Supplementary Material: Continuously-Tempered
PDMP samplers

1 Proof of Theorem 1

The measure ¢(x, 3)p(3)dxdS has a density on the open set R? x [0, 1). We will sample it using the
Zig-Zag process on the extended space Ey = (R% x [0,1)) x {—1,1}4F1, On the other hand, the
measure dg—1¢(x)dx is essentially a density on R?. We will sample it using Zig-Zag on the extended
space F' = R? x {—1,1}4.

Following the construction of |Chevallier et al.|[2021},[2020], we "stitch" £y and F' together through an
active boundary. Let B'" be the "entrance” boundary at the temperature 3 = 1: B™ = (R% x {1}) x
({=1,1} x {—1}), and let B°“ be the "exit" boundary B°% = (R? x {1}) x ({—1,1}% x {1}).

The process Z; is as follows: when in Ey, should it hit the boundary B°“ attime ¢, i.e. Z,- € B°"!,
it jumps to I at time £: Z; € F'. Note that the process Z; never enters B°“t, When in F, the process
jumps back to the entrance boundary B*™ with rate 7(z). The state space is:

E=E,UB™UF.

More precisely, if Z,- € B°“, then Z; = g(Z,-) with g being the projection that removes the
temperature coordinate and velocity:

g: B - I
(z,1,v,1) — (x,v).
Conversely, if the process jumps from F' to B at time ¢ then Z; = f(Z,-) with
f:F— B™
(.’13, U) = (mv 1a v, 71)

With this construction, we use Theorem 2 of |(Chevallier et al.|[2021]] and follow the proof of Theorem
3 of (Chevallier et al.|[2021]] for our setting to show that w will be invariant for the process if

@ Ds(17)1—a k17)1-a
n(x) = @) 20~ R 20

Intuitively, this result is obtained by choosing an 7 that balances the flows Ey U B — F and F —
Eo U B™. Starting from the target distribution, the amount of mass that flows through a point z =
(w,1,v,1) € B°*" to (x,v) € F during a time interval of length dt is 57rrq(x, 1)x(17)(1 — a)dt.
Conversely, the amount of mass that flows through a point z = (x,v) € F to (x,1,v,—1) € Ey is
57q(x)k(1)an(x)dt. Hence, the previous choice of 7) balances the flows out.

Remark 1 (Extension to other PDMP samplers) Remark I from the main text states that tempered
version of any PDMP-based sampler can be constructed more generally by adding a tempering
variable [ with associated velocity +1 and Zig-Zag rate function (irrespective of the base PDMP).
When (3 hits 1, the process reduces to the PDMP sampler on 7 and is reintroduced with rate given by
that of Theorem 1.

Assuming that the base PDMP velocity space is V with associated probability py(v), we highlight
the changes needed for the proof of Theorem I below.

1. Change Ey to Ey = R? x [0,1) x V x {~1,1},
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2. Change the boundaries to B = R? x {1} x V x {—1} and B*** = R4 x {1} x V x {1},

3. Prove that the assumption of Theorem 3 of \Chevallier et al.| [2021] is still valid for the
probability distribution q(x, 8)p(8)py (v)dxdpdv .

2 Continuously-tempered Zig-Zag rates

When sampling in Ej, the Zig-Zag process has a rate for each component of x,
i (2) = max(0, —v? 0y, logq(z, B)) j=1,...,d, ()
and an additional rate for the inverse temperature [3,
As(2z) = max(0, —v? (95 log q(z, B) + 9 log ().
When sampling in F, there are d rates
i (2) = max(0, —v7 0, logq(x)) j=1,....d,

which correspond to those given in (I) since by definition ¢(x, 8 = 1) = ¢(x).

3 Simulation via thinning

The main practical challenge with simulating the Zig-Zag process, for example with Algorithm 1,
is simulating the event times. Whilst the event times depend on the state, as the state-dynamics
are deterministic until the next event, these can be re-expressed as rates that depend only on time.
To see this consider the ith event, and assume that we are at time ¢ and the current state is z;.
Until there is the next event (which could be any of the d possible events), the state will evolve as
Zt+s = (@ + svy, vy), thus the rate until the next event of type ¢ will be

Ai(8) = Ai(zers) = max(0, 08, U(x, + svp)).

Simulating a Zig-Zag process thus requires simulating events of an inhomogeneous Poisson processes

of rates A;(t). We sample a random variable « uniformly in [0, 1] and the next event time is the time
t such that:

/o Ai(s)ds = —log(u). 2

In practice, solving this equation analytically is only possible for a restricted class of rate A, such as
rates that are piecewise constant or piecewise linear functions of time. Where we can not simulate
event times directly, we can use an approach called thinning.

We find an upper rate \; (s) such that \;(s) < A (s) for all s, and such that we can simulate events
at rate )\;r directly. We then propose events at this larger rate, and accept each proposed event with
probability \;(s)/A] (s).

The thinning method requires computing an upper bound ;. The computational efficiency of the
resulting algorithm for simulating the Zig-Zag process is directly related to the quality (tightness) of
the upper bound: a loose upper bound will lead to many rejections and therefore wasted simulation
effort. We note that one useful approach for constructing appropriate upper bounds in Lemma 1
below. This approach has been used many times [Bierkens et al.| 2020} 2021} Bouchard-Coté et al.,
2018l |Chevallier et al.,|2020] to construct thinning bounds and is repeated here for completeness —
further details may be found in the derivation from Section 3.3 of Bierkens et al.|[2019].

Lemma 1 Suppose there exists a matrix M = (Mij)g,jzl € R4 such that for every x € R? and
element of the Hessian H (x) = (—0,0; log q(:}:));{j:l, we have |H (x); ;| < M, ; then the following
linear bound

\i(s) = max(0, —v'0i log ¢(z + sv)) < max(0, a; + b;s)

where a; = —v'di log () and b; = 2?21 M.



Proof: The following in-time bound holds

d d
d , ) )
I [—’Ulawi log q(x + sv)] =" Z V7 Ogi Ogi log g(x + sv) < Z M;;
Jj=1 Jj=1
from which, max (0, —v'd,: log ¢(x + sv)) < max (O, —v'0yi logq(x) + s Z?Zl Mw) O

We note also that numerical approaches to simulating the event times have been proposed Pagani
et al.| [2020].

4 Thinning bounds for geometric tempering

If one can use Lemma 1 to simulate the Zig-Zag at inverse temperature 8 = 0 and 5 = 1, then
implementing thinning for the geometrically tempered target is trivial. This approach assumes
standard geometric tempering ¢(z, 8) = qo(x)'Pq(z)? and k(8) = exp(— Y4, ¥iB*) where
1, € R are constants chosen according to Section 3.4.

Suppose we have matrices M and M° which bound the Hessians of the target H () and base Ho(x)
distributions.

The rate function for the movement in the =’ coordinate will depend on
Opi log q(x, B) = BOzi log q(x) + (1 — B)04i log go(x).
The following bound A(s) < A(s) applies
As) = max(0, (8 +v¥*!s)(ag + bgs) + (1 — (8 +v"s))(ag, + bg,5))
where

ag = —v70,; log q(x), gy = —v79,; log go ()
d d
by =Y _ Mj; by = Y Mj,.
j=1 j=1

Further simplification gives,
A(s) = max(0,a + bs + cs?) 3)

where a = Bag + (1 — B)ag,, b=v""(ag—ag,)+ Bbg+ (1= B)by,, andc = v (b, —by,).
The rate function for the movement in the 5 coordinate will depend on

m—1

9 [log k(B) + log q(x, B)] = — Yk f*~! + log g() — log o ().

k=1

The following in-time bound holds for ¢ and an analogous bound holds for g

d
d _
—v M logg(z + sv)] = — [ v Z v/ 0, log g(x + sv)

@[ ds

j=1
d d
= —pdt! Z v’ Zvﬂamiamj log q(x + sv)

=1 =1
d d

Sg g M,
i=1 j—=1

from which,
—v T og g(x + sv) < ay + bys + c,8?



where

d d d
, 1
ag = —v " log g(x), by = —vitt Z v’ 0,5 log q(x), =73 Z Z M;;.
j=1 i=1j=1
The rate function for the inverse temperature S may be bounded by
m—1
A(s) = max(0, — kg (B 4 svYF fay £ bys + cgs? + agro + bgys +cgos?). (4)
k=1

The rates from (3)) and (d)) are polynomial in s, so thinning can be implemented using the approach of
Sutton and Fearnhead| [2021]].

S Thinning in the Examples

In Examples 1 and 3, we use geometric tempering from an approximating multivariate-Gaussian
distribution. Thinning is implemented using the arguments from sectiondand bounds on the Hessians
for the base and target distributions.

5.1 Hessian bound for a multivariate Gaussian

One common choice for a base distribution is a d-dimensional multivariate Gaussian. Here

1 1 _
@) = o e (5w e w)

where the Hessian is H(x) = (—0;0, log q(w))f{j:l so we have the upper-bound |H(x)| < M
where M;; = |Ez_j1|
5.2 Hessian bound for mixture of Gaussians

The target has un-normalised density,

K
o) = o (~5rzle ) (@ - ) )
k=1

Following the argument in Section it suffices to find a matrix that bounds the Hessian of log ¢(z).
Since g is the mixture of independent Gaussians it also follows that H (x); ; = 0 for i # j.

Let ¢ (z) = exp (— 5=z (@ — px) " (x — i) then,

Shadn@ @ -l 1,1 &, >
8mi lo xTr) = el M1 . .
gq(x) S o) o2 ( (@) ;Hkébk( )

with second derivative,

L RS et (S a@))
O Ogi log q(x) = 1+ —= Z(N%)Q B ( N;lc kR >
k=1

o2 o? | q(x) q(x)
< % (1 + Uif(Mi - mi)2>

where M* = max;{pt} and m’ = min,{pi} and the bound follows from Popovicius inequality.
We have the bound |H (x)| < M where M;; = 0fori # jand M;; = 5 (1+ 5 1(M* —m?)?)
otherwise.



5.3 Boltzmann machine relaxation

The target has un-normalised density,

(x) 20 e 1wTa: ﬁ cosh (g} = + by)
— X —_ .
1 (2m) & 22, exp(3Te(D)) T\ 2 LLcosuian o

Following the argument from Section 2, it suffices to find a bound on the Hessian matrix. The first
order derivatives are

dy
—Vzlogg(z) = — Z qi tanh(q, x + by,)
k=1
and the Hessian matrix is
dy
H(z)=1- Z qq;, sech’ (g T + by,).
k=1
As0 < sechQ(t) < 1 we have
db db
H(z) <IT-Y min[0,qeqi| =M, H(®)> - max[0,qrg)] =M .
k=1 k=1

We have the bound |H (z)| < M where M = max(]M ™|, |M~]). Thinning may be implemented
using the argument from Section 4}

5.4 Transdimensional example

The transdimensional example does not use geometric tempering, but the bounds are simple to
construct. The tempering is

2

a(z, B) = [[(wo(z';mB,0°) + (1 - w)do (")),

i=1
where ¢ is the normal density function. For this example, we took «(3) = 1.
Variables that are not stuck at the pointmass are simulated according to the slab A (113, 02) distribu-

tion. With gradient 0, log g(, 8) = % (z* — m3), their event rate is

%

Agi (8) = max <o, %((mi + sv') — p(B+ svd+1)>

which is a linear function in s that may be simulated exactly using the methods of |Sutton and
Fearnhead| [2021]]. Following Chevallier et al.|[[2020]] the rate to reintroduce a variable * = 0 is
given by
w w 1 m? 32
= exp| -
(1 —U)) (1 —’LU) vV 2mro?2 P 20'2
which admits thinning using \(s) = (11”71”) \/ﬁ The rate for the temperature (when not stuck at

B =1)is

B(0;mB),0?%) =

modt! < < d
_ 7 7 —+1
A(s) = max | 0, 3 E (2" + sv' —m(B+ sv*™)) |,

it >0

which is a linear function of s that may be simulated exactly using the methods of [Sutton and
Fearnhead| [2021].



Table 1: Location of the means for the Gaussian mixture

pl 266 573 202 945  6.29
p? 372 908 898 6.61 0.62

6 Additional simulation details

6.1 Mixture of Gaussians

For the Mixture of Gaussians the location of the means are given below (stated to 2 decimal places).

For 02 = 0.5 the distance between most local modes is greater than 15 standard deviations with
the minimum distance being 14.85 standard deviations from it’s closest neighbour. This presents a
challenging posterior for sampling as seen in Figure 1 of the main paper. For this example the exact
first and second moment of the Gaussian mixture can be calculated exactly and is stated in Table 2]
below.

Table 2: Table of exact first and second moments of the Gaussian mixture model

X1 Xo

E[X:;] 5228  5.803
E[X2] 34751  44.418

Boxplots showing the variability of estimated first and second moments of X; show the performance
improvement given using tempering o # 1 and using a point-mass « # 0.

Recovery of E[X4]
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Figure 1: Recovery of the first and second moments of X; for the Gaussian mixture model

6.2 Root mean square error for Examples 4.1 and 4.3

The methods presented in Table 1 and 3 of the paper present the results in terms of a work normalised
efficiency metric. This measure aims to capture the computational efficiency of the thinning procedure
and any post processing evaluations for the Importance Sampling method. However, the metric is
slightly unnatural compared to directly observing the root mean square error (RMSE). Table [3|and
Table [ below show the RMSE of the tempered approaches when they are run for the same number
of event proposals. Since all methods are run for the same number of iterations, these tables also



indicate how the samplers would perform if the thinning bounds were exact (i.e. thinning efficiency =

1.

Table 3: Recovery of first two moments of a Gaussian mixture (averaged over 20 replications).

Root-mean-square error (RMSE) Thinning

Method a wB=1)| E[Xi] E[Xs] E[X?] E[X3] | efficiency
Zig-Zag 1 1 2.557 2.740 30.577  31.761 0.057
Zig-Zag CT 0.8 0.789 0.650 0.741 7.898 7.182 0.080
0.7 0.703 0.399 0.683 4.563 6.418 0.090
0.5 0.499 0.329 0.539 4.199 4.930 0.114
0.3 0.302 0.304 0.453 3.216 4.155 0.139
0.2 0.197 0.294 0.472 3.756 4.617 0.153
0.1 0.097 0.349 0.389 3.987 4.198 0.167
Zig-Zag CT (IS) 0 0 0.483 0.472 5.567 5.030 0.301

Table 4: Average root-mean-square error of the first and second moments of the Boltzmann machine
relaxation averaged over 20 simulations reported to 3 decimal places.

Average RMSE Thinning

Method ! w(B=1)| E[Xy] E[X}] | efficiency
Zig-Zag 1 1 1.304 2.456 0.146
Zig-Zag CT 0.700 0.632 0.515 1.718 0.187

0.500 0.417 0.493 1.563 0.219
0.300 0.231 0.417 1.890 0.251
0.200 0.145 0.296  1.089 0.267
0.100 0.076 0.594 2.643 0.284
Zig-Zag CT (IS) 0 0 0.566 3.580 0.505

6.3 Tuning of «(J) in experiments

For the tempered Zig-Zag, x((3) is chosen to approximate Z (). This quantity may be estimated
using many approaches outlined in|/Gelman and Meng|[[1998]]. For our experiments, we use numerical
integration as described in Section 2.3 of (Gelman and Meng| [|[1998]] further details may be found
therein. We use the trapezoidal rule to estimate

k—1
1 _ _
log Z ﬁ(k - E (Bi+1) — Bi) W) + Uigy),
Jj=1

[\

where U(;) = E [8/3 logg(x,B) | 8= ﬁ(j)] is estimated using Monte Carlo and the values of 3 are
ordered so that 31y < B2) < -+ < By < -+ < B(n). In practice, either a finite grid of fixed values
[ from 0 to 1 can be used to construct this estimate or a prior run of the Zig-Zag with an uniformed
choice () o< 1 may be used to obtain these samples. We may then fit the regression model

log Z(8) ~ log (),
to specify the polynomial terms in x(53).

In Example 1 (Gaussian mixture model), all methods were run for 50,000 events and the first 40%
was used as burnin and tuning of . In the initial, burnin sampling we specified x(3) o 1 with & = 0.
The tempered Zig-Zag samplers then used the events from this burnin process to construct an estimate
of log Z(3). The samplers were then run for the remaining 30,000 event times and the estimated first
and second moments were recorded.

In Example 2 (the transdimensional example), we fix £(/3) = 1 because the marginal distribution for
the inverse temperature S was sufficiently close to being uniformly distributed.



In Example 3 (Boltzmann machine relaxation), a finite grid of 15 3 values equally spaced from

0.01 to 0.99 were used to form the construction of log Z(3). The associated choice of x was used
for all continuously tempered methods. For o« = 0 tempering with importance sampling, we used
k(B) = log €' =# where ¢ was specified using a variational Gaussian approximation to the target as
in|Graham and Storkey| [[2017]] and Nemeth et al.|[2019].

6.4 Computational resources

All experiments were implemented using the code accompanying the supplementary material. The
multiple runs required for the simulation study were implemented in parallel using high performance
computational resources. This amounted to submitting job requests for each individual replicate of
the simulation studies. In each replicate the methods were given the same amount of computational
resources i.e. simulated event-times. The results of the parallel runs were collected and processed to
evaluate the performance of the methods — e.g. calculation of the average root mean square error.

7 Full simulation results for parallel tempering

Tables [5] and [6] provide further simulations. We compare our tempering approach with both reversible
[Woodard et al., 2009]] and non-reversible [Syed et al.,|2022] parallel tempering (denoted R-PT and
NR-PT respectively). As in the main paper, we report the work normalised efficiency relative to
the standard (untempered) Zig-Zag. A Zig-Zag kernel is used at each temperature level and run for
S = 0.1, 1, 2 units of stochastic time. We use a geometric temperature sequence [1,a, a?, ..., a"]
as commonly recommended in the literature [Tawn et al., |2020] and consider results for a =
0.1,0.3,0.5,0.7, withn = 3,5, 7.

Table 5: Parallel tempering full results Gaussian mixture model Example 4.1 (averaged over 20
replications).

Relative work normalised efficiency Relative work normalised efficiency
Method a n S E[X:] E[Xo E[X} E[XJ] Method a n S E[X:] E[X, E[X}] E[X3
NR-PT 0.1 3 0.100 | 4.553 5.277 4916 6.019 R-PT 0.1 3 0.100 | 5191 4.728 5.602 5.364
NR-PT 0.1 5 0.100 | 7.274 6.312 7.375  7.425 R-PT 0.1 5 0.100 | 6.680 5.138 6.815  6.096
NR-PT 0.1 7 0.100 | 7.205 5815 8138 6.710 R-PT 01 7 0.100 | 5.360 4.838 5526  5.798
NR-PT 0.1 3 1 8.318 8478  8.692 10.022 R-PT 01 3 1 5944  6.078 5.889  7.531
NR-PT 0.1 5 1 6.641  5.694 6.900 6.784 R-PT 01 5 1 7.142  6.750  7.382  7.448
NR-PT 0.1 7 1 9.160 11.029 9.441 12.883 R-PT 0.1 7 1 6.042 5808  6.499  6.549
NR-PT 0.1 3 2 7.076 8207  7.683  9.261 R-PT 01 3 2 6.734  5.720  6.707  6.661
NR-PT 0.1 5 2 9.253  7.327  9.313  8.806 R-PT 01 5 2 5.045  5.899 5278  6.534
NR-PT 0.1 7 2 7174  6.247 7510  6.829 R-PT 01 7 2 5.451  5.622  5.661  6.299
NR-PT 03 3 0.100 | 6.537 7.980 7.187  8.828 R-PT 03 3 0.100 | 5.036 6.373 5.388  7.655
NR-PT 03 5 0.100 | 7.793  6.436  7.737  7.728 R-PT 03 5 0.100 | 5873 7242 6.314  8.069
NR-PT 03 7 0.100 | 7.891  7.950 8252  9.379 R-PT 03 7 0.100 | 6917 6.389 7.249  7.889
NR-PT 03 3 1 11.019 8.653 12.538 9.723 R-PT 03 3 1 8.894 7.108 9.703 8115
NR-PT 03 5 1 11.626 14.757 11.679 15.972 R-PT 03 5 1 9.549  7.645 9.912  8.949
NR-PT 03 7 1 10.527 11.776 10.306 12.310 R-PT 03 7 1 8.337  7.743 8489  9.521
NR-PT 03 3 2 10.766  9.288  11.287 11.112 R-PT 03 3 2 8.405  6.953  9.049  7.906
NR-PT 03 5 2 9.198 11.156  9.595 13.853 R-PT 03 5 2 5995 5915 6.072  6.906
NR-PT 03 7 2 11.071 10.914 11.453 12.639 R-PT 03 7 2 7.861 5312 7.615  6.860
NR-PT 05 3 0.100 | 7.825 4.428 7.994 5.304 R-PT 05 3 0.100 | 6.409 4.737 6.401  5.312
NR-PT 05 5 0.100 | 6.225 7.583  6.470  8.010 R-PT 05 5 0.100 | 7.721  7.053 8220  8.165
NR-PT 05 7 0.100 | 7.196 6.453  8.189  7.469 R-PT 05 7 0.100 | 5.898 9.587 5922 10.642
NR-PT 05 3 1 7.651  8.540  7.589  10.570 R-PT 05 3 1 10.136  7.672 10.830  8.842
NR-PT 05 5 1 9.456  11.155 10.838 12.371 RPT 05 5 1 8.991  9.408 9.051  9.825
NR-PT 05 7 1 13.003  9.564 13.675 11.428 R-PT 05 7 1 8295 8156 7.915  9.893
NR-PT 05 3 2 10.801 7.776  11.185 9.179 R-PT 05 3 2 8.114  6.149 8368  6.875
NR-PT 05 5 2 11.072 12.320 11.352 13.951 RPT 05 5 2 9.742 8316 10.369 9.118
NR-PT 05 7 2 8.7568 8534  9.726  9.279 R-PT 05 7 2 8.658  7.226 8794  9.183
NR-PT 0.7 3 0.100 | 2.345 1.245 2468  1.368 R-PT 07 3 0.100 | 3.059 1.170 2.823  1.390
NR-PT 0.7 5 0.100 | 3.263 4.011  3.201  4.682 R-PT 07 5 0.100 | 4436 2945 4425 3.594
NR-PT 0.7 7 0.100 | 8.700 4.785  9.295 5.654 R-PT 07 7 0.100 | 6.603 4919 6.343  6.122
NR-PT 0.7 3 1 2.590 1.639  2.632  1.865 R-PT 07 3 1 2.611  1.721 2464  2.036
NR-PT 0.7 5 1 6.307  5.965  6.501  6.751 R-PT 07 5 1 8.036  6.063  8.068  7.087
NR-PT 07 7 1 12,185 8.942 12,956 10.512 R-PT 07 7 1 12.275 11.273  12.591 12.648
NR-PT 0.7 3 2 3.198  1.506  2.903  1.804 R-PT 07 3 2 3.131  1.758  3.098  2.021
NR-PT 07 5 2 7.265 7.018 7.648  8.009 R-PT 07 5 2 6.550  6.102  6.468  7.096
NR-PT 0.7 7 2 10.794 8.230 11.100 9.004 R-PT 07 7 2 8.885  7.927  9.025  9.582




Table 6: Parallel tempering full results Boltzman Machine Example 4.3 (averaged over 20 replica-
tions).

Relative work normalised efficiency Relative work normalised efficiency
Method a n S |E[Xy E[X2] Method a n S |E[X4 E[X2]
NR-PT 0.1 3 0.100 | 0.262 0.089 R-PT 0.1 3 0.100 | 0.262 0.090
NR-PT 0.1 5 0.100 | 0.288 0.086 R-PT 0.1 5 0.100 | 0.290 0.098
NR-PT 0.1 7 0.100 | 0.273 0.085 R-PT 0.1 7 0.100 | 0.283 0.092
NR-PT 0.1 3 1 1.726 0.587 R-PT 01 3 1 1.462 0.485
NR-PT 0.1 5 1 1.966 0.577 R-PT 01 5 1 1.536 0.452
NR-PT 0.1 7 1 2.180 0.717 R-PT 01 7 1 1.729 0.461
NR-PT 0.1 3 2 2.856 0.843 R-PT 01 3 2 2.619 0.814
NR-PT 0.1 5 2 3.220 0.761 R-PT 0.1 5 2 2.796 0.795
NR-PT 0.1 7 2 3.380 1.051 R-PT 0.1 7 2 2.883 1.083
NR-PT 03 3 0.100 | 0.310 0.105 R-PT 03 3 0.100 | 0.307 0.109
NR-PT 03 5 0.100 | 0.453 0.147 R-PT 03 5 0.100 | 0.422 0.124
NR-PT 03 7 0.100 | 0.456 0.142 R-PT 03 7 0.100 | 0.474 0.152
NR-PT 03 3 1 2.079 0.684 R-PT 03 3 1 1.956 0.581
NR-PT 03 5 1 2.583 0.838 R-PT 03 5 1 1.994 0.564
NR-PT 03 7 1 2.786 0.781 R-PT 03 7 1 3.311 0.817
NR-PT 03 3 2 3.589 1.051 R-PT 03 3 2 4.127 1.141
NR-PT 03 5 2 4.171 1.338 R-PT 03 5 2 3.877 1.152
NR-PT 03 7 2 4.454 1.259 R-PT 03 7 2 3.673 1.055
NR-PT 0.5 3 0.100 | 0.239 0.154 R-PT 05 3 0.100 | 0.222 0.121
NR-PT 05 5 0.100 | 0.443 0.137 R-PT 05 5 0.100 | 0.368 0.134
NR-PT 05 7 0.100 | 0.598 0.198 R-PT 05 7 0.100 | 0.499 0.145
NR-PT 05 3 1 0.957 0.776 R-PT 05 3 1 1.106 0.865
NR-PT 05 5 1 3.261 1.029 R-PT 05 5 1 2.683 0.789
NR-PT 05 7 1 3.215 0.890 R-PT 05 7 1 3.890 0.976
NR-PT 05 3 2 1.723 1.297 R-PT 05 3 2 1.610 1.492
NR-PT 05 5 2 5.634 1.448 R-PT 05 5 2 5.201 1.513
NR-PT 05 7 2 6.101 1.434 R-PT 05 7 2 5.321 1.560
NR-PT 0.7 3 0.100 | 0.250 0.146 R-PT 0.7 3 0.100 | 0.251 0.142
NR-PT 0.7 5 0.100 | 0.302 0.265 R-PT 0.7 5 0.100 | 0.271 0.176
NR-PT 0.7 7 0.100 | 0.379 0.278 R-PT 0.7 7 0.100 | 0.331 0.203
NR-PT 0.7 3 1 0.721 0.664 R-PT 07 3 1 0.739 0.816
NR-PT 0.7 5 1 0.956 1.080 R-PT 07 5 1 0.928 0.671
NR-PT 0.7 7 1 2.489 1.127 R-PT 07 7 1 2.410 1.209
NR-PT 0.7 3 2 1.132 1.270 R-PT 07 3 2 1.117 1.331
NR-PT 0.7 5 2 1.367 1.606 R-PT 07 5 2 1.560 1.473
NR-PT 0.7 7 2 4.391 1.924 R-PT 07 7 2 4.402 1.984
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