

	. Conclusion
	. Acknowledgements
	. Extra training details
	. Dataset details
	. Statistics
	. Examples
	. Additional results
	. Examples
	. Ablating 2D noise
	. Human3.6M benchmark
	. Per-animal multi-category
	. Out-of-distribution categories and rigs
	. Extreme occlusion







