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APPENDIX

A. Residual Connection

Common residual connection for GNNs and their corresponding GNNs are described below.

Res. Res is composed of multiple residual blocks containing few stacked layers. Taking the initial
input of the n-th residual block as X,,, and the stacked nonlinear layers within the residual block as
F(X):
Xn+1 - F(Xn) + Xn

where residual mapping and identity mapping refer to F(X) and X on the right side of the above
equation, respectively. Inspired by Res, Guohao Li & Matthias Miiller(2019) proposed a residual
connection learning framework for GCN and called this model ResGCN which can be simply
described as follows:

H.,=0 (DiéAﬁiéHk,1Wk71> +H,_1

InitialRes. InitialRes is proposed for the first time in APPNP, unlike Res that carries information
from the previous layer, it constructs a connection to the initial representation X at each layer:
Xn—i—l = (1 — Q)H(Xn) + OLXO

where H(X) denotes the aggregation operation within one layer. InitialRes ensures that each node’s
representation retains at least a-size of the initial feature information. Correspondingly, APPNP can
be formulated as: -

H,=(1-a)D 2AD 2H;_; + oH
Based on APPNP, GCNII introduces identity mapping from Res to make up for the deficiency in
APPNP.

Dense. Dense proposes a more efficient way to reuse features between layers. The input is the outputs
of all previous layers of the network and at each layer Dense stitches them together:
X7L+1 - H([XOa X17 ceey X'n,])

where [-] denotes the concatenation of the feature map for the output of layers O to n. Inspired
by Dense, DenseGCN applies a similar idea to GCN, i.e., let the output of the k-th layer contains
transformations from all previous GCN layers to exploit the information from different GCN layers:

Hk = AGGdense(H7 Hla ce 7Hk:71)

JK. JK is proposed by (Xu et al., 2018). At the last layer, JK sifts from all previous representations
[X1,...,Xy] and combines them:
Xoutput - Agg(Xh e aXN)
The AGG operation includes concatenation, Maxpooling and LSTM-attention. When it is introduced
to GNN, i.e., JKNet, can be formulated as:
Houtput - AGij(Hla B Hk—l)

B. SMY for Node Groups of Different Degrees
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C. Derivation of the general formula in the table

ResGCN: We can write the recursive formula for ResGCN in the following form:

Hy = (I+N)Hg (1
In turn, the following form can be obtained by recursion:
H, = (I+N)"H )
Using the binomial theorem, we can obtain the general formula for ResGCN as follows:
k
H, =) C/N'H 3)
§=0
APPNP: According to the recurrence formula of APPNP:
Hy,=oH+ (1 - o)NH;_,, 4)
To obtain the general formula, we can add a term T to both ends of the equation at the same time:
H,+T=(1-a)NH;,_1+aH+T 5)
We try to translate the equation into the following form:
H,+T=(1-a)NHg_;+T). 6)
Then we need to make sure that there exits a very T that satisfies the following equation:
(1—-a)NT=aH+T, @)
which can be transformed into the following form:
(1—a)N-I)T =oH. 8)

We can proof that the following lemma:



38

39
40

41

42

43

44

45

46

47

48

49

50

51

52

Lemma 1. Given that o € (0,1), (1 — «) N — L is invertible.

Proof. To prove that (1 — ) N —I is invertible is equivalent to proving it does not have an eigenvalue
of 0. Consider the Rayleigh quotient of (1 — o) N —I:

X7 (1-a)N-I)X

From spectral graph theory, We can know the following equation holds:
X X ’
xT (D—%Lﬁ—%)xz 3 ( . : - - J ) > 0. (10)
(viorycE Vdi+1  \Jdj+1
We can decompose L into D - A,then we have:
T(ﬁ—%ﬁﬁ—%)x X7 (D-AD" 1) X
XTX XTX >0 (11)
which is equivalent to:
XTX XTX
Combining Eq. [9]and Ineq. [I2] we can obtain:
XT(1-a)N-T)X
XTX <(l-a)—-1=-a<0 (13)
Therefore, 0 can’t be the eigenvalue of (1 — «) N —I. Then (1 — o) N — I is invertible. O
Since Lemma 1 holds, We can derive the concrete form of T:
T=a((l-a)N-I)'H (14)
Thus we can keep recurring from Eq. [Band obtain the following equation:
H, +T=(1-a)N)"H+T), (15)
which also can be written as:
H, == (1-a)N)*H+ ((1-a)N)"T - T. (16)
For the second and third term in Eq. [16] We write (1 — o) N as (1 — o) N — I+ I. Then We can use
k
the binomial theorem to write ((1 — ) N)* a Z ((1 — a) N — I)? then the Eq. [16|can be written
as: N
k .
Hy=((1-0)N)’H+> (1-a)N-IT (17)
=1

Bringing in the specific form of T and further deriving the general formula of APPNP:

Hy=(1-0)N)'H+a) (1-a)N-IH (18)
7=0
k—1 j ,
=(1-a)N'H+ad > (- —a)'N'H (19)
7=0 3=0
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D. Proof of theorem 1

For each diagonal element )\g’) of Ay, it is trivial to obtain:

0< A$)<:1.
To dervie the general term formula of SNR-GCN, We need proof the following lemma first.
Lemma 2. Set all the diagonal element of A satisfy 0 < A\¥) < 1, then (AN + 1) is invertible.

proof. To prove that AN + I is invertible is equivalent to proving that its determinant are not equal
to 0. Because all the diagonal element of A satisfy 0 < A < 1.then A is invertible, and due to

AN + 1| = |[A|IN + A1, (20)

Therefore, to prove that its determinant are not equal to 0 is equivalent to proving [N 4+ A~!| is not
equal to 0, and further equivalent to proving N + A~! does not have an eigenvalue of 0.

Consider the Rayleigh quotient of N + A~ !:

XT(N+A )X
R, = ( XTX ) 21

Split Eq. 21} we derive:
XTNX XTA-IX
R, = 22
1TXTX T UXIX (22)
The second term of Eq. 22]can be easily written as follows:

3

-1
XTAIX SN A0 2
XX Zi\; ?

. N1
Since 0 < /\Z(-z) < 1, therefore /\Z(.Z) > 1, then
XTA-IX
XTX

For the first item, we write its specific form as follows:

1. (23)

XTNX XT (f)_%Af)_%)X

24
XTX XTX 24)
From spectral graph theory we know that the following formula holds:
2
~ 1 ~ X X
X" (D:(A+D)D 3 )X = Y ( — = ) >0 (25)
( ) (o oyCE Vd; +1 \/dj +1
Further mathematically transforming this formula, we can get the following form:
X7 (13—% (A +D) 15-%) X X7 (13—% (A +D- 21) 15-%) X
XTX B XTX (26)
X7 (D$AD})X XT(DPDD#)X oxrp-ix
B XTX * XTX T TXIX
27
X7 (D #AD})X | XTDUX o)
B XTX XTX
Further we get the following result:
X7 (D HAD )X oxrp-ix
> -1 (29)

XTX XTX
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It is trivial to obtain: _
2XTDIX 23N (di+ 1) x?
XTX SN 2?2

i=1%i

>0 (30

Combining Eq. 22] Ineq. 23] Ineq. 29|and Ineq. 30} we can get the following inequality:
X? (D $AD " + A1) X
XTX

>0 €1y

It can be obtained that the eigenvalue of D 2AD z+Alis greater than 0, so 0 is not an eigenvalue
of it. Further, AN + I is invertible. O

Now, we proof Theorem 1:

proof. Given the following recursive formula:

H, = Hy + Ay, (H1 _ 13-1/2A15—1/2Hk,1) (32)
where H; = D~'/2AD~Y/2H , A, = diag{)\g), .../\EC”)}, /\Ej) ~ Sigmoid(./\/(ozg), ](j)z)). After
mathematical transformation, Eq. @]can be written as

Hj, = (I+ Ag_y) Hy — Ay, D7/?AD"'/?H,,_,. (33)
Set N = D~1/2AD~'/2 then Eq. can be abbreviated as
H,=I+Ar-1)H; — A1 NHp_;. (34
We tried to modify Eq. [34]to a form that more suitable for obtaining the general term:
Hy + My = —Ap N Hp_1 +Mg_q). (35)

In order to verify whether there exists such M that satisfies the equation ,we need to solve the
following equation:

—Ap I NMy_1 =T+ Ap_1)Hy + Mg, (36)
which is equivalent to solving the equation :
— (Aot N+I)My; = (T+ Ap—q) Hy. 37

Based on the definition, all the diagonal element of Ay, satisfy 0 < )\,(ci) < 1, so according to Lemma

2, (Ax—1N + 1) is invertible. Then My_; = — (A1 N + I)_1 (I 4+ Agx—1)H; which means such
M. that we required exists.

First we perform the following mathematical transformation on Eq. [35}
Hj, + M1 = —Ap N (Hp—y + Mo + My — M), (38)
which can be split into the following form:
Hp + My = AN Hip—1 + My_2) + (—Ar—1N) (Mjp_1 — My_2) (39)
Let Nk—l denote —Aj_1 N, so the formula can be simply written as:
Hy + Mjy_1 = Nj_q (Hp_1 + My_s) + Ni_y (M1 — My_») (40)
We first use Eq. to recurse once, then derive the following formula:
Hy + My = N Ny o (Hpo + Mjy_3) + Ny (Mg — Mj_») 41

By analogy, continuing to split and iterate, we can get the general term formula of the output of the
k-th layer :

k—1k—1 k—1
Hjy = Z H N; (M; = M;_1) + H N, (H; +M;) — My, (42)
i=2 j=i i1

O



92 E. Overfitting Experiment

93 To validate the effectiveness of sampling, we conduct experiments on Cora, Citeseer, and Pubmed
94 using GCN as the base model. Two strategies for learning p are selected: (1) learning directly
95 through backpropagation and (2) first learning the distribution through backpropagation and then
96 sampling. Specifically, we denote the GCN with strategy 1 as L-GCN and the GCN with strategy 2
97 as SNR-GCN. We set the number of layers to 2, 4, 8, and 16, and test the performance of these two
98 models on the training and validation sets. For each experiment, we run ten times to obtain the mean
9o accuracy along with standard deviation. The results are shown in the Table [I]

Table 1: Node classification accuracy (%) on different number of layers.

Layer

Dataset Method Type # #4 43 #16
L-GCN Train 99.86+0.28  99.36+0.87  100.00 £0.00 98.14+2.82
Cora Validation | 79.20+£0.63  78.92+0.67 77.86£1.36  77.42+1.99
SNR-GCN Train 100.00+0.00  99.79+0.64 98.86+1.81  98.71+2.44
Validation | 80.24+0.47  79.56+0.85 78.02+1.04  78.24+1.20
L-GCN Train 99.08+1.60  96.00+2.57 93.58+2.93  95.25+2.29
Citeseer Validation | 70.00+0.84  66.88+1.33 65.68+2.26  66.10+1.31
SNR-GCN Train 97.42+2.39  96.33+3.14 96.92+3.09  94.33+4.40
Validation | 70.52+0.56  66.58+1.51 66.80£1.27  66.86+1.16
L-GCN Train 99.83+0.50  99.83+0.50 99.00£1.10  99.00+1.10
Pubmed Validation | 78.92+0.64  79.12+0.58 79.10£0.44  79.2240.67
SNR-GCN Train 100.00+£0.00  100.00+£0.00  99.83+0.50  99.67+0.66
Validation | 79.26+0.22  79.86+0.49 79.42+0.46  79.62+0.46

100 F. Experiment Setup
101 F.1 Dataset Statistics

102 The dataset statics is shown in Table 2} Cora, Citeseer, and Pubmed were applied to all experiments,
103 in addition to using the Chameleon, Squirrel, and CoraFull datasets additionally for the SSNC experi-
104 ments. For CoraFull, we randomly split all nodes into 40%/10%/50% for training/validation/testing.
105 For Chameleon and Squirrel, we use the same dataset partition as BM-GCN. For the SSNC-MV
106 experiments, we took the same experiments as PairNorm and Group Normalization, removing features
107 from the validation and test sets of Cora, Citeseer, and Pubmed.

Table 2: Dataset Statistics.

\Cora Citeseer Pubmed CoraFull Chameleon Squirrel

#Nodes 2708 3327 19717 19793 2277 5201
#Edges 5429 4732 44338 126842 36101 217073
#Features 1433 3703 500 8710 2325 2089
#Classes 7 6 3 70 5 5
#Training Nodes 140 120 60 7892 1092 2496
#Validation Nodes | 500 500 500 1986 729 1664
#Testing Nodes 1000 1000 1000 9915 456 1041

109 F.2 Parameter Settings

110 Experiments in Section 3 We apply GCN, GAT with 32 hidden units. We fix the following sets of
111 hyperparameters: dropout = 0.0, weight decay=0.0005. The learning rate is set to 0.01 if the number
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of layers is less than 16, and 0.001 if the number of layers is greater than or equal to 16.

Experiments in Section 5.2 We apply all the models with 64 hidden units on five datasets.
We used the optimal parameters specified in the original papers for APPNP, GCNII and JKNet. For
other models, we fix the following sets of hyperparameters: dropout=0.5, weight decay=0.0005,
learning rate = 0.01.

Experiments in Section 5.3 We apply all the models with 64 hidden units. We fix the fol-
lowing sets of hyperparameters: dropout=0.5, weight decay=0.0005, learning rate = 0.01. The GCN
equipped with the Res module is the GCNII.

Experiments in Section 5.4 We apply all the models with 32 hidden units. We fix the fol-
lowing sets of hyperparameters: dropout=0.5, weight decay=0.0005. The learning rate is set to 0.01
if the number of layers is less than 15, and 0.001 if the number of layers is greater than or equal to 15.

Experiments in Section 5.5 We apply all the models with 64 hidden units. We fix the fol-
lowing sets of hyperparameters: dropout=0.5, weight decay=0.0005. The learning rate is set to 0.01
if the number of layers is less than 16, and 0.001 if the number of layers is greater than or equal to 16.

F.3 Baselines

The baseline methods are publicly available at:

e DGN,PairNorm,BatchNorm: https://github.com/Kaixiong-Zhou/DGN/

e DropEdge:https://github.com/DropEdge/DropEdge

e Other Models(APPNP,GCNIL,...):https://docs.dgl.ai/en/0.9.x/api/python/nn-pytorch.html
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Table 3: Average accuracy of the model over 100 to 500 epoch on the validation set.

Method \ Cora Citeseer Pubmed CoraFull Chameleon Squirrel
GCN 77.92 66.00 76.73 67.81 66.62 49.12
APPNP 77.37 72.64 77.72 34.07 59.80 41.73
GCNII 76.27 66.83 75.55 65.35 57.80 45.24
ResGCN 76.69 68.32 75.29 66.09 62.86 42.72
JKNet 72.79 58.94 77.38 62.89 54.01 30.97
DenseGCN 68.64 59.12 68.91 58.87 55.84 34.35
Res-GAT 61.32 62.04 77.05 60.90 64.62 46.37
JK-GAT 67.44 58.97 77.01 59.97 53.61 36.92
Dense-GAT 66.65 56.94 77.25 59.64 61.98 41.50
InitialRes-GAT 63.65 48.86 75.88 59.28 61.52 49.23
GAT 64.53 63.36 76.89 60.96 63.45 50.61
SNR-GCN (Ours) | 78.58 69.94 78.13 68.14 70.42 51.45
SNR-GAT (Ours) | 62.87 65.35 77.84 61.95 68.71 60.19
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