
Supplementary Material of the Paper: Learning in Distributed Contextual
Linear Bandits Without Sharing the Context

A Proofs and Remarks for Section 3: Contextual Linear Bandits with Known
Context Distribution

Remark. We note that, to reduce the multi-context problem to a single context problem in the
case of known context distribution, the straightforward approach that replaces the actual context
realizations {Xt,a}a2A with the fixed set {EPa [Xt,a]}a2A, and uses this latter set as X in ⇤, does
not work and can lead to linear regret in some cases. For instance consider the case where d = 1,A =
{1, 2}, Xt,a 2 {�1, 1}8a 2 A, ✓? = 1 and Xt,1 takes the value 1 with probability 3/4 and �1
otherwise, while Xt,2 takes the values 1,�1 with probability 1/2. Then clearly hEP1 [Xt,1], ✓?i >
hEP2 [Xt,2], ✓?i, however, choosing at = 18t 2 [T ] leads to E[RT ] � T/8 since it holds that
Xt,1 = �1, Xt,2 = 1 with probability 1/8.

Downlink Communication. Note that in our setup we assume that the central learner does not have
any communication constraints when communicating with the distributed agents. Yet our algorithm
makes frugal use of this ability: the central learner only sends the updated parameter vector ✓̂t. We
can quantize ✓̂t without performance loss if the downlink were also communication constrained using
⇡ 5d bits and an approach similar to the one in Algorithm 2 - yet we do not expand on this in this
paper, as our focus is in minimizing uplink communication costs.

A.1 Proof of Theorem 1

Theorem 1. Algorithm 1 uses 1 bit per reward and 0 bits per context. Under Assumption 1, it
achieves a regret RT = RT (⇤) +O(

p
T log T ) with probability at least 1� 1

T .

Proof. It is obvious that the agent only sends 1 bit to the central learner to represent rt using SQ1,
hence, the algorithm uses 0 bits per context and 1 bit per reward. We next bound the regret of our
algorithm as following. The regret can be expressed as

RT =
TX

t=1

max
a2A

hXt,a, ✓?i � hXt,at , ✓?i

=
TX

t=1

hargmax
Xt,a

hXt,a, ✓?i, ✓?i � hargmax
Xt,a

hXt,a, ✓̂ti, ✓?i

=
TX

t=1

✓
hargmax

Xt,a

hXt,a, ✓?i, ✓?i � hE[argmax
Xt,a

hXt,a, ✓?i], ✓?i
◆

�
✓
hargmax

Xt,a

hXt,a, ✓̂ti, ✓?i � hE[argmax
Xt,a

hXt,a, ✓̂ti|✓̂t], ✓?i
◆

+

✓
hE[argmax

Xt,a

hXt,a, ✓?i], ✓?i � hE[argmax
Xt,a

hXt,a, ✓̂ti|✓̂t], ✓?i
◆
. (15)

To bound RT , we bound each of the three lines in the last expression. For the second term denoted
by ⌃t =

Pt
i=1

⇣
hargmaxXi,ahXi,a, ✓̂ii, ✓?i � hE[argmaxXi,ahXi,a, ✓̂ii|✓̂i], ✓?i

⌘
, we have that

E[⌃t+1|⌃t] = ⌃t + E

hargmax

Xt,a

hXt,a, ✓̂ti, ✓?i � hE[argmax
Xt,a

hXt,a, ✓̂ti|✓̂t], ✓?i|⌃t

�

= ⌃t + E

E

hargmax

Xt,a

hXt,a, ✓̂ti, ✓?i � hE[argmax
Xt,a

hXt,a, ✓̂ti|✓̂t], ✓?i|⌃t, ✓̂t

�
|⌃t

�

= ⌃t + E

E

hargmax

Xt,a

hXt,a, ✓̂ti, ✓?i � hE[argmax
Xt,a

hXt,a, ✓̂ti|✓̂t], ✓?i|✓̂t
�
|⌃t

�

= ⌃t + E

hE[argmax

Xt,a

hXt,a, ✓̂ti|✓̂t], ✓?i � hE[argmax
Xt,a

hXt,a, ✓̂ti|✓̂t], ✓?i|⌃t

�
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= ⌃t. (16)

We also have that

|⌃t � ⌃t�1|  khargmax
Xt,a

hXt,a, ✓̂ti, ✓?i � hE[argmax
Xt,a

hXt,a, ✓̂ti], ✓?ikk✓?k

 khargmax
Xt,a

hXt,a, ✓̂ti, ✓?ik+ khE[argmax
Xt,a

hXt,a, ✓̂ti], ✓?ik

 k argmax
Xt,a

hXt,a, ✓̂tikk✓?k+ kE[argmax
Xt,a

hXt,a, ✓̂ti]kk✓?k  2. (17)

Hence, ⌃t is a martingale with bounded difference. By Azuma–Hoeffding inequality [45], we have
that k⌃T k  C

p
T log T with probability at least 1 � 1

2T . Similarly, the first line in (15) is a
martingale with bounded difference, hence, the following holds with probability at least 1� 1

2T
�����

TX

t=1

hargmax
Xt,a

hXt,a, ✓?i, ✓?i � hE[argmax
Xt,a

hXt,a, ✓?i], ✓?i

�����  C
p
T log T . (18)

By substituting in (15) and using the union bound we get that the following holds with probability at
least 1� 1

T

RT  C
p
T log T +

TX

t=1

✓
hE[argmax

Xt,a

hXt,a, ✓?i], ✓?i � hE[argmax
Xt,a

hXt,a, ✓̂ti|✓̂t], ✓?i
◆

= C
p
T log T +

TX

t=1

hX⇤(✓?), ✓?i � hX⇤(✓̂t), ✓?i

= C
p
T log T +

TX

t=1

hX⇤(✓?), ✓?i � hXt, ✓?i. (19)

We also have by definition of X⇤(✓?) that for any given ✓, ✓?

hX⇤(✓?), ✓?i = E[max
Xt,a

hXt,a, ✓?i]

� E[hargmax
Xt,a

hXt,a, ✓i, ✓?i] = hX⇤(✓), ✓?i. (20)

Hence, we have that maxX2X hX, ✓?i = hX⇤(✓?), ✓?i. By substituting in (19), we get that

RT  C
p
T log T +

TX

t=1

max
X2X

hX, ✓?i � hXt, ✓?i = C
p
T log T +RT (⇤), (21)

where RT (⇤) is the regret of the subroutine ⇤. ⇤

A.2 Proof of Corollary 1

Corollary 1. Suppose we are given X̃? that satisfies (12). Then, there exists an algorithm ⇤ for
which Algorithm 1 achieves RT = Õ(d

p
T + ✏T

p
d) with probability at least 1� 1

T .

Proof. ⇤ assumes that the reward rt is generated according to hX̃?(✓̂t), ✓?i+ ⌘t, while it is actually
generated according to

rt = hX?(✓̂t), ✓?i+ ⌘t = hX̃?(✓̂t), ✓?i+ ⌘t + f(✓̂t), (22)

where f(✓̂t) = hX?(✓̂t)� X̃?(✓̂t), ✓?i. We have that

|f(✓̂t)|  kX?(✓̂t)� X̃?(✓̂t)kk✓?k  ✏. (23)

Hence, the rewards follow a misspecified linear bandit model [24]. It was shown in [24] that for the
single context case, there is an algorithm ⇤ that achieves RT (⇤) = Õ(d

p
T + ✏T ) with probability

at least 1� 1
T . The corollary follows from Theorem 1 by noting that RT (⇤) is defined based on the

true X? as in (5). ⇤
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B Proofs of Section 4: Contextual Linear Bandits with Unknown Context
Distribution

B.1 Proof of Theorem 2

Theorem 2. Algorithm 2 satisfies that for all t: Xt 2 Q; and Bt  1 + log2(2d+ 1) + 5.03d bits.
Under assumptions 1, 2, it achieves a regret RT = O(d

p
T log T ) with probability at least 1� 1

T .

Proof. We start by proving some properties about the quantized values X̂t, r̂t, X̂2
t . We first note that

be definition of SQ, we have that

m|(X̂t �Xt,at)j |  1. (24)

Hence,

|(X̂2
t �X2

t,at
)j | = |(X̂2

t � (X̂t +Xt,at � X̂t)
2)j | = |(2(Xt,at � X̂t)X̂t + (Xt,at � X̂t)

2)i|

 2|(Xt,at � X̂t)i||(X̂t)i|+ |((Xt,at � X̂t)
2)i| 

2

m
+

1

m2
 3

m
. (25)

We also have that

E[X̂(D)
t |X2

t,at
] = E[X̂2

t + e2t |X2
t,at

] = E[E[X̂2
t + e2t |X2

t,at
, X̂t]|X2

t,at
]

= E[X̂2
t + E[e2t |X2

t,at
� X̂2

t ]|X2
t,at

] = E[X̂2
t +X2

t,at
� X̂2

t |X2
t,at

] = X2
t,at

. (26)

In summary, from this and the definition of SQ, we get that

m|(X̂t �Xt,at)j |  1,E[X̂t|Xt,at ] = Xt,at

m|X̂(D)
t �X2

t,at
|  3,E[X̂(D)

t |X2
t,at

] = X2
t,at

|r̂t � rt|  1,E[r̂t|rt] = rt (27)

We next show that Xt 2 dom(h). By definition of SQ, we have that Xt 2 Nd. We also have that

kXtk1 =
dX

i=1

m|(Xt,at)i|  1 + b
p
d|(Xt,at)i|c  d+

dX

i=1

b
p
d|(Xt,a)i|c2

 d+ dkXt,atk2  2d. (28)

Therefore, we have that Xt 2 Q = dom(h).

We next show the upper bound on the number of bits Bt. We have that r̂t uses 1 bit, the sign vector
st uses d bits, e2t uses d bits and Xt uses log(|Q|) bits. We bound |Q| as follows. The number of
non-negative solutions for the equation kak1 = x for a 2 Nd, x 2 N is

�d+x�1
x

�


�d+x
x

�
=

�d+x
d

�
,

hence,

|Q|  (2d+ 1)

✓
3d

d

◆
 (2d+ 1)(e

3d

d
)d. (29)

Hence, we have that
Bt  1 + log(2d+ 1) + (2 + log(3e))d. (30)

We next show the regret bound. We start by bounding the regret in iteration t by the distance between
✓?, ✓̂t�1. From step 7 of Algorithm 2, we have that hXt,at , ✓̂t�1i � hXt,a, ✓̂t�1i8a 2 A, hence, we
have that

max
a2A

hXt,a, ✓?i � hXt,at , ✓?i  max
a2A

hXt,a �Xt,at , ✓?i �max
a2A

hXt,a �Xt,at , ✓̂t�1i

 max
a2A

kXt,a �Xt,atkk✓? � ✓̂t�1k  2k✓? � ✓̂t�1k. (31)

We next bound the distance k✓? � ✓̂t�1k. Let us denote et = X̂t �Xt,at , ⌘̂t = ⌘t + (r̂t � rt), Et =
Xt,atX

T
t,at

� (Vt � Vt�1). We have that

k✓? � ✓̂tk = k✓? � V �1
t

tX

i=1

r̂iX̂ik = k✓? � V �1
t

tX

i=1

(Xi,aiX
T
i,ai

✓? + riei + ⌘̂iXi,ai + ⌘̂iei)k
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= kV �1
t

tX

i=1

(Ei✓? + riei + ⌘̂iXi,ai + ⌘̂iei)k

 kV �1
t k(k

tX

i=1

Eik+ (|ri|+ |⌘i|)k
tX

i=1

eik+ k
tX

i=1

⌘̂iXi,aik

 kV �1
t k(k

tX

i=1

Eik+ (1 + |⌘i|)k
tX

i=1

eik+ k
tX

i=1

⌘̂iXi,aik. (32)

We next bound each of the values in the last expression. As ⌘i is subgaussian we have that with
probability at least 1 � 1

5T 2 , we have that |⌘i|  C log T8i 2 [T ]. We also have that, using (27),
Se
t =

Pt
i=1 ei is a martingale with bounded difference, hence, by Azuma–Hoeffding inequal-

ity, we get that with probability at least 1 � 1
5dT 2 we have that |(Se

t )j |  Cp
d

p
t log(dT ); note

that |(et)i|  1p
d

. Hence, by the union bound we get that with probability at least 1 � 1
5T 2 we

have that k
Pt

i=1 eik  C
p
t log(dT ). Similarly, conditioned on X1,a1 , ..., Xt,at ,

Pt
i=1 ⌘̂iXi,ai

is a martingale with bounded difference, hence, with probability at least 1 � 1
5dT 2 we have that

|(
Pt

i=1 ⌘̂iXi,ai)j |  C
qPt

i=1(Xi,ai)
2
j log(dT ). Hence, with probability at least 1� 1

5T 2 we have

that k
Pt

i=1 ⌘̂iXi,aik  C
qPt

i=1 kXi,aik2 log(dT )  C
p
t log(dT ). Summing up, we get that

with probability at least 1� 3
5T 2

k✓? � ✓̂tk  kV �1
t k(k

tX

i=1

Eik+ C
p
t log(dT )). (33)

It remains to bound kV �1
t k, k

Pt
i=1 Eik which we do in the following by starting with k

Pt
i=1 Eik.

We have that

Ei = Xi,aiX
T
i,ai

� X̂iX̂
T
i + diag(X̂iX̂

T
i )� diag(X̂(D)

t )

= diag(X̂iX̂
T
i )� 2Xi,aie

T
i � eie

T
i � diag(X̂(D)

t )

= 2diag(Xi,aie
T
i )� 2Xi,aie

T
i � (eie

T
i � diag(eieTi ))� diag(X̂(D)

t �X2
i,ai

). (34)

Hence, we have that

k
tX

i=1

Eik 2k
tX

i=1

diag(Xi,aie
T
i )k+ 2k

tX

i=1

Xi,aie
T
i k

+ k
tX

i=1

eie
T
i � diag(eieTi )k+ k

tX

i=1

diag(X̂(D)
t �X2

i,ai
)k. (35)

We have that, using (27), conditioned on X1,a1 , ..., Xt,at ,
Pt

i=1 diag(Xi,aie
T
i ) is a martingale

with bounded difference, hence, similar to what we did before using Azuma–Hoeffding in-
equality and the union bound we get that with probability at least 1 � 1

20T 2 , we have that
k
Pt

i=1 diag(Xi,aie
T
i )k  Cp

d

p
t log(dT ). Similarly, with probability at least 1 � 1

20T 2 , we have

thatk
Pt

i=1 diag(X̂(D)
t � X2

i,ai
)k  Cp

d

p
t log(dT ). We next turn to bounding k

Pt
i=1 Xi,aie

T
i k.

Conditioned on X1,a1 , ..., Xt,at , we have that by Azuma–Hoeffding, with probability at least 1� 1
d2T 2 ,

we have

|(
tX

i=1

Xi,aie
T
i )jk| 

Cp
d

vuut
tX

i=1

(Xi,ai)
2
j log(dT ). (36)

We notice that taking the absolute value of all elements of a matrix does not decrease its maximum
eigenvalue, hence, by the union bound we have that with probability at least 1� 1

20T 2 we have that

k
tX

i=1

Xi,aie
T
i k 

C
p
log(dT )p
d

k1[

vuut
tX

i=1

(Xi,ai)
2
1, ...,

vuut
tX

i=1

(Xi,ai)
2
d]k
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
C
p
log(dT )p
d

vuutd
tX

i=1

kXi,aik2  C
p

t log(dT ). (37)

To bound k
Pt

i=1 eie
T
i � diag(eieTi )k, we notice that for all elements except the diagonal we have

that E[(ei)j(ei)k] = E[(ei)j(ei)k|Xt,at ] = E[(ei)k|Xt,at ]E[(ei)j |Xt,at ] = 0, j 6= k. Hence, it
can be shown that

Pt
i=1(ei)j(ei)k is a martingale with bounded difference for j 6= k, hence, with

probability at least 1 � 1
20d2T 2 , we have that |

Pt
i=1(ei)j(ei)k| 

C
d

p
t log(dT ). Hence, by the

union bound we get that with probability at least 1� 1
20T 2

k
tX

i=1

eie
T
i � diag(eieTi )k 

C
p
t log(dT )

d
k11T k  C log(dT ). (38)

Hence, from (35) and the union bound we have that with probability at least 1� 1
5T 2

k
tX

i=1

Eik  C
p
t log(dT ). (39)

We next turn to bounding kV �1
t k. We have from (39), and Assumption 2, and the union bound, the

following holds with probability at least 1� 2
5T 2

kVtk = k
tX

i=1

Xi,aiX
T
i,ai

� Eik � k
tX

i=1

Xi,aiX
T
i,ai

k � kEik � C(
t

d
�
p
t log(dT )). (40)

Hence for t � 4 log(dT ), we have that with probability at least 1� 2
5T 2 , it holds that kVtk � C t

2d ,
and hence,

kV �1
t k  C

d

t
. (41)

Hence, from (32) and the union bound, the following holds with probability at least 1� 1
T 2

k✓? � ✓̂tk  Cd

p
log(dT )p

t
. (42)

Therefore, from (31) and the union bound again we have that the following holds with probability at
least 1� 1

T

RT 
TX

t=1

Cd

p
log(dT )p

t
 Cd

p
log(dT )(1 +

Z T

t=1

1p
t
dt)

 2Cd
p
T log(dT ). (43)

⇤
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