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A. Extra training details
We train our model with the Adam [17] optimizer using lr =
10→4, weight decay of 10→6, ω1 = 0.9, and ω2 = 0.999. We
set the velocity loss term ε = 5000. We train for a total of
1000 epochs and use the model with the lowest validation
error out of all epochs.

B. Dataset details
B.1. Statistics
An overview of our dataset can be seen in Tab. 7. We show-
case the number of joints, animations, and frames for each
animal category. Our dataset contains a variety of different
categories and rigs to facilitate class-agnostic training and
evaluation.

B.2. Examples
We provide an additional dataset examples.mp4 video in
the supplementary zip file for viewing the 3D skeletons for
some animals.

C. Additional results
C.1. Examples
We provide an additional prediction examples.mp4 video
in the supplementary zip file for viewing some predictions
over a series of video sequences. We provide a side-by-side
comparison between our approach and 3D-LFM. We also
provide examples of out-of-distribution predictions. We be-
lieve that these videos provide a more comprehensive com-
parison than that which can be obtained with 2D images.

C.2. Ablating 2D noise
Alongside Tab. 1 in the main paper, we provide additional
experiments on our dataset where we do not apply synthetic
noise to the 2D inputs. Tab. 8 shows that the improvements
provided by our approach over existing methods is not re-
stricted to situations with noisy 2D poses.

C.3. Human3.6M benchmark
We provide comparisons on the Human3.6M [13] bench-
mark containing 3.6 million video frames of real humans
performing simple tasks in a controlled indoor environ-
ment. Following previous lifting works [2, 36], we train
on subjects 1, 5, 6, 7, and 8, and hold out subjects 9 and
11 for testing. We use the noisy 2D skeletons provided
by [36] that were obtained using Stacked Hourglass Net-
works [24]. Every fifth frame is used for all experiments

with no significant degradation in performance. We addi-
tionally compare with the original MotionBERT [36], de-
noted with † in Tab. 11, that uses human-specific augmen-
tation during training and human-specific semantic corre-
spondences. We find that, when there is an abundance of
data for a single object, leveraging object-specific informa-
tion is preferred to class-agnostic training. Tab. 11 further
demonstrates the benefit of our approach over the current
SOTA class-agnostic method [8]. We outperform 3D-LFM
on each metric, translating to improved 3D object structure
and motion consistency across entire sequences. The class-
agnostic MotionBERT outperforms both our approach and
3D-LFM, likely due to the having twice as many parame-
ters and an architecture that was specifically designed for
large-scale human data.

C.4. Per-animal multi-category
Here we provide the per-animal results that correspond to
Tab. 2 in the main paper. Tab. 12 demonstrates the useful-
ness of training with all categories at once instead of spe-
cializing to a single category. We find that this holds true
for our model across all animal categories. The same is
seen for MotionBERT and 3D-LFM with exception of the
chicken category, where it is sometimes slightly better to do
chicken-only training.

C.5. Out-of-distribution categories and rigs
Here we provide tabulated results for our out-of-distribution
(OOD) experiments found in Sec. 4.2 in the main paper. We
show in Tabs. 9 and 10 that our model does indeed maintain
superior OOD performance across all metrics compared to
existing methods. In the case of unseen number of joints
(Tab. 10), we cannot evaluate MotionBERT as it is unable
to handle a number of joints that is more than the maximum
seen during training.

C.6. Extreme occlusion
We provide a visual comparison between our approach and
3D-LFM when there is an extreme (60%) occlusion of the
object. Fig. 7 demonstrates the robustness of our approach
in this scenario. While 3D-LFM fails to properly recon-
struct the 3D object structure (Fig. 7a) for even a single
frame, our method is capable of maintaining high-fidelity
reconstruction (Fig. 7b). We show FA-MPJPE results for
intermediate occlusion levels in Fig. 8.



Bear Buck Bunny Chicken Deer Dog Elk Fox Moose Puma Rabbit Raccoon Tiger Total

Animations 67 42 45 7 56 65 67 37 59 68 45 54 66 678
Frames 4,464 3,168 3,072 432 3,648 4,128 5,328 2,304 3,792 5,808 3,072 4,176 4,992 48,384
Joints 21 27 25 19 29 22 26 26 29 26 25 28 27 330

Table 7. An overview of our synthetic dataset. We measure the total number of animation sequences and frames for each animal. We
also provide the number of joints that constitute each animal.

Method Bear Buck Bunny Chicken Deer Dog Elk Fox Moose Puma Rabbit Raccoon Tiger Avg

MotionBERT 94.9 216.1 17.7 110.7 198.4 49.1 233.1 38.0 161.8 257.4 28.1 83.1 220.8 131.5
3D-LFM 49.8 151.2 23.8 106.7 151.3 53.6 149.8 21.5 277.0 157.4 40.4 62.3 162.9 108.0
Ours 28.7 125.4 15.8 80.4 59.4 31.6 122.4 13.7 98.2 93.7 17.6 45.4 93.1 63.5

MotionBERT 90.9 205.3 17.0 98.6 189.9 45.7 211.7 36.4 143.3 237.5 26.3 80.7 210.9 122.6
3D-LFM 31.3 100.4 12.7 97.6 67.4 33.8 104.4 15.3 113.5 114.3 26.4 49.6 107.1 67.1
Ours 26.3 108.9 10.6 70.5 52.8 26.2 98.6 11.8 78.6 87.6 15.1 43.9 81.6 54.8

MotionBERT 2.6 9.1 0.9 3.9 7.1 2.0 9.4 1.2 13.0 9.1 1.8 3.4 8.5 5.5
3D-LFM 5.3 18.5 2.3 5.7 14.1 5.2 13.8 2.3 32.3 17.0 4.8 6.6 18.9 11.6
Ours 2.2 10.1 1.2 4.2 5.0 2.5 10.8 1.0 12.6 7.8 1.7 3.1 8.7 5.4

Table 8. Quantitative comparison when no artificial noise is applied to the 2D keypoints. We report, in millimeters, the Sequence-
Aligned MPJPE (top), Frame-Aligned MPJPE (middle), and Sequence-Aligned MPVE (bottom). Our approach (Ours) consistently out-
performs existing methods across all metrics.

Method FA-MPJPE → SA-MPJPE → SA-MPVE →

MotionBERT 132.0 142.5 6.8
3D-LFM 112.0 143.4 21.9
Ours 75.7 86.4 6.4

Table 9. OOD generalization on unseen data. We perform a
13-fold evaluation to assess each method’s ability to handle un-
seen animal categories. Our approach demonstrates superior pro-
ficiency in handling OOD 2D-3D lifting.

Method FA-MPJPE→ SA-MPJPE→ SA-MPVE→

3D-LFM 234.4 321.7 49.0
Ours 143.0 172.9 14.5

Table 10. OOD generalization on unseen category and rig.
Models are trained on rigs with 28 or less joints and evaluated
on unseen deer and moose categories with 29 joints.

(a) 3D-LFM (b) Ours

Figure 7. A comparison of robustness in an extreme case of
60% occlusion. We showcase the predictions for a bear at 2
different views. Ground truth is orange, prediction is blue.
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Figure 8. A comparison of robustness at increasing levels of
object occlusion. Our approach maintains high-fidelity 3D recon-
struction, even at extreme levels of occlusion.

Method FA-MPJPE→ SA-MPJPE→ SA-MPVE→

MotionBERT† 34.8 37.2 8.8
MotionBERT 39.3 41.8 9.1
3D-LFM 48.4 63.2 29.8
Ours 42.9 49.0 11.1

Table 11. Results on the Human3.6M benchmark.
MotionBERT† is the original human-specific model. Mo-
tionBERT has twice as many parameters and is designed for
large-scale human data, while we are designed for small-scale
multi-object data.



Method MC Bear Buck Bunny Chicken Deer Dog Elk Fox Moose Puma Rabbit Raccoon Tiger Avg

MotionBERT - 142.1 315.5 36.4 110.0 297.5 108.0 293.1 70.9 381.6 288.1 94.2 107.5 353.7 199.9
↭ 94.5 208.1 16.7 108.2 200.7 50.1 267.4 40.6 189.2 254.4 30.7 77.4 211.8 134.6

3D-LFM - 58.1 183.3 24.1 101.3 192.2 63.7 168.9 25.2 316.6 187.8 43.1 79.1 199.3 126.4
↭ 47.6 158.2 23.2 92.3 156.8 53.9 147.8 22.2 274.7 163.4 37.8 70.0 165.4 108.7

Ours - 70.4 205.9 22.7 94.4 152.2 78.8 193.0 38.7 271.5 158.0 47.0 67.6 269.0 128.4
↭ 29.2 128.4 17.1 60.8 57.3 32.8 103.1 14.2 97.9 93.2 19.0 44.5 90.8 60.6

MotionBERT - 127.5 285.0 30.6 96.4 264.4 90.9 263.0 63.8 305.9 258.4 93.6 98.4 309.6 176.0
↭ 90.7 198.1 16.0 99.0 195.5 45.8 246.8 39.9 170.9 235.0 28.6 74.9 203.2 126.5

3D-LFM - 38.9 138.3 13.7 89.9 115.3 45.7 123.9 21.0 177.9 152.5 27.0 67.3 148.4 89.2
↭ 27.9 108.3 12.2 86.3 75.0 33.3 103.0 16.2 119.7 119.3 21.2 57.6 107.7 68.3

Ours - 63.1 168.5 16.9 85.0 130.1 56.1 158.3 35.1 202.1 142.5 34.8 60.0 217.2 105.4
↭ 26.7 107.3 11.2 54.2 50.9 27.9 86.1 12.4 81.6 85.9 15.4 42.8 79.8 52.5

MotionBERT - 5.0 16.9 2.2 3.4 12.6 5.3 12.7 2.3 26.9 12.6 4.8 5.7 16.8 9.8
↭ 3.2 11.0 1.1 3.9 6.9 2.6 10.4 1.3 17.8 9.8 2.1 4.0 9.8 6.5

3D-LFM - 11.3 37.3 4.0 3.6 30.9 10.3 29.7 4.8 51.4 29.7 7.1 13.2 32.6 20.5
↭ 7.6 29.0 3.4 8.4 26.3 8.4 26.5 3.8 43.4 27.3 6.7 12.3 30.4 18.0

Ours - 6.4 19.3 2.4 4.3 13.4 7.1 14.7 2.2 28.2 13.2 5.4 5.9 20.4 11.0
↭ 2.5 12.1 1.3 3.4 5.9 2.9 9.3 1.2 12.5 8.9 2.0 3.6 9.1 5.7

Table 12. Per-animal comparison of multi-category and single-category training. We use a ↭for models trained with multiple cat-
egories (MC). We report, in millimeters, the Sequence-Aligned MPJPE (top), Frame-Aligned MPJPE (middle), and Sequence-Aligned
MPVE (bottom). Top, middle, and bottom are separated by dual horizontal lines.
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