
APPENDIX1

A. Residual Connection2

Common residual connection for GNNs and their corresponding GNNs are described below.3

Res. Res is composed of multiple residual blocks containing few stacked layers. Taking the initial4

input of the n-th residual block as Xn, and the stacked nonlinear layers within the residual block as5

F(X):6

Xn+1 = F(Xn) +Xn

where residual mapping and identity mapping refer to F(X) and X on the right side of the above7

equation, respectively. Inspired by Res, Guohao Li & Matthias Müller(2019) proposed a residual8

connection learning framework for GCN and called this model ResGCN which can be simply9

described as follows:10

Hk = σ
(
D̃− 1

2 ÃD̃− 1
2Hk−1Wk−1

)
+Hk−1

InitialRes. InitialRes is proposed for the first time in APPNP, unlike Res that carries information11

from the previous layer, it constructs a connection to the initial representation X0 at each layer:12

Xn+1 = (1− α)H(Xn) + αX0

where H(X) denotes the aggregation operation within one layer. InitialRes ensures that each node’s13

representation retains at least α-size of the initial feature information. Correspondingly, APPNP can14

be formulated as:15

Hk = (1− α) D̃− 1
2 ÃD̃− 1

2Hk−1 + αH

Based on APPNP, GCNII introduces identity mapping from Res to make up for the deficiency in16

APPNP.17

Dense. Dense proposes a more efficient way to reuse features between layers. The input is the outputs18

of all previous layers of the network and at each layer Dense stitches them together:19

Xn+1 = H([X0,X1, . . . ,Xn])

where [·] denotes the concatenation of the feature map for the output of layers 0 to n. Inspired20

by Dense, DenseGCN applies a similar idea to GCN, i.e., let the output of the k-th layer contains21

transformations from all previous GCN layers to exploit the information from different GCN layers:22

Hk = AGGdense(H,H1, . . . ,Hk−1)

JK. JK is proposed by (Xu et al., 2018). At the last layer, JK sifts from all previous representations23

[X1, . . . ,XN ] and combines them:24

Xoutput = AGG(X1, . . . ,XN )

The AGG operation includes concatenation, Maxpooling and LSTM-attention. When it is introduced25

to GNN, i.e., JKNet, can be formulated as:26

Houtput = AGGjk(H1, . . . ,Hk−1)

B. SMV for Node Groups of Different Degrees27
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C. Derivation of the general formula in the table28

ResGCN: We can write the recursive formula for ResGCN in the following form:29

Hk = (I+N)Hk−1 (1)

In turn, the following form can be obtained by recursion:30

Hk = (I+N)kH (2)

Using the binomial theorem, we can obtain the general formula for ResGCN as follows:31

Hk =

k∑
j=0

Cj
kN

jH (3)

APPNP: According to the recurrence formula of APPNP:32

Hk = αH+ (1− α)NHk−1, (4)

To obtain the general formula, we can add a term T to both ends of the equation at the same time:33

Hk +T = (1− α)NHk−1 + αH+T (5)

We try to translate the equation into the following form:34

Hk +T = (1− α)N (Hk−1 +T) . (6)

Then we need to make sure that there exits a very T that satisfies the following equation:35

(1− α)NT = αH+T, (7)

which can be transformed into the following form:36

((1− α)N− I)T = αH. (8)

We can proof that the following lemma:37
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Lemma 1. Given that α ∈ (0, 1), (1− α)N− I is invertible.38

Proof. To prove that (1− α)N−I is invertible is equivalent to proving it does not have an eigenvalue39

of 0. Consider the Rayleigh quotient of (1− α)N− I:40

XT ((1− α)N− I)X

XTX
= (1− α)

XT
(
D̃− 1

2 ÃD̃− 1
2

)
X

XTX
− 1 (9)

From spectral graph theory, We can know the following equation holds:41

XT
(
D̃− 1

2LD̃− 1
2

)
X =

∑
(vi,vj)∈E

(
Xi√
di + 1

− Xj√
dj + 1

)2

> 0. (10)

We can decompose L into D̃− Ã,then we have:42

XT
(
D̃− 1

2 D̃D̃− 1
2

)
X

XTX
−

XT
(
D̃− 1

2 ÃD̃− 1
2

)
X

XTX
> 0 (11)

which is equivalent to:43

XT
(
D̃− 1

2 ÃD̃− 1
2

)
X

XTX
<

XT IX

XTX
= 1 (12)

Combining Eq. 9 and Ineq. 12, we can obtain:44

XT ((1− α)N− I)X

XTX
< (1− α)− 1 = −α < 0 (13)

Therefore, 0 can’t be the eigenvalue of (1− α)N− I . Then (1− α)N− I is invertible.45

Since Lemma 1 holds, We can derive the concrete form of T:46

T = α ((1− α)N− I)
−1

H (14)

Thus we can keep recurring from Eq. 6and obtain the following equation:47

Hk +T = ((1− α)N)
k
(H+T) , (15)

which also can be written as:48

Hk == ((1− α)N)
k
H+ ((1− α)N)

k
T−T. (16)

For the second and third term in Eq. 16, We write (1− α)N as (1− α)N− I+ I. Then We can use49

the binomial theorem to write ((1− α)N)
k as

k∑
j=0

((1− α)N− I)
j then the Eq. 16 can be written50

as :51

Hk = ((1− α)N)
k
H+

k∑
j=1

((1− α)N− I)
j
T (17)

Bringing in the specific form of T and further deriving the general formula of APPNP:52

Hk = ((1− α)N)
k
H+ α

k−1∑
j=0

((1− α)N− I)
j
H (18)

= (1− α)
k
NkH+ α

k−1∑
j=0

j∑
i=0

(−1)
j−i

(1− α)
i
NiH (19)
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D. Proof of theorem 153

For each diagonal element λ(i)
k of Λk, it is trivial to obtain:54

0 < λ
(i)
k < 1.

To dervie the general term formula of SNR-GCN, We need proof the following lemma first.55

Lemma 2. Set all the diagonal element of Λ satisfy 0 < λ(i) < 1, then (ΛN+ I) is invertible.56

proof. To prove that ΛN+ I is invertible is equivalent to proving that its determinant are not equal57

to 0. Because all the diagonal element of Λ satisfy 0 < λ(i) < 1,then Λ is invertible, and due to58

|ΛN+ I| = |Λ||N+ Λ−1|. (20)

Therefore, to prove that its determinant are not equal to 0 is equivalent to proving |N+ Λ−1| is not59

equal to 0, and further equivalent to proving N+ Λ−1 does not have an eigenvalue of 0.60

Consider the Rayleigh quotient of N+ Λ−1:61

R1 =
XT

(
N+ Λ−1

)
X

XTX
(21)

Split Eq. 21, we derive:62

R1 =
XTNX

XTX
+

XTΛ−1X

XTX
(22)

The second term of Eq. 22 can be easily written as follows:63

XTΛ−1X

XTX
=

∑N
i=1 λ

(i)
i

−1
x2
i∑N

i=1 x
2
i

.

Since 0 < λ
(i)
i < 1, therefore λ

(i)
i

−1
> 1, then64

XTΛ−1X

XTX
> 1. (23)

For the first item, we write its specific form as follows:65

XTNX

XTX
=

XT
(
D̃− 1

2 ÃD̃− 1
2

)
X

XTX
(24)

From spectral graph theory we know that the following formula holds:66

XT
(
D̃− 1

2 (A+D) D̃− 1
2

)
X =

∑
(vi,vj)∈E

(
Xi√
di + 1

+
Xj√
dj + 1

)2

> 0 (25)

Further mathematically transforming this formula, we can get the following form:67

XT
(
D̃− 1

2 (A+D) D̃− 1
2

)
X

XTX
=

XT
(
D̃− 1

2

(
Ã+ D̃− 2I

)
D̃− 1

2

)
X

XTX
(26)

=
XT

(
D̃− 1

2 ÃD̃− 1
2

)
X

XTX
+

XT
(
D̃− 1

2 D̃D̃− 1
2

)
X

XTX
− 2XT D̃−1X

XTX
(27)

=
XT

(
D̃− 1

2 ÃD̃− 1
2

)
X

XTX
+ 1− 2XT D̃−1X

XTX
> 0 (28)

Further we get the following result:68

XT
(
D̃− 1

2 ÃD̃− 1
2

)
X

XTX
>

2XT D̃−1X

XTX
− 1 (29)
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It is trivial to obtain:69

2XT D̃−1X

XTX
=

2
∑N

i=1 (di + 1)
−1

x2
i∑N

i=1 x
2
i

> 0 (30)

Combining Eq. 22, Ineq. 23, Ineq. 29 and Ineq. 30, we can get the following inequality:70

XT
(
D̃− 1

2 ÃD̃− 1
2 + Λ−1

)
X

XTX
> 0 (31)

It can be obtained that the eigenvalue of D̃− 1
2 ÃD̃− 1

2 +Λ−1 is greater than 0, so 0 is not an eigenvalue71

of it. Further, ΛN+ I is invertible.72

Now, we proof Theorem 1:73

proof. Given the following recursive formula:74

Hk = H1 + Λk−1

(
H1 − D̃−1/2ÃD̃−1/2Hk−1

)
(32)

where H1 = D̃−1/2ÃD̃−1/2H , Λk = diag{λ(1)
k , ...λ

(n)
k }, λ(i)

k ∼ Sigmoid(N (α
(i)
k , β

(i)
k

2
)). After75

mathematical transformation, Eq. 32 can be written as76

Hk = (I+ Λk−1)H1 − Λk−1D̃
−1/2ÃD̃−1/2Hk−1. (33)

Set N = D̃−1/2ÃD̃−1/2 then Eq. 33 can be abbreviated as77

Hk = (I+ Λk−1)H1 − Λk−1NHk−1. (34)

We tried to modify Eq. 34 to a form that more suitable for obtaining the general term:78

Hk +Mk−1 = −Λk−1N (Hk−1 +Mk−1) . (35)

In order to verify whether there exists such M that satisfies the equation ,we need to solve the79

following equation:80

−Λk−1NMk−1 = (I+ Λk−1)H1 +Mk−1 (36)
which is equivalent to solving the equation :81

− (Λk−1N+ I)Mk−1 = (I+ Λk−1)H1. (37)

Based on the definition, all the diagonal element of Λk satisfy 0 < λ
(i)
k < 1, so according to Lemma82

2, (Λk−1N+ I) is invertible. Then Mk−1 = − (Λk−1N+ I)
−1

(I+ Λk−1)H1 which means such83

Mk−1 that we required exists.84

First we perform the following mathematical transformation on Eq. 35:85

Hk +Mk−1 = −Λk−1N (Hk−1 +Mk−2 +Mk−1 −Mk−2) , (38)

which can be split into the following form:86

Hk +Mk−1 = −Λk−1N (Hk−1 +Mk−2) + (−Λk−1N) (Mk−1 −Mk−2) (39)

Let Ñk−1 denote −Λk−1N, so the formula can be simply written as:87

Hk +Mk−1 = Ñk−1 (Hk−1 +Mk−2) + Ñk−1 (Mk−1 −Mk−2) (40)

We first use Eq. 35 to recurse once, then derive the following formula:88

Hk +Mk−1 = Ñk−1Ñk−2 (Hk−2 +Mk−3) + Ñk−1 (Mk−1 −Mk−2) (41)

By analogy, continuing to split and iterate, we can get the general term formula of the output of the89

k-th layer :90

Hk =

k−1∑
i=2

k−1∏
j=i

Ñj (Mi −Mi−1) +

k−1∏
i=1

Ñi (H1 +M1)−Mk−1 (42)

91
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E. Overfitting Experiment92

To validate the effectiveness of sampling, we conduct experiments on Cora, Citeseer, and Pubmed93

using GCN as the base model. Two strategies for learning p are selected: (1) learning directly94

through backpropagation and (2) first learning the distribution through backpropagation and then95

sampling. Specifically, we denote the GCN with strategy 1 as L-GCN and the GCN with strategy 296

as SNR-GCN. We set the number of layers to 2, 4, 8, and 16, and test the performance of these two97

models on the training and validation sets. For each experiment, we run ten times to obtain the mean98

accuracy along with standard deviation. The results are shown in the Table 1.99

Table 1: Node classification accuracy (%) on different number of layers.

Dataset Method Type Layer
#2 #4 #8 #16

Cora
L-GCN Train 99.86±0.28 99.36±0.87 100.00 ±0.00 98.14±2.82

Validation 79.20±0.63 78.92±0.67 77.86±1.36 77.42±1.99

SNR-GCN Train 100.00±0.00 99.79±0.64 98.86±1.81 98.71±2.44
Validation 80.24±0.47 79.56±0.85 78.02±1.04 78.24±1.20

Citeseer
L-GCN Train 99.08±1.60 96.00±2.57 93.58±2.93 95.25±2.29

Validation 70.00±0.84 66.88±1.33 65.68±2.26 66.10±1.31

SNR-GCN Train 97.42±2.39 96.33±3.14 96.92±3.09 94.33±4.40
Validation 70.52±0.56 66.58±1.51 66.80±1.27 66.86±1.16

Pubmed
L-GCN Train 99.83±0.50 99.83±0.50 99.00±1.10 99.00±1.10

Validation 78.92±0.64 79.12±0.58 79.10±0.44 79.22±0.67

SNR-GCN Train 100.00±0.00 100.00±0.00 99.83±0.50 99.67±0.66
Validation 79.26±0.22 79.86±0.49 79.42±0.46 79.62±0.46

F. Experiment Setup100

F.1 Dataset Statistics101

The dataset statics is shown in Table 2. Cora, Citeseer, and Pubmed were applied to all experiments,102

in addition to using the Chameleon, Squirrel, and CoraFull datasets additionally for the SSNC experi-103

ments. For CoraFull, we randomly split all nodes into 40%/10%/50% for training/validation/testing.104

For Chameleon and Squirrel, we use the same dataset partition as BM-GCN. For the SSNC-MV105

experiments, we took the same experiments as PairNorm and Group Normalization, removing features106

from the validation and test sets of Cora, Citeseer, and Pubmed.107

Table 2: Dataset Statistics.
Cora Citeseer Pubmed CoraFull Chameleon Squirrel

#Nodes 2708 3327 19717 19793 2277 5201
#Edges 5429 4732 44338 126842 36101 217073

#Features 1433 3703 500 8710 2325 2089
#Classes 7 6 3 70 5 5

#Training Nodes 140 120 60 7892 1092 2496
#Validation Nodes 500 500 500 1986 729 1664

#Testing Nodes 1000 1000 1000 9915 456 1041

108

F.2 Parameter Settings109

Experiments in Section 3 We apply GCN, GAT with 32 hidden units. We fix the following sets of110

hyperparameters: dropout = 0.0, weight decay=0.0005. The learning rate is set to 0.01 if the number111
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of layers is less than 16, and 0.001 if the number of layers is greater than or equal to 16.112

113

Experiments in Section 5.2 We apply all the models with 64 hidden units on five datasets.114

We used the optimal parameters specified in the original papers for APPNP, GCNII and JKNet. For115

other models, we fix the following sets of hyperparameters: dropout=0.5, weight decay=0.0005,116

learning rate = 0.01.117

118

Experiments in Section 5.3 We apply all the models with 64 hidden units. We fix the fol-119

lowing sets of hyperparameters: dropout=0.5, weight decay=0.0005, learning rate = 0.01. The GCN120

equipped with the Res module is the GCNII.121

122

Experiments in Section 5.4 We apply all the models with 32 hidden units. We fix the fol-123

lowing sets of hyperparameters: dropout=0.5, weight decay=0.0005. The learning rate is set to 0.01124

if the number of layers is less than 15, and 0.001 if the number of layers is greater than or equal to 15.125

126

Experiments in Section 5.5 We apply all the models with 64 hidden units. We fix the fol-127

lowing sets of hyperparameters: dropout=0.5, weight decay=0.0005. The learning rate is set to 0.01128

if the number of layers is less than 16, and 0.001 if the number of layers is greater than or equal to 16.129

F.3 Baselines130

The baseline methods are publicly available at:131

• DGN,PairNorm,BatchNorm: https://github.com/Kaixiong-Zhou/DGN/132

• DropEdge:https://github.com/DropEdge/DropEdge133

• Other Models(APPNP,GCNII,...):https://docs.dgl.ai/en/0.9.x/api/python/nn-pytorch.html134

G. SSNC135

G.1 Train Accuracy136

Cora

Citeseer
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G.2 Validation Accuracy137
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Table 3: Average accuracy of the model over 100 to 500 epoch on the validation set.

Method Cora Citeseer Pubmed CoraFull Chameleon Squirrel
GCN 77.92 66.00 76.73 67.81 66.62 49.12

APPNP 77.37 72.64 77.72 34.07 59.80 41.73
GCNII 76.27 66.83 75.55 65.35 57.80 45.24

ResGCN 76.69 68.32 75.29 66.09 62.86 42.72
JKNet 72.79 58.94 77.38 62.89 54.01 30.97

DenseGCN 68.64 59.12 68.91 58.87 55.84 34.35
Res-GAT 61.32 62.04 77.05 60.90 64.62 46.37
JK-GAT 67.44 58.97 77.01 59.97 53.61 36.92

Dense-GAT 66.65 56.94 77.25 59.64 61.98 41.50
InitialRes-GAT 63.65 48.86 75.88 59.28 61.52 49.23

GAT 64.53 63.36 76.89 60.96 63.45 50.61
SNR-GCN (Ours) 78.58 69.94 78.13 68.14 70.42 51.45
SNR-GAT (Ours) 62.87 65.35 77.84 61.95 68.71 60.19

H. Effiency Analysis138
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