
Published as a conference paper at ICLR 2024

GRAPH GENERATION WITH K2–TREES

Yunhui Jang, Dongwoo Kim, Sungsoo Ahn
Pohang University of Science and Technology
{uni5510, dongwookim, sungsoo.ahn}@postech.ac.kr

ABSTRACT

Generating graphs from a target distribution is a significant challenge across many
domains, including drug discovery and social network analysis. In this work, we
introduce a novel graph generation method leveraging K2–tree representation,
originally designed for lossless graph compression. The K2–tree representation
encompasses inherent hierarchy while enabling compact graph generation. In addi-
tion, we make contributions by (1) presenting a sequential K2–tree representation
that incorporates pruning, flattening, and tokenization processes and (2) introducing
a Transformer-based architecture designed to generate the sequence by incorporat-
ing a specialized tree positional encoding scheme. Finally, we extensively evaluate
our algorithm on four general and two molecular graph datasets to confirm its
superiority for graph generation.

1 INTRODUCTION

Generating graph-structured data is a challenging problem in numerous fields, such as molecular
design (Li et al., 2018; Maziarka et al., 2020), social network analysis (Grover et al., 2019), and public
health (Yu et al., 2020). Recently, deep generative models have demonstrated significant potential
in addressing this challenge (Simonovsky & Komodakis, 2018; Jo et al., 2022; Vignac et al., 2022).
In contrast to the classic random graph models (Albert & Barabási, 2002; Erdős et al., 1960), these
methods leverage powerful deep generative paradigms, e.g., variational autoencoders (Simonovsky &
Komodakis, 2018), normalizing flows (Madhawa et al., 2019), and diffusion models (Jo et al., 2022).

The graph generative models can be categorized into three types by the graph representation the
models generate. First, an adjacency matrix is the most common representation (Simonovsky &
Komodakis, 2018; Madhawa et al., 2019; Liu et al., 2021). Secondly, a string-based representation
extracted from depth-first tree traversal on a graph can represent the graph as a sequence (Ahn
et al., 2022; Goyal et al., 2020; Krenn et al., 2019). Finally, representing a graph as a composition
of connected motifs, i.e., frequently appearing subgraphs, can preserve the high-level structural
properties (Jin et al., 2018; 2020). We describe the representations on the left of Figure 1.

Although there is no consensus on the best graph representation, two factors drive their development.
First is the need for compactness to reduce the complexity of graph generation and simplify the search
space over graphs. For example, to generate a graph with N vertices and M edges, the adjacency
matrix requires specifying N2 elements. In contrast, the string representation typically requires
specifying O(N +M) elements, leveraging the graph sparsity (Ahn et al., 2022; Goyal et al., 2020;
Segler et al., 2018). Motif representations also save space by representing frequently appearing
subgraphs by basic building blocks (Jin et al., 2018; 2020).

The second factor driving the development of new graph representations is the presence of a hierarchy
in graphs. For instance, community graphs possess underlying clusters, molecular graphs consist of
distinct chemical fragments, and grid graphs exhibit a repetitive coarse-graining structure. In this
context, motif representations (Jin et al., 2018; 2020) address the presence of a hierarchy in graphs;
however, they are limited to a fixed vocabulary of motifs observed in the dataset or a specific domain.

Contribution. In this paper, we propose a novel graph generation framework, coined Hierarchical
Graph Generation with K2–Tree (HGGT), which can represent not only non-attributed graphs
but also attributed graphs in a compact and hierarchical way without domain-specific rules. The
right-side table of Figure 1 emphasizes the benefits of HGGT. Since the K2–tree recursively redefines

1

Published as a conference paper at ICLR 2024

1 2
3
N

CC

C
4

<latexit sha1_base64="Zid2Xfb3vQsoiL4kBlPkrf/Zr4k=">AAACDXicbVDLTsJAFJ3iC/FVdelmIjFxRVrja0l0gUtM5JFAQ6bDFCZMp83MLYE0fIM/4Fb/wJ1x6zf4A36HA3Qh4ElucnLOvbknx48F1+A431ZubX1jcyu/XdjZ3ds/sA+P6jpKFGU1GolINX2imeCS1YCDYM1YMRL6gjX8wf3UbwyZ0jySTzCOmReSnuQBpwSM1LHtNrAR+EFaUSTu40mlYxedkjMDXiVuRoooQ7Vj/7S7EU1CJoEKonXLdWLwUqKAU8EmhXaiWUzogPRYy1BJQqa9dJZ8gs+M0sVBpMxIwDP170VKQq3HoW82QwJ9vexNxf+8VgLBrZdyGSfAJJ0/ChKBIcLTGnCXK0ZBjA0hVHGTFdM+UYSCKWvhy2getWCKcZdrWCX1i5J7Xbp6vCyW77KK8ugEnaJz5KIbVEYPqIpqiKIhekGv6M16tt6tD+tzvpqzsptjtADr6xcUS5wV</latexit>

Graph G

4321
01011

01102

11113

11004

<latexit sha1_base64="RTrCUFr9p1pZS54fxb8K9MVLwUM=">AAACFnicbVDLSsNAFJ3UV62vqCtxM1gEVyURX8uqG5cV7APaUCaTSTt28mDmRhpC8Tf8Abf6B+7ErVt/wO9w2mZhqwcuHM65l3vvcWPBFVjWl1FYWFxaXimultbWNza3zO2dhooSSVmdRiKSLZcoJnjI6sBBsFYsGQlcwZru4HrsNx+YVDwK7yCNmROQXsh9TgloqWvudYANwfWzS++eUBbSFAcEJB+OumbZqlgT4L/EzkkZ5ah1ze+OF9EkYCFQQZRq21YMTkYkcCrYqNRJFIsJHZAea2sakoApJ5u8MMKHWvGwH0ldIeCJ+nsiI4FSaeDqTn1fX817Y/E/r52Af+FkPIwT0N9NF/mJwBDhcR7Y45JREKkmhEqub8W0TyShoFOb2TKcnlrSwdjzMfwljeOKfVY5vT0pV6/yiIpoHx2gI2Sjc1RFN6iG6oiiR/SMXtCr8WS8Ge/Gx7S1YOQzu2gGxucP1OigTQ==</latexit>

Adjacency matrix

CN(C)C

<latexit sha1_base64="YbTbqjReo58cgm5Etxs9VfNTfkQ=">AAACEnicbVDLSsNAFJ3UV62vqLhyEyyCG0sivpZFNy4r2ge0oUwmk3boZBJmbqQl9C/8Abf6B+7ErT/gD/gdTtosbOuBgcM59849HC/mTIFtfxuFpeWV1bXiemljc2t7x9zda6gokYTWScQj2fKwopwJWgcGnLZiSXHocdr0BreZ33yiUrFIPMIopm6Ie4IFjGDQUtc86AAdghekDyCZ6J1mf/njrlm2K/YE1iJxclJGOWpd86fjRyQJqQDCsVJtx47BTbEERjgdlzqJojEmA9yjbU0FDqly00n8sXWsFd8KIqmfAGui/t1IcajUKPT0ZIihr+a9TPzPaycQXLspE3ECVJDpoSDhFkRW1oXlM0kJ8JEmmEims1qkjyUmoBubuTKcRi3pYpz5GhZJ46ziXFYu7s/L1Zu8oiI6REfoBDnoClXRHaqhOiIoRS/oFb0Zz8a78WF8TkcLRr6zj2ZgfP0CmZqekQ==</latexit>

String-based

N
C

<latexit sha1_base64="kcwqgavbGZEPLD0gpy5yJbcdTSo=">AAACEXicbVDLSsNAFJ34rPUVHzs3wSK4sSTia1l040aoYB/QhjKZTNqhk0yYuZHW0K/wB9zqH7gTt36BP+B3OGmzsK0HBg7n3Dv3cLyYMwW2/W0sLC4tr6wW1orrG5tb2+bObl2JRBJaI4IL2fSwopxFtAYMOG3GkuLQ47Th9W8yv/FIpWIieoBhTN0QdyMWMIJBSx1zvw10AF6Q3glgwUn2lT/qmCW7bI9hzRMnJyWUo9oxf9q+IElIIyAcK9Vy7BjcFEtghNNRsZ0oGmPSx13a0jTCIVVuOk4/so604luBkPpFYI3VvxspDpUahp6eDDH01KyXif95rQSCKzdlUZwAjcjkUJBwC4SVVWH5TFICfKgJJpLprBbpYYkJ6MKmrgwmUYu6GGe2hnlSPy07F+Xz+7NS5TqvqIAO0CE6Rg66RBV0i6qohgh6Qi/oFb0Zz8a78WF8TkYXjHxnD03B+PoFrC+eDw==</latexit>

Motif-based

Root

0101

1 1 1

0011 11111001

1

N
C

N
C

+ +

<latexit sha1_base64="Q1y8FbTyjvaFrYO/F3+Uw1II3zo=">AAAEfnichVJbb9MwGHVLgVEu2+ARIVlMHa2UFTtp0+YBaYMXJF6GxC7SUibHdbuw3LCdscoyv4E/xwO/hFectNWWXZilqEff8fm+U58vyKJQSIT+1Or3GvcfPFx51Hz85Omz1bX15/sizTllezSNUn4YEMGiMGF7MpQRO8w4I3EQsYPg9EPBH5wxLsI0+SJnGRvFZJqEk5ASaUrH67VfLT/NGCcy5QmJmcpSodu+ZOeybK7i2ZQzlmiV6w7cfAerXBDlTKs2tnBHW7BCcTa+YNq2+e1A32+22tmxurm/tr7fSs1nF13KJnd5nrEoSn9odfYf07Zl32Eamxu3mL4YYC5etX2JnI/vW26n2ZqPCiZqZ/ytq3/uND99VbZeFre2pPm3UB+vbeAuKg9EXddzB55jAPZsb4DhktoAi7NrMvztj1OaxyyRNCJCHGGUyZEiXIY0Yrrp54JlhJ6SKTsysHgyMVKlWQ1bpjKGk5SbL5GwrF5WqHNhULWLIrEQszgw6pjIE3GVK4o3cUe5nAxHKkyyXLKEzodP8gjKFBbLCcchZ1RGMwMI5aHxD+kJ4YRKs8JVV3P7TX/MJmb1q9HyaaCVeTI89Dxkmcfr9RyM3AINHAc5g2u6MveFzEOeiwcW6toII88rgOs57nXRMuZStwzGWmZmLTO7plts9WKcjYfY6ZUyp9crxvX7yDSoLMLtYN/uYrfb/9zb2H6/WIkV8BK8Bm2AwQBsg49gF+wBWvtbf1XfrL9pgMZmY6vxdn61XltoXoDKaQz/Afk0cXI=</latexit>

K2–tree

Method Repr. H A DA

GraphRNN Adj. ✗ ✗ ✓
GraphGen String ✗ ✓ ✓
JT-VAE Motif ✓ ✓ ✗
GDSS Adj. ✗ ✓ ✓
HGGT (ours) K2–tree ✓ ✓ ✓

Figure 1: (Left) Various representations used for graph generation. (Right) Comparing graph
generative methods in terms of used graph representation. The comparison is made with respect
to a method being hierarchical (H), able to handle attributed graphs (A), and domain-agnostic (DA).

a graph into K2 substructures, our representation becomes more compact and enables consideration
of hierarchical structure in adjacency matrices.1

Specifically, we model the process of graph generation as an autoregressive construction of the
K2–tree. To this end, we design a sequential K2–tree representation that recovers the original
K2–tree when combined sequentially. In particular, we propose a two-stage procedure where (1) we
prune the K2–tree to remove redundancy arising from the symmetric adjacency matrix for undirected
graphs and (2) subsequently flatten and tokenize the K2–tree into a sequence to minimize the number
of decisions required for the graph generation.

We employ the Transformer architecture (Vaswani et al., 2017) to generate the sequential K2–tree
representation of a graph. To better incorporate the positional information of each node in a tree,
we design a new positional encoding scheme specialized to the K2–tree structure. Specifically, we
represent the positional information of a node by its pathway from the root node; the proposed
encoding enables the reconstruction of the full K2–tree given just the positional information.

To validate the effectiveness of our algorithm, we test our method on popular graph generation
benchmarks across six graph datasets: Community, Enzymes (Schomburg et al., 2004), Grid, Planar,
ZINC (Irwin et al., 2012), and QM9 (Ramakrishnan et al., 2014). Our empirical results confirm that
HGGT significantly outperformed existing graph generation methods on five out of six benchmarks,
verifying the capability of our approach for high-quality graph generation across diverse applications.

To summarize, our key contributions are as follows:

• We propose a new graph generative model based on adopting the K2–tree as a compact,
hierarchical, and domain-agnostic representation of graphs.

• We introduce a novel, compact sequential K2–tree representation obtained from pruning,
flattening, and tokenizing the K2–tree.

• We propose an autoregressive model to generate the sequential K2–tree representation using
Transformer architecture with a specialized positional encoding scheme.

• We validate the efficacy of our framework by demonstrating state-of-the-art graph generation
performance on five out of six graph generation benchmarks.

2 RELATED WORK

Graph representations for graph generation. The choice of graph representation is a crucial aspect
of graph generation, as it significantly impacts the efficiency and allows faithful learning of the
generative model. The most widely used one is the adjacency matrix, which simply encodes the
pairwise relationship between nodes (Jo et al., 2022; Vignac et al., 2022; You et al., 2018; Liao et al.,
2019; Shi et al., 2020; Luo et al., 2021; Kong et al., 2023; Chen et al., 2023). However, several
methods (Vignac et al., 2022; You et al., 2018; Jo et al., 2022) suffer from the high complexity in
generating the adjacency matrix, especially for large graphs.

1This differs from the conventional hierarchical community structure. We provide the discussion in Ap-
pendix H.

2

Published as a conference paper at ICLR 2024

87654321
011000001
100100002
110000003
010000004
000000105
000000016
000011017
000001108

01100000
10010000
11000000
01000000
00000010
00000001
00001101
00000110

0110
1001
1100
0100

0010
0001
1101
0110

0110
1001
11
01

10
01

1101
0110

Level 0 (root) Level 1 Level 2 Level 3

2

1 8

7

6

54

3

Root

1 1 0 1 0 0 1 1 1 1 00 0 1 1 0 1 0 0 1 1 1 1 0

101 11011

0 1 1 0 Level 1

Level 0

Level 2

Level 3
<latexit sha1_base64="IVHIVXjFWEDi3d4P26svj/LYm4Q=">AAACFHicbVDLSsNAFJ3UV62vqAsXbgaL4Kok4mtZdKHuKtgHtKFMppN26OTBzI20hPyGP+BW/8CduHXvD/gdTtosbOuBC4dz7uXee9xIcAWW9W0UlpZXVteK66WNza3tHXN3r6HCWFJWp6EIZcsligkesDpwEKwVSUZ8V7CmO7zJ/OYTk4qHwSOMI+b4pB9wj1MCWuqaBx1gI3C95D6IYsB9SaIBTvFt1yxbFWsCvEjsnJRRjlrX/On0Qhr7LAAqiFJt24rASYgETgVLS51YsYjQIemztqYB8ZlykskDKT7WSg97odQVAJ6ofycS4is19l3d6RMYqHkvE//z2jF4V07Cs99YQKeLvFhgCHGWBu5xySiIsSaESq5vxXRAJKGgM5vZMpqeWtLB2PMxLJLGacW+qJw/nJWr13lERXSIjtAJstElqqI7VEN1RFGKXtArejOejXfjw/icthaMfGYfzcD4+gUwoZ7L</latexit>

Input graph G

<latexit sha1_base64="C6HUx3SvuMIIz2GSNixrYbmxT78=">AAACKnicbVDLSgNBEJz1bXytevQyGAQvhl3xdYx68RjBJEISwuxsr47Ozi4zvZKw5Cv8DX/Aq/6BN/EqfoeTTQ5GLWgoqrrp7gpSKQx63rszNT0zOze/sFhaWl5ZXXPXNxomyTSHOk9koq8DZkAKBXUUKOE61cDiQEIzuD8f+s0H0EYk6gr7KXRidqNEJDhDK3XdvTZCD4MoPw3vGAfF+zRmqEWPMhVSgYaaLCgUDmbQdctexStA/xJ/TMpkjFrX/WqHCc9iUMglM6bleyl2cqZRcAmDUjszkDJ+z26gZaliMZhOXrw1oDtWCWmUaFsKaaH+nMhZbEw/DmynvfDW/PaG4n9eK8PopJMLlWZoPx4tijJJMaHDjGgoNHCUfUsY18LeSvkt04yjTXJiS290askG4/+O4S9p7Ff8o8rh5UG5ejaOaIFskW2yS3xyTKrkgtRInXDySJ7JC3l1npw35935GLVOOeOZTTIB5/Mbxt2omg==</latexit>

Adjacency matrix and its submatrices

<latexit sha1_base64="xFeCwvcBBzYzjVM1mblIwEIuP1g=">AAAEinichVNdb9MwFE27AqMMtsEjLxZTUStllZ206SKEtAEPSLwMaV/SUibHdbsw5wPbGass80v4Wzzwb3DSVlu2lVmKcnSPz70n996EGYuEhPBvrb7SePT4yerT5rO15y/WNzZfHok054QekpSl/CTEgrIooYcykoyeZJziOGT0OLz4WPDHl5SLKE0O5DSjwxhPkmgcESxN6Gyz9rsVpBnlWKY8wTFVWSp0O5D0SpbJVTydcEoTrXLdAW/fgyoXspxq1UY26mgbVChOR9dM2zHvDgiCZqudnan782v7x1JqVrvIUiZ5yPOUMpb+1OryP6Yd23nANDI3lpi+LmAu3rZ9g5yV79tep9malQrHam/0vat/7TW/fFOOXgS3t6X5WqBBEGN5TjBTB/psYwt1YXkA7Hq+N/BdA5Dv+AMEFtSWNT/7Zp5/glFK8pgmkjAsxCmCmRwqzGVEGNXNIBc0w+QCT+ipgUX7xFCVxjVomcgIjFNunkSCMnpToa6EQdUsCsdCTOPQqAvf4jZXBO/jTnM53hmqKMlySRMyKz7OGZApKBYVjCJOiWRTAzDhkfEPyDnmmEizzlVXM/vNYETH5jeojplPQq1My9CO70PbNK/XcxH0CjRwXegO7ujKHZjLfOh7aGDDrgMR9P0CeL7r3RUtRl7qFoOxFzOzFzO7o5tv+Lycg3aQ2ytlbq9XlOv3oUlQWYTl4MjpIq/b/9rb2v0wX4lV67X1xmpbyBpYu9Zna986tEh9pd6pO3W3sdZwGn7j3exqvTbXvLIqp/HpH1vJdY0=</latexit>

K2–tree T

Figure 2: K2–tree with K = 2. The K2–tree describes the hierarchy of the adjacency matrix
iteratively being partitioned to K ×K submatrices. It is compact due to summarizing any zero-filled
submatrix with a size larger than 1× 1 (shaded in grey) by a leaf node u with label xu = 0.

To address this issue, researchers have developed graph generative models that employ alternative
graph representations such as motif-based representations and string-based representations. For
instance, Ahn et al. (2022); Segler et al. (2018) proposed to generate molecule-specific string
representations, and Jin et al. (2018; 2020); Yang et al. (2021) suggested generative models that
extract reasonable fragments from data and generate the set of motifs. However, these methods rely
on domain-specific knowledge and are restricted to molecular data.

Lossless graph compression. Lossless graph compression (Besta & Hoefler, 2018) aims to
reduce the size and complexity of graphs while preserving their underlying structures. Specifically,
several works (Brisaboa et al., 2009; Raghavan & Garcia-Molina, 2003) introduced hierarchical
graph compression methods that compress graphs leveraging their hierarchical structure. In addition,
Bouritsas et al. (2021) derived the compressed representation using a learning-based objective.

3 K2–TREE REPRESENTATION OF A GRAPH

In this section, we introduce the K2–tree as a hierarchical and compact representation of graphs, as
originally proposed for graph compression (Brisaboa et al., 2009). In essence, the K2–tree is a K2-ary
ordered tree that recursively partitions the adjacency matrix into K ×K submatrices.2 Its key idea is
to summarize the submatrices filled only with zeros with a single tree-node, exploiting the sparsity
of the adjacency matrix. From now on, we indicate the tree-node as a node. The representation is
hierarchical, as it associates each parent and child node pair with a matrix and its corresponding
submatrix, respectively, as described in Figure 2.

To be specific, we consider the K2–tree representation (T ,X) of an adjacency matrix A as a K2-ary
tree T = (V, E) associated with binary node attributes X = {xu : u ∈ V}. Every non-root node
is uniquely indexed as (i, j)-th child of its parent node for some i, j ∈ {1, . . . ,K}. The tree T is
ordered so that every (i, j)-th child node is ranked K(i−1)+ j among its siblings. Then the K2–tree
satisfies the following conditions:

• Each node u is associated with a submatrix A(u) of the adjacency matrix A.

• If the submatrix A(u) for a node u is filled only with zeros, xu = 0. Otherwise, xu = 1.

• A node u is a leaf node if and only if xu = 0 or the matrix A(u) is a 1× 1 matrix.

2By default, we assume the number of nodes in the original graph to be the power of K2.

3

Published as a conference paper at ICLR 2024

4321
01101
10012
10013
01104

Root

1001

1 1 1

1001 01100110

1

Root

1

1001

1

010010

1

<latexit sha1_base64="y9ZFRzkmDuRgDysRJfh2JPjDtSw=">AAACHnicbVDJTgJBEO1xRdxQj15aiYknMmPcjkQvHjHKkgAhPU0NdOhZ7K4xkAlnf8Mf8Kp/4M141R/wO2xgDgJW0umX96pSr54bSaHRtr+thcWl5ZXVzFp2fWNzazu3s1vRYaw4lHkoQ1VzmQYpAiijQAm1SAHzXQlVt3c90quPoLQIg3scRND0WScQnuAMDdXKHTQQ+uh6yR08xBBwoEPacEPZ1gPffMlg2Mrl7YI9LjoPnBTkSVqlVu6n0Q557EOAXDKt644dYTNhCgWXMMw2Yg0R4z3WgbqBAfNBN5PxKUN6ZJg29UJlXoB0zP6dSJivR9ZMp8+wq2e1EfmfVo/Ru2wmIohiNGdOFnmxpBjSUS60LRRwlAMDGFfCeKW8yxTjaNKb2tKfWM2aYJzZGOZB5aTgnBfObk/zxas0ogzZJ4fkmDjkghTJDSmRMuHkibyQV/JmPVvv1of1OWldsNKZPTJV1tcvkgij4w==</latexit>

Sequence y 1 1 1 0 1 0 1 0 0 1 0 1 0

<latexit sha1_base64="6OtXb7Dotm0DfIHTjKn6s5+hwm8=">AAAEU3ichVJNb9NAEHU+CsXQLzhyWREFJZJl7dqJHR+QWrhwLBJpK8VRtN6sU7f+Yr0uiSzz4/gPHDjxQ7iwdhw1aRq6kuXRvHkzT/PGiX0v4RD+rtUbzb1nz/dfyC9fHRweHZ+8vkiilBE6JJEfsSsHJ9T3QjrkHvfpVcwoDhyfXjq3nwr88o6yxIvCr3wR03GAZ6HnegRzkZqc1OZtO4opwzxiIQ5oFkdJ3rE5nfOyeRYsZozSMM/SvAvefwCbmOOnNM86SEHdXAEbEKPTe6SjiX8X2Lbc7sST7PH+ufJtJ7ScXXQpmzyleUF9P/qeZ3f/Ea0p2hOikajYIfp+gCh8KHsNXI7vK0ZXLkscNzub3qj5j7PJcQupsHwAqoZlmJYuAmRplonACmpJ1TsXXv20pxFJAxpy4uMkGSEY83GGGfeIT3PZThMaY3KLZ3QkwmI1yTgrReWgLTJT4EZMfCEHZXadkeEgSRaBIyoDzK+Th1iRfAwbpdwdjDMvjFNOQ7Ic5KY+4BEoDg5MPUYJ9xciwIR5Qisg15hhwsVZbkyZL6XK9pS64pw37WIzJ8/EetDAsqAiFtXr6QgaRWTqOtTNLV7pZUWzoGUgU4GqBhG0rCIwLN3YJq2sK3krE5SVP8rKny1edanVOA0NkN4raXqvV4zr96FokMvrru8OLjQVGWr/S691+rHyf196K72TOhKSTOlU+iydS0OJ1P7U9+qH9aPGr8bfZr3ZXJbWaxXnjbTxmgf/AErJYfA=</latexit>

Adj. A
<latexit sha1_base64="xFeCwvcBBzYzjVM1mblIwEIuP1g=">AAAEinichVNdb9MwFE27AqMMtsEjLxZTUStllZ206SKEtAEPSLwMaV/SUibHdbsw5wPbGass80v4Wzzwb3DSVlu2lVmKcnSPz70n996EGYuEhPBvrb7SePT4yerT5rO15y/WNzZfHok054QekpSl/CTEgrIooYcykoyeZJziOGT0OLz4WPDHl5SLKE0O5DSjwxhPkmgcESxN6Gyz9rsVpBnlWKY8wTFVWSp0O5D0SpbJVTydcEoTrXLdAW/fgyoXspxq1UY26mgbVChOR9dM2zHvDgiCZqudnan782v7x1JqVrvIUiZ5yPOUMpb+1OryP6Yd23nANDI3lpi+LmAu3rZ9g5yV79tep9malQrHam/0vat/7TW/fFOOXgS3t6X5WqBBEGN5TjBTB/psYwt1YXkA7Hq+N/BdA5Dv+AMEFtSWNT/7Zp5/glFK8pgmkjAsxCmCmRwqzGVEGNXNIBc0w+QCT+ipgUX7xFCVxjVomcgIjFNunkSCMnpToa6EQdUsCsdCTOPQqAvf4jZXBO/jTnM53hmqKMlySRMyKz7OGZApKBYVjCJOiWRTAzDhkfEPyDnmmEizzlVXM/vNYETH5jeojplPQq1My9CO70PbNK/XcxH0CjRwXegO7ujKHZjLfOh7aGDDrgMR9P0CeL7r3RUtRl7qFoOxFzOzFzO7o5tv+Lycg3aQ2ytlbq9XlOv3oUlQWYTl4MjpIq/b/9rb2v0wX4lV67X1xmpbyBpYu9Zna986tEh9pd6pO3W3sdZwGn7j3exqvTbXvLIqp/HpH1vJdY0=</latexit>

K2–tree T
<latexit sha1_base64="fJwfVafptJd2GQnsPZZUcJozQMs=">AAAEmnichVNbb9MwFM5KgVEu29gjPFhMRa2UVXbSps0D0i4voL0MaTdpKZPjuF2Yc8FxxirL/CL+Dg/8G5y00ZZdmKUoJ+fzd85nny9+ysJMQPh3qfGk+fTZ8+UXrZevXr9ZWV17e5QlOSf0kCQs4Sc+zigLY3ooQsHoScopjnxGj/2L3QI/vqQ8C5P4QMxSOo7wNA4nIcFCp87Wln63vSSlHIuExziiMk0y1fEEvRJlcRnNppzSWMlcdcHHT6CO+SynSnaQibrKBDWI0+Aa6Vj63QWe12p30jN5f31l/ngQmvcuqpRFHtM8o4wlP5W8/I9oy7QeEY30jgdEXzfQG2/LvgHO2w9Mp9tqz1v5E7kdfO+pX9ut6nuf5zENgNr7Ji1VJTc3hT49UMCLsDgnmMkDdba6gXqwXAD2HNcZurYOkGu5QwQqaMNYrH093z9ekJA8orEgDGfZKYKpGEvMRUgYVS0vz2iKyQWe0lMdFteZjWV5EAXaOhOAScL1EwtQZm8y5FWmo3oViaMsm0W+Zhe6s9tYkbwPO83FZDSWYZzmgsZk3nySMyASUBgXBCGnRLCZDjDhodYPyDnmmAht77qqufyWF9CJ/i3qY+dTX0l9ZWjkutDUl9fv2wg6RTS0bWgP7/BKTyxoLnQdNDRhz4IIum4ROK7t3CVVFih51WDMamZmNbM7vIXjF+0sNEJ2v6TZ/X7RbjCAukDNCA8HR1YPOb3B1/7G1s7CEsvGO+OD0TGQMTS2jM/GvnFokMZ6w23sNHab75s7zS/NvfnWxtKCs27UVvPgH9kjfJw=</latexit>

Pruned K2–tree T

Figure 3: Illustration of the sequential representation for K2–tree. The shaded parts of the
adjacency matrix A and the K2–tree T denote redundant parts, which are further pruned, while
the purple-colored parts of A and T denote non-redundant parts. Also, same-colored tree-nodes of
pruned K2–tree are grouped and tokenized into the same colored parts of the sequence y.

• Let B1,1, . . . , BK,K denote the K ×K partitioning of the matrix A(u) with i, j correspond-
ing to row- and column-wise order, respectively. The child nodes v1,1, . . . , vK,K of the
tree-node u are associated with the submatrices B1,1, . . . , BK,K , respectively.

The generated K2–tree is a compact description of graph G as any node u with xu = 0 and
du < maxu du where du is the distance from the root. summarizes a large submatrix filled only
with zeros. In the worst-case scenario, the size of the K2–tree is MK2(logK2(N2/M) + O(1))
(Brisaboa et al., 2009), where N and M denote the number of nodes and edges in the original graph,
respectively. This constitutes a significant improvement over the N2 size of the full adjacency matrix.

Additionally, the K2–tree is hierarchical ensuring that (1) each tree node represents the connectivity
between a specific set of nodes, and (2) nodes closer to the root correspond to a larger set of nodes. We
emphasize that the nodes associated with submatrices overlapping with the diagonal of the original
adjacency matrix indicate intra-connectivity within a group of nodes. In contrast, the remaining nodes
describe the interconnectivity between two distinct sets of nodes.

We also describe the detailed algorithms for constructing a K2–tree from a given graph G and
recovering a graph from the K2–tree in Appendices A and B, respectively. It is crucial to note that the
ordering of the nodes in the adjacency matrix influences the K2–tree structure. Inspired by Diamant
et al. (2023), we adopt Cuthill-McKee (C-M) ordering as our ordering scheme. We empirically
discover that C-M ordering (Cuthill & McKee, 1969) provides the most compact K2–tree.3 Our
explanation is that the C-M ordering is specifically designed to align the non-zero elements of a
matrix near its diagonal so that there is a higher chance of encountering large submatrices filled only
with zeros, which can be efficiently summarized in the K2–tree representation.

4 HIERARCHICAL GRAPH GENERATION WITH K2–TREES

In this section, we present our novel method, hierarchical graph generation with K2–trees (HGGT),
exploiting the hierarchical and compact structure of the K2–tree representation of a graph. In detail,
we transform the K2–tree into a highly compressed sequence through a process involving pruning and
tokenization. Subsequently, we employ a Transformer enhanced with tree-based positional encodings,
for the autoregressive generation of this compressed sequence.

4.1 SEQUENTIAL K2–TREE REPRESENTATION

Here, we propose an algorithm to flatten the K2–tree into a sequence, which is essential for the
autoregressive generation of the K2–tree. In particular, we aim to design a sequential representation
that is even more compact than the K2–tree to minimize the number of decisions required for the
generation of the K2–tree. To this end, we propose (1) pruning K2–tree by removing redundant
nodes, (2) flattening the pruned K2–tree into a sequence, and (3) applying tokenization based on the
K2–tree structure. We provide an illustration of the overall process in Figure 3.

3We provide the results in Section 5.3.

4

Published as a conference paper at ICLR 2024

87654321
011000001
100100002
100000003
010000004
001000105
000100016
000010017
000001108

1

1

1

0

1 1

(1,1)

(1,1) … …
… …
(2,1)

(2,2)

(1,1)

(1,2)

Root

<latexit sha1_base64="zqKYOD+ubrSlyt18BEFoFMuZ7eU=">AAAC63icdVHLjtMwFHXDayivFpZsIiokFlVlN2lS70awYVkkOjNSW1WOc9OJxnnIdpiJonwFOwRL4D/4C/4GJ21HMxSuZOn4XB9f+5wgF7HSGP/uWHfu3rv/4Ohh99HjJ0+f9frPT1RWSA5znolMngVMgYhTmOtYCzjLJbAkEHAaXLxr+qefQKo4Sz/qModVwjZpHMWcaUOte/2lhisdRNUsU3FD1evegIxwWzYeedTzqWMAoWPqE3vfGqBdzdb9zq9lmPEigVRzwZRaEJzrVcWkjrmAurssFOSMX7ANLAxMWQJqVbVvr+3XhgntKJNmpdpu2ZuKiiVKlUlgTiZMn6u/ew35r96i0NF0VcVpXmhI+XZQVAhbZ3ZjhB3GErgWpQGMS/N3bvNzJhnXxq5bU662T+0uQ4iMze2uSspAFFBXchPUlbGHTCnFQ2OU6zoEew3yHQc7/oFOQngto5h6xB/i0RgTTGkDPOp4h6IShMgud7p9CMN9PsN9Pge6jQRIr8eNyZQ4bitzXLcZN5lgc0HdvZn6/8HJeES80eSDOzh+u8v/CL1Er9AbRJCPjtF7NENzxNEl+oZ+oJ9WYn22vlhft0etzk7zAt0q6/sf5qPgyA==</latexit>

Position

<latexit sha1_base64="M3Mo8lcy4gebK+bLEMYz2LqF2hg=">AAAEP3ichVJNb9NAEF3XfJTw0RaOXFZEoESyol3bseMDUgUXjkUibaU4itbrTWrVX6zXpZHlHwdXfgG/gBuCI3Bh7Thq0qR0JcujefNmnuaNl4ZBJhD6puyod+7eu7/7oPXw0eMne/sHT4+zJOeUDWkSJvzUIxkLg5gNRSBCdppyRiIvZCfe+dsKP7lgPAuS+IOYp2wckVkcTANKhExNDhTfTVLGiUh4TCJWpElWdlzBLkXdu4jmM85YXBZ52YWvXsN1zAtzVhYdrOFuqcE1iDP/Cuno8t+FrtvqpJNie/tS+3gjtBhdNal63KZ4zsIw+VQWF/+RrGv6LZKxrNgu+aq/rLsuegVcTO9rVney38Y9VD+IepZj2Y4hA+zojo3hEmqD5h1JX764fkLziMWChiTLRhilYlwQLgIasrLl5hlLCT0nMzaSYbWJbFzUIkr4UmZ8OE24/GIB6+wqoyBRls0jT1ZGRJxl17EquQ0b5WI6GBdBnOaCxXQxaJqHUCSwOi7oB5xREc5lQCgPpFZIzwgnVMgTXJtyuZDacn02lae77g6feWUh14MHjoM0uSjTNDCyqsg2DGTYG7zauobmIMfCtoZ6OsLIcarAcgxrk7S0quYtTdCW/mhLfzZ4zV0243Q8wIZZ0wzTrMb1+0g2KFurrt8cHOs9bPX678324ZvG/13wHLwAHYCBDQ7BO3AEhoAqX5Vfyh/lr/pZ/a7+UH8uSneUhvMMrD319z9IUGCn</latexit>

pos(u) = ((1, 1), (1, 1), (2, 1))

(pu, qu) = (2, 1)

pos(v) = ((2, 2), (1, 1), (1, 2))

(pv, qv) = (5, 6)

<latexit sha1_base64="6OtXb7Dotm0DfIHTjKn6s5+hwm8=">AAAEU3ichVJNb9NAEHU+CsXQLzhyWREFJZJl7dqJHR+QWrhwLBJpK8VRtN6sU7f+Yr0uiSzz4/gPHDjxQ7iwdhw1aRq6kuXRvHkzT/PGiX0v4RD+rtUbzb1nz/dfyC9fHRweHZ+8vkiilBE6JJEfsSsHJ9T3QjrkHvfpVcwoDhyfXjq3nwr88o6yxIvCr3wR03GAZ6HnegRzkZqc1OZtO4opwzxiIQ5oFkdJ3rE5nfOyeRYsZozSMM/SvAvefwCbmOOnNM86SEHdXAEbEKPTe6SjiX8X2Lbc7sST7PH+ufJtJ7ScXXQpmzyleUF9P/qeZ3f/Ea0p2hOikajYIfp+gCh8KHsNXI7vK0ZXLkscNzub3qj5j7PJcQupsHwAqoZlmJYuAmRplonACmpJ1TsXXv20pxFJAxpy4uMkGSEY83GGGfeIT3PZThMaY3KLZ3QkwmI1yTgrReWgLTJT4EZMfCEHZXadkeEgSRaBIyoDzK+Th1iRfAwbpdwdjDMvjFNOQ7Ic5KY+4BEoDg5MPUYJ9xciwIR5Qisg15hhwsVZbkyZL6XK9pS64pw37WIzJ8/EetDAsqAiFtXr6QgaRWTqOtTNLV7pZUWzoGUgU4GqBhG0rCIwLN3YJq2sK3krE5SVP8rKny1edanVOA0NkN4raXqvV4zr96FokMvrru8OLjQVGWr/S691+rHyf196K72TOhKSTOlU+iydS0OJ1P7U9+qH9aPGr8bfZr3ZXJbWaxXnjbTxmgf/AErJYfA=</latexit>

Adj. A
<latexit sha1_base64="xFeCwvcBBzYzjVM1mblIwEIuP1g=">AAAEinichVNdb9MwFE27AqMMtsEjLxZTUStllZ206SKEtAEPSLwMaV/SUibHdbsw5wPbGass80v4Wzzwb3DSVlu2lVmKcnSPz70n996EGYuEhPBvrb7SePT4yerT5rO15y/WNzZfHok054QekpSl/CTEgrIooYcykoyeZJziOGT0OLz4WPDHl5SLKE0O5DSjwxhPkmgcESxN6Gyz9rsVpBnlWKY8wTFVWSp0O5D0SpbJVTydcEoTrXLdAW/fgyoXspxq1UY26mgbVChOR9dM2zHvDgiCZqudnan782v7x1JqVrvIUiZ5yPOUMpb+1OryP6Yd23nANDI3lpi+LmAu3rZ9g5yV79tep9malQrHam/0vat/7TW/fFOOXgS3t6X5WqBBEGN5TjBTB/psYwt1YXkA7Hq+N/BdA5Dv+AMEFtSWNT/7Zp5/glFK8pgmkjAsxCmCmRwqzGVEGNXNIBc0w+QCT+ipgUX7xFCVxjVomcgIjFNunkSCMnpToa6EQdUsCsdCTOPQqAvf4jZXBO/jTnM53hmqKMlySRMyKz7OGZApKBYVjCJOiWRTAzDhkfEPyDnmmEizzlVXM/vNYETH5jeojplPQq1My9CO70PbNK/XcxH0CjRwXegO7ujKHZjLfOh7aGDDrgMR9P0CeL7r3RUtRl7qFoOxFzOzFzO7o5tv+Lycg3aQ2ytlbq9XlOv3oUlQWYTl4MjpIq/b/9rb2v0wX4lV67X1xmpbyBpYu9Zna986tEh9pd6pO3W3sdZwGn7j3exqvTbXvLIqp/HpH1vJdY0=</latexit>

K2–tree T

Figure 4: Illustration of the tree-node positions of K2–tree. The shaded parts of the adjacency
matrix denote redundant parts, e.g., pu < qu. Additionally, colored elements correspond to tree-
nodes of the same color and the same-colored tree-edges signify the root-to-target downward path.
Blue and red tuples denote the order in the first and second levels, respectively. The tree node u is
non-redundant as pu > qu while v is redundant as pv < qv .

Pruning the K2–tree. To obtain the pruned K2–tree, we identify and eliminate redundant nodes
due to the symmetry of the adjacency matrix for undirected graphs. In particular, without loss of
generality, such nodes are associated with submatrices positioned above the diagonal since they
mirror the counterparts located below the diagonal.

To this end, we now describe a formula to identify redundant nodes based on the position of a
submatrix A(u), tied to a specific node u at depth L, within the adjacency matrix A. Let v0, v1, . . . , vL
be a sequence of nodes representing a downward path from the root node r = v0 to the node u = vL.
With (ivℓ , jvℓ) denoting the order of vℓ among its K×K siblings, the node position can be represented
as pos(u) = ((iv1 , jv1), . . . , (ivL

, jvL)). Note that node u at depth L corresponds to an element of
KL ×KL partitions of the adjacency matrix A. The row and column indexes of the submatrix A(u)

are derived as the (pu, qu) = (
∑L

ℓ=1 K
L−ℓ(ivℓ − 1) + 1,

∑L
ℓ=1 K

L−ℓ(jvℓ − 1) + 1) as illustrated
in Figure 4. As a result, we eliminate any node associated with a submatrix above the diagonal, i.e.,
we remove node u when pu < qu.

Consequently, the pruned K2–tree maintains only the nodes associated with submatrices devoid of
redundant nodes, i.e., those containing elements of the adjacency matrix positioned at the diagonal
or below the diagonal. Notably, following this pruning process, the K2–tree no longer adheres
to the structure of a K ×K-ary tree. Additionally, consider a non-leaf node u is associated with
a submatrix A(u) that includes any diagonal elements of the adjacency matrix A. Then the node
u possess K(K + 1)/2 child nodes after pruning K(K − 1)/2 child nodes associated with the
redundant submatrices. Otherwise, the non-leaf node u remains associated with K ×K child nodes.
Note that our framework can be extended to directed graphs by omitting the pruning process.

Flattening and tokenization of the pruned K2–tree. Next, we explain how to obtain a sequential
representation of the pruned K2–tree based on flattening and tokenization. Our idea is to flatten
a K2–tree as a sequence of node attributes {xu : u ∈ V} using breadth-first traversal and then to
tokenize the sequence by grouping the nodes that share the same parent node, i.e., sibling nodes.

For this purpose, we denote the sequence of nodes obtained from a breadth-first traversal of non-
root nodes in the K2–tree as u1, . . . , u|V|−1, and the corresponding sequence of node attributes as
x = (x1, . . . , x|V|−1). It is important to note that sibling nodes sharing the same parent appear
sequentially in the breadth-first traversal.

Next, by grouping the sibling nodes, we tokenize the sequence x. As a result, we obtain a sequence
y = (y1, . . . , yT) where each element is a token representing a group of attributes associated with
sibling nodes. For example, the t-th token corresponding to a group of K2 sibling nodes is represented
by yt = (xv1,1 , . . . , xvK,K

) where v1,1, . . . , vK,K share the same parent node u. Such tokenization
allows representing the whole K2–tree using M(logK2(N2/M) + O(1)) space, where N and M
denote the number of nodes and edges in the original graph, respectively.

We highlight that the number of elements in each token yt may vary due to the pruned K2–tree
no longer being a K ×K-ary tree, as mentioned above. With this in consideration, we generate a
vocabulary of 2K

2

+ 2K(K+1)/2 potential configurations for each token yt. This vocabulary size is
small in practice since we set the value K to be small, e.g., setting K = 2 induces the size of 24.

5

Published as a conference paper at ICLR 2024

1 2
3
N

CC

C
4

4321
0−0C1

0−C02

−N−−3

C−004

<latexit sha1_base64="CycE+j8IfxzQpuPcBNxUKg7hkGA=">AAACEXicbVBJSgNBFK12jHGKw85NYRBchW5xWkYFcRnBDJCEUF35nRSpHqj6LYlNTuEF3OoN3IlbT+AFPIeVpBcm8cGHx3v/8x/PjaTQaNvf1sLi0vLKamYtu76xubWd29mt6DBWHMo8lKGquUyDFAGUUaCEWqSA+a6Eqtu7GfnVR1BahMEDDiJo+qwTCE9whkZq5fYbCH10veQWGMYK2nRIr1q5vF2wx6DzxElJnqQotXI/jXbIYx8C5JJpXXfsCJsJUyi4hGG2EWuIGO+xDtQNDZgPupmM0w/pkVHa1AuVmQDpWP17kTBf64Hvmk2fYVfPeiPxP68eo3fZTEQQxQgBnzzyYkkxpKMqaFso4CgHhjCuhMlKeZcpxtEUNvWlP4maNcU4szXMk8pJwTkvnN2f5ovXaUUZckAOyTFxyAUpkjtSImXCyRN5Ia/kzXq23q0P63OyumClN3tkCtbXL+nBnZU=</latexit>

Featured A

Root

0-0-

1 1 1

00-- C--NC00C

1

<latexit sha1_base64="Zid2Xfb3vQsoiL4kBlPkrf/Zr4k=">AAACDXicbVDLTsJAFJ3iC/FVdelmIjFxRVrja0l0gUtM5JFAQ6bDFCZMp83MLYE0fIM/4Fb/wJ1x6zf4A36HA3Qh4ElucnLOvbknx48F1+A431ZubX1jcyu/XdjZ3ds/sA+P6jpKFGU1GolINX2imeCS1YCDYM1YMRL6gjX8wf3UbwyZ0jySTzCOmReSnuQBpwSM1LHtNrAR+EFaUSTu40mlYxedkjMDXiVuRoooQ7Vj/7S7EU1CJoEKonXLdWLwUqKAU8EmhXaiWUzogPRYy1BJQqa9dJZ8gs+M0sVBpMxIwDP170VKQq3HoW82QwJ9vexNxf+8VgLBrZdyGSfAJJ0/ChKBIcLTGnCXK0ZBjA0hVHGTFdM+UYSCKWvhy2getWCKcZdrWCX1i5J7Xbp6vCyW77KK8ugEnaJz5KIbVEYPqIpqiKIhekGv6M16tt6tD+tzvpqzsptjtADr6xcUS5wV</latexit>

Graph G

<latexit sha1_base64="y9ZFRzkmDuRgDysRJfh2JPjDtSw=">AAACHnicbVDJTgJBEO1xRdxQj15aiYknMmPcjkQvHjHKkgAhPU0NdOhZ7K4xkAlnf8Mf8Kp/4M141R/wO2xgDgJW0umX96pSr54bSaHRtr+thcWl5ZXVzFp2fWNzazu3s1vRYaw4lHkoQ1VzmQYpAiijQAm1SAHzXQlVt3c90quPoLQIg3scRND0WScQnuAMDdXKHTQQ+uh6yR08xBBwoEPacEPZ1gPffMlg2Mrl7YI9LjoPnBTkSVqlVu6n0Q557EOAXDKt644dYTNhCgWXMMw2Yg0R4z3WgbqBAfNBN5PxKUN6ZJg29UJlXoB0zP6dSJivR9ZMp8+wq2e1EfmfVo/Ru2wmIohiNGdOFnmxpBjSUS60LRRwlAMDGFfCeKW8yxTjaNKb2tKfWM2aYJzZGOZB5aTgnBfObk/zxas0ogzZJ4fkmDjkghTJDSmRMuHkibyQV/JmPVvv1of1OWldsNKZPTJV1tcvkgij4w==</latexit>

Sequence y 1 1 1 C 0 C −− 0 0 N − C

<latexit sha1_base64="q1NcZ2Fd+EipNAlChK93w+qCbxo=">AAAEnHichVNrb9MwFE1LgVFeG4hPSMhiKmqlrLKTNl2EkDYYCGlCGtJe0lImx3W7MOeB44xVlvlJ/Bs+8G9w0kZb1o1ZinJzj889x743fsKCVED4t1a/07h77/7Sg+bDR4+fPF1eebafxhkndI/ELOaHPk4pCyK6JwLB6GHCKQ59Rg/80w85fnBGeRrE0a6YJnQY4kkUjAOChU4dr9R+t7w4oRyLmEc4pDKJU9X2BD0XRXEZTiec0kjJTHXAm3egivkso0q2kYk6ygQViNPRBdK29LsDPK/ZaifH8vr6yvxxIzTTzqsURW7zPKWMxT+VPPuPacu0bjGN9I4bTF8I6I1XbV8CZ/J90+k0WzMpfyw3R9+76tdms/z+RLHItDRQ29+kpcr02prQ5wcKeCEWJwQzuauOl1dRFxYLwK7jOgPX1gFyLXeAQAmtGvO1ozv8xxvFJAtpJAjDaXqEYCKGEnMREEZV08tSmmByiif0SIf5haZDWRxFgZbOjMA45vqJBCiylxnyPNVRtYrEYZpOQ1+zc9/pVSxPXocdZWK8PpRBlGSCRmQmPs4YEDHIRxeMAk6JYFMdYMID7R+QE8wxEXrAq65m9pveiI71j1FtPJ/4SuorQ+uuC019eb2ejaCTRwPbhvZggVdMxZzmQtdBAxN2LYig6+aB49rOIqkcgoJXNsYse2aWPVvgzWd+LmehdWT3Cprd6+Vy/T7UBSqDcHOwb3WR0+1/7a1uvJ+PxJLx0nhttA1kDIwN47OxY+wZpP6i/ra+Vf/YeNXYamw3vsy21mtzznOjshr7/wBQJn1y</latexit>

Featured K2–tree T<latexit sha1_base64="ZHnIxFZvn86Xpp1WzGr+fV2jxYw=">AAAEwXichVNra9swFHWzbOuyV7t93BexkJGAGyQ7ceLBoF1hFAajg76gzjJZUVK38mOy3DUI7U+Ofdi/mezEtO5jFRgf7tG55+rqyk9YkAoI/67UHtQfPnq8+qTx9NnzFy/X1l8dpHHGCd0nMYv5kY9TyoKI7otAMHqUcIpDn9FD/2w75w/PKU+DONoT84SOQjyLgmlAsNCh8frK75YXJ5RjEfMIh1QmcaranqAXokguw/mMUxopmakOePcBVDmfZVTJNjJRR5mgQnE6uWTalv53gOc1Wu1kLG/Pr8wfd1IL7zxLkeS+mueUsfinkuf/KdoyrXuKRnrHHUVfGuiN18u+Qi7s+6bTabQWVv5Ubk1Ou+rX1pXIJ4pFps2B+vxNWqoMb2wI3QGggBdicUIwk3uqUZLbamyXeEeN3RJ/UeO1JurCYgHYdVxn4NoaINdyBwiUVNNYrl09Bn+8SUyykEaCMJymxwgmYiQxFwFhVHtmKU0wOcMzeqxh3vV0JIvzKtDSkQmYxlx/kQBF9KpCXqQaVbNIHKbpPPS1Oj9aep3Lg7dxx5mYDkcyiJJM0IgszKcZAyIG+XyDScApEWyuASY80PUDcoI5JkK/gmpVi/Ib3oRO9eupTgef+UrqlqGh60JTN6/XsxF0cjSwbWgPbuiK0VnKXOg6aGDCrgURdN0cOK7t3BSVk1Loyosxyzszyzu7oVs+jKWdhYbI7hUyu9fL7fp9qBNUBuFucGB1kdPtf+01Nz8uR2LVeGO8NdoGMgbGprFj7Br7Bqm9r32vBbXT+nY9qCd1vthaW1lqXhuVVZf/ADI4jNk=</latexit>

C3H9N

Figure 5: An example of featured K2–tree representation. The shaded parts of the adjacency
matrix and K2–tree denote the redundant parts. The black-colored tree-nodes denote the normal
tree-nodes with binary attributes while other-colored feature elements in the adjacency matrix A
denote the same-colored featured tree-nodes and sequence elements. The node features (i.e., C and
N) and edge feature (i.e., single bond −) of the molecule are represented within the leaf nodes.

In particular, we remark that a token with K(K + 1)/2 elements carries different semantics from
another token with K2 elements. The former corresponds to a submatrix situated on the adjacency
matrix’s diagonal, thus indicating connectivity within a set of nodes. In contrast, the latter relates to a
submatrix illustrating connectivity between pairs of node sets. This supports our decision to assign
distinct values to a token with K(K + 1)/2 elements and another with K2 elements, even when the
tokens might represent the same combination of node features in the unpruned tree.

Generating featured graphs. We also extend our HGGT to graphs with node and edge-wise
features, e.g., molecular graphs. At a high level, we apply our algorithm to the featured adjacency
matrix, where each diagonal element corresponds to a node feature and each non-diagonal element
corresponds to an edge feature. node attributes of leaf nodes in K2–tree correspond to node and edge
features, while attributes of non-leaf nodes are the same with the non-attributed K2–trees (i.e., ones
and zeros). See Figure 5 for an illustration and Appendix C for a complete description.

4.2 GENERATING K2–TREE WITH TRANSFORMER AND K2–TREE POSITIONAL ENCODING

We describe our algorithm to generate the sequence of K2–tree representation y = (y1, . . . , yT). We
utilize the masked Transformer (Vaswani et al., 2017) to make predictions on pθ(yt|yt−1, . . . , y1).
To improve the model’s understanding of the tree structure, we devise a tree-positional encoding. We
also offer an algorithm to construct the K2–tree from the sequence generated by the Transformer.

Transformer with K2–tree positional encoding. We first introduce the Transformer architecture to
parameterize the distribution pθ(yt|yt−1, . . . , y1) for autorgressive generation. Briefly, the model is
trained with self-attention, and during inference, it generates the sequence one token at a time, relying
on the previously generated sequence. To account for tree structural information, we incorporate
tree-positional encodings for each time-step t.

During training, we mask the attention layer to ensure that predictions at each step are not influ-
enced by future tokens of the sequence. The objective function is maximum likelihood, denoted
by max log p(y), where p(y) = p(y1)Π

T
t=2p(yt|y1:t−1). This objective aims to maximize the

probability of predicting the next token correctly based on the preceding tokens.

For inference, we begin the process with a begin-of-sequence (BOS) token as the input to our trained
Transformer decoder. The model then computes the distribution of potential tokens for the next
step, denoted by p(yt|y1:t−1), and the next token is sampled from this distribution. This token is
appended to the input sequence, and the extended sequence is fed back into the model to generate
the subsequent token. This iterative procedure is terminated when a predefined maximum length is
reached or an end-of-sequence (EOS) token emerges.

To enhance the input yt, we incorporate the positional encoding for u. As outlined in Section 4.1,
the node attributes in yt are associated with child nodes of a particular node u. Therefore, the
encoding is based on the downward path from the root node r = v0 to the node u = vL, represented
as (v0, . . . , vL). In this context, the order of vℓ amongst its siblings in the non-pruned K2–tree is
denoted as a tuple (ivℓ , jvℓ). Subsequently, we further update the input feature yt with positional

6

Published as a conference paper at ICLR 2024

Table 1: Generic graph generation performance. The baseline results are from prior works (Jo
et al., 2022; Liao et al., 2019; Martinkus et al., 2022; Luo et al., 2022) or public codes (marked by *).
For each metric, the best number is highlighted in bold and the second-best number is underlined.

Community-small Planar Enzymes Grid

12 ≤ |V | ≤ 20 |V | = 64 10 ≤ |V | ≤ 125 100 ≤ |V | ≤ 400

Method Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb.

GraphVAE 0.350 0.980 0.540 - - - 1.369 0.629 0.191 1.619 0.000 0.919
GraphRNN 0.080 0.120 0.040 0.005 0.278 1.254 0.017 0.062 0.046 0.064 0.043 0.021
GNF 0.200 0.200 0.110 - - - - - - - - -
GRAN* 0.005 0.142 0.090 0.001 0.043 0.001 0.023 0.031 0.169 0.001 0.004 0.002
EDP-GNN 0.053 0.144 0.026 - - - 0.023 0.268 0.082 0.455 0.238 0.328
GraphGen* 0.075 0.065 0.014 1.762 1.423 1.640 0.146 0.079 0.054 1.550 0.017 0.860
GraphAF 0.180 0.200 0.020 - - - 1.669 1.283 0.266 - - -
GraphDF 0.060 0.120 0.030 - - - 1.503 1.283 0.266 - - -
SPECTRE - - - 0.010 0.067 0.010 - - - - - -
GDSS 0.045 0.086 0.007 0.250 0.393 0.587 0.026 0.061 0.009 0.111 0.005 0.070
DiGress* 0.012 0.025 0.002 0.000 0.002 0.008 0.011 0.039 0.010 0.016 0.000 0.004
GDSM 0.011 0.015 0.001 - - - 0.013 0.088 0.010 0.002 0.000 0.000
HGGT (ours) 0.001 0.006 0.003 0.000 0.001 0.000 0.005 0.017 0.000 0.000 0.000 0.000

(a) Train (b) GraphGen (c) GDSS (d) DiGress (e) HGGT (ours)

Figure 6: Generated samples for Community-small (top), and Grid (bottom) datasets.

encoding, which is represented as PE(u) =
∑L

ℓ=1 ϕℓ(ivℓ
, jvℓ), where ϕ denotes the embedding

function that converts the order tuple into vector representations and ((iv1 , jv1), . . . , (ivL , jvL)) is
the sequence of orders of a downward path from r to u.

Constructing K2–tree from the sequential representation. We next explain the algorithm to
recover a K2–tree from its sequential representation y. In particular, we generate the K2–tree simul-
taneously with the sequence to incorporate the tree information for each step of the autoregressive
generation. The algorithm begins with an empty tree containing only a root node and iteratively
expands each “frontier” node based on the sequence of the decisions made by the generative model.
To facilitate a breadth-first expansion approach, the algorithm utilizes a first-in-first-out (FIFO) queue,
which contains node candidates to be expanded.

To be specific, our algorithm initializes a K2–tree T = ({r}, ∅) with the root node r associated with
the node attribute xr = 1. It also initializes the FIFO queue Q with r. Then at each t-th step, our
algorithm expands the node u popped from the queue Q using the token yt. To be specific, for each
node attribute x in yt, our algorithm adds a child node v with xv = x. If x = 1 and the size of A(v) is
larger than 1× 1, the child node v is inserted into the queue Q. This algorithm is designed to retrieve
the pruned tree, which allows the computation of positional data derived from the yt information.

5 EXPERIMENT

5.1 GENERIC GRAPH GENERATION

Experimental setup. We first validate the general graph generation performance of our HGGT on
four popular graph benchmarks: (1) Community-small, 100 community graphs, (2) Planar, 200

7

Published as a conference paper at ICLR 2024

Table 2: Molecular graph generation performance. The baseline results are from prior works (Jo
et al., 2022; Luo et al., 2022) or obtained by running the open-source codes (denoted by *). The best
results are highlighted in bold and the second best results are underlined.

QM9 ZINC250k

Method Val. ↑ NSPDK ↓ FCD ↓ Uniq. ↑ Nov. ↑ Val. ↑ NSPDK ↓ FCD ↓ Uniq. ↑ Nov. ↑
EDP-GNN 47.52 0.005 2.68 99.25 86.58 82.97 0.049 16.74 99.79 100
MoFlow 91.36 0.017 4.47 98.65 94.72 63.11 0.046 20.93 99.99 100
GraphAF 74.43 0.020 5.27 88.64 86.59 68.47 0.044 16.02 98.64 100
GraphDF 93.88 0.064 10.93 98.58 98.54 90.61 0.177 33.55 99.63 100
GraphEBM 8.22 0.030 6.14 97.90 97.01 5.29 0.212 35.47 98.79 100
GDSS 95.72 0.003 2.9 98.46 86.27 97.01 0.019 14.66 99.64 100
DiGress* 99.01 0.001 0.25 96.34 35.46 100 0.042 16.54 99.97 100
GDSM 99.90 0.003 2.65 - - 92.70 0.017 12.96 - -

HGGT (ours) 99.22 0.000 0.40 95.65 24.01 92.87 0.001 1.93 99.97 99.83

planar graphs, (3) Enzymes (Schomburg et al., 2004), 587 protein tertiary structure graphs, and (4)
Grid, 100 2D grid graphs. Following baselines, we adopt maximum mean discrepancy (MMD) to
compare three graph property distributions between generated graphs and test graphs: degree (Deg.),
clustering coefficient (Clus.), and 4-node-orbit counts (Orb.). We conduct all the experiments using
a single RTX 3090 GPU. The detailed descriptions of our experimental setup are in Appendix D.

Baselines. We compare our HGGT with twelve graph generative models: GraphVAE (Simonovsky &
Komodakis, 2018), GraphRNN (You et al., 2018), GNF Liu et al. (2019), GRAN (Liao et al., 2019),
EDP-GNN (Niu et al., 2020), GraphGen (Goyal et al., 2020), GraphAF (Shi et al., 2020), GraphDF
(Luo et al., 2021), SPECTRE (Martinkus et al., 2022), GDSS (Jo et al., 2022), DiGress (Vignac et al.,
2022), and GDSM (Luo et al., 2022). A detailed implementation description is in Appendix E.

Results. Table 1 shows the experimental results. We observe that HGGT outperforms all baselines
on all datasets. Note that our model consistently outperforms all baselines regardless of the graph
sizes, indicating better generalization performance across various environments. In particular, we
observe how the performance of HGGT is extraordinary for Grid. We hypothesize that HGGT better
captures the hierarchical structure and repetitive local connectivity of the grid graphs than the other
baselines. We also provide visualizations of the generated graphs in Figure 6.

5.2 MOLECULAR GRAPH GENERATION

Experimental setup. To test the ability of HGGT on featured graphs, we further conduct an evaluation
of molecule generation tasks. We use two molecular datasets: QM9 (Ramakrishnan et al., 2014) and
ZINC250k (Irwin et al., 2012). Following the previous work (Jo et al., 2022), we evaluate 10,000
generated molecules using five metrics: (a) validity (Val.), (b) neighborhood subgraph pairwise
distance kernel (NSPDK), (c) Frechet ChemNet Distance (FCD), (d) uniqueness (Uniq.), and (e)
novelty (Nov.). Note that NSPDK and FCD are measured between the generated samples and the test
set. The validity, uniqueness, and novelty metrics are measured within the generated samples.

Baselines. We compare HGGT with eight deep graph generative models: EDP-GNN (Niu et al.,
2020), MoFlow (Zang & Wang, 2020), GraphAF (Shi et al., 2020), GraphDF (Luo et al., 2021),
GraphEBM (Liu et al., 2021), GDSS (Jo et al., 2022), DiGress (Vignac et al., 2022), and GDSM(Luo
et al., 2022). We provide a detailed implementation description in Appendix E.

Results. The experimental results are reported in Table 2. We observe that HGGT showed competitive
results on all the baselines on most of the metrics. The results suggest that the model can generate
chemically valid features, i.e., atom types, accordingly, along with the structure of the graphs. In
particular, for the ZINC250k dataset, we observe a large gap between our method and the baselines
in NSPDK and FCD scores while showing competitive performance in the other metrics. Since FCD
and NSPDK measure the similarity between molecular features and subgraph structures, respectively,
HGGT can generate similar features and subgraphs observed in the real molecules.

5.3 ABLATION STUDIES

Time complexity. We conduct experiments to measure the inference time of the proposed algorithm.
The results are presented in the upper left table of Figure 7, where we report the time to generate

8

Published as a conference paper at ICLR 2024

Time (sec) Comm. Planar Enzymes Grid

GRAN 3.51 5.40 3.99 14.68
GDSS 0.54 8.85 1.09 25.90

DiGress 0.34 3.29 1.29 45.41
HGGT (ours) 0.03 0.58 0.09 8.16

Method Comm. Planar Enzymes Grid

BFS 0.534 0.201 0.432 0.048
DFS 0.619 0.204 0.523 0.064
C-M 0.508 0.195 0.404 0.045

Figure 7: (Upper left) Inference time to generate a single graph. (Lower left) Average compres-
sion ratio on various node orderings. (Right) Training loss on different positional encodings.

Table 3: Ablation study for algorithmic components of HGGT.
Community-small Planar Enzymes

Group TPE Prune Degree Cluster. Orbit Degree Cluster. Orbit Degree Cluster. Orbit

✗ ✗ ✗ 0.072 0.199 0.080 0.346 1.824 1.403 0.050 0.060 0.021
✓ ✗ ✗ 0.009 0.105 0.001 0.003 0.001 0.002 0.005 0.022 0.007
✓ ✓ ✗ 0.002 0.028 0.001 0.003 0.001 0.002 0.002 0.020 0.002
✓ ✓ ✓ 0.001 0.006 0.003 0.000 0.001 0.000 0.005 0.017 0.000

a single sample. We can observe that HGGT generates a graph faster than the others due to the
simplified representation.

Adjacency matrix orderings. It is clear that the choice of node ordering influences the size of
K2–tree. We validate our choice of Cuthill-McKee (C-M) ordering (Cuthill & McKee, 1969) by
comparing its compression ratio to other node orderings: breadth-first search (BFS) and depth-first
search (DFS). The compression ratio is defined as the number of elements in K2–tree divided by N2.
In the left below table of Figure 7, we present the compression ratios for each node ordering. One
can observe that C-M ordering shows the best ratio in all the datasets compared to others.

Positional encoding. In this experiment, we assess the impact of various positional encodings in
our method. We compare our tree positional encoding (TPE) to absolute positional encoding (APE)
(Vaswani et al., 2017) and relative positional encoding (RPE) (Shaw et al., 2018) on the Planar
dataset. Our findings, as presented in the right figure of Figure 7, demonstrate that TPE outperforms
other positional encodings with faster convergence of training loss. These observations highlight the
importance of appropriate positional encoding for generating high-quality graphs.

Ablation of algorithmic components. We introduce three components to enhance the performance
of HGGT: grouping into tokens (Group), incorporating tree positional encoding (TPE), and pruning
the K2–tree (Prune). To verify the effectiveness of each component, we present the experimental
results for our method with incremental inclusion of these components. The experimental results are
reported in Table 3. The results demonstrate the importance of each component in improving graph
generation performance, with grouping being particularly crucial, thereby validating the significance
of our additional components to the sequential K2–tree representation.

6 CONCLUSION

In this paper, we presented a novel K2–tree-based graph generative model (HGGT) which enables a
compact, hierarchical, and domain-agnostic generation. Our experimental evaluation demonstrated
state-of-the-art performance across various graph datasets. An interesting avenue for future work
is the broader examination of other graph representations to graph generation, e.g., a plethora of
representations (Boldi et al., 2009; Larsson & Moffat, 2000).

9

Published as a conference paper at ICLR 2024

Reproducibility All experimental code related to this paper is available at https://github.
com/yunhuijang/HGGT. Detailed insights regarding the experiments, encompassing dataset and
model specifics, are available in Section 5. For intricate details like hyperparameter search, consult
Appendix D. In addition, the reproduced dataset for each baseline is in Appendix E.

Acknowledgements This work partly was supported by Institute of Information & communica-
tions Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT)
(No. IITP-2019-0-01906, Artificial Intelligence Graduate School Program (POSTECH)), the
National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2022R1C1C1013366), Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (2022R1A6A1A0305295413,
2021R1C1C1011375), and the Technology Innovation Program (No. 20014926, Development of
BIT Convergent AI Architecture, Its Validation and Candidate Selection for COVID19 Antibody,
Repositioning and Novel Synthetic Chemical Therapeutics) funded by the Ministry of Trans, Industry
& Energy (MOTIE, Korea).

REFERENCES

Sungsoo Ahn, Binghong Chen, Tianzhe Wang, and Le Song. Spanning tree-based graph generation
for molecules. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=w60btE_8T2m. 1, 3

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002. 1

Reet Barik, Marco Minutoli, Mahantesh Halappanavar, Nathan R Tallent, and Ananth Kalyanaraman.
Vertex reordering for real-world graphs and applications: An empirical evaluation. In 2020 IEEE
International Symposium on Workload Characterization (IISWC), pp. 240–251. IEEE, 2020. 23

Maciej Besta and Torsten Hoefler. Survey and taxonomy of lossless graph compression and space-
efficient graph representations. arXiv preprint arXiv:1806.01799, 2018. 3

Paolo Boldi, Massimo Santini, and Sebastiano Vigna. Permuting web and social graphs. Internet
Mathematics, 6(3):257–283, 2009. 9

Giorgos Bouritsas, Andreas Loukas, Nikolaos Karalias, and Michael Bronstein. Partition and code:
learning how to compress graphs. Advances in Neural Information Processing Systems, 34:
18603–18619, 2021. 3

Nieves R Brisaboa, Susana Ladra, and Gonzalo Navarro. k2-trees for compact web graph representa-
tion. In SPIRE, volume 9, pp. 18–30. Springer, 2009. 3, 4, 13

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation
via discrete diffusion modeling. arXiv preprint arXiv:2305.04111, 2023. 2

Elizabeth Cuthill and James McKee. Reducing the bandwidth of sparse symmetric matrices. In
Proceedings of the 1969 24th national conference, pp. 157–172, 1969. 4, 9

Nathaniel Lee Diamant, Alex M Tseng, Kangway V Chuang, Tommaso Biancalani, and Gabriele
Scalia. Improving graph generation by restricting graph bandwidth. In International Conference
on Machine Learning, pp. 7939–7959. PMLR, 2023. 4, 18

Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1):17–60, 1960. 1

Nikhil Goyal, Harsh Vardhan Jain, and Sayan Ranu. Graphgen: a scalable approach to domain-
agnostic labeled graph generation. In Proceedings of The Web Conference 2020, pp. 1253–1263,
2020. 1, 8, 18

Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative modeling of graphs.
In International conference on machine learning, pp. 2434–2444. PMLR, 2019. 1

10

https://github.com/yunhuijang/HGGT
https://github.com/yunhuijang/HGGT
https://openreview.net/forum?id=w60btE_8T2m
https://openreview.net/forum?id=w60btE_8T2m

Published as a conference paper at ICLR 2024

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc: a
free tool to discover chemistry for biology. Journal of chemical information and modeling, 52(7):
1757–1768, 2012. 2, 8

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018. 1, 3

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs
using structural motifs. In International conference on machine learning, pp. 4839–4848. PMLR,
2020. 1, 3

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International Conference on Machine Learning, pp.
10362–10383. PMLR, 2022. 1, 2, 7, 8, 17, 18

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B. Aditya Prakash, and Chao Zhang.
Autoregressive diffusion model for graph generation, 2023. URL https://openreview.
net/forum?id=98J48HZXxd5. 2

Mario Krenn, Florian Häse, A Nigam, Pascal Friederich, and Alán Aspuru-Guzik. SELFIES: a robust
representation of semantically constrained graphs with an example application in chemistry. arXiv
preprint arXiv:1905.13741, 2019. 1

N Jesper Larsson and Alistair Moffat. Off-line dictionary-based compression. Proceedings of the
IEEE, 88(11):1722–1732, 2000. 9

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018. 1

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
Advances in neural information processing systems, 32, 2019. 2, 7, 8, 18, 23

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing flows.
Advances in Neural Information Processing Systems, 32, 2019. 8, 18

Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. Graphebm: Molecular graph generation
with energy-based models. arXiv preprint arXiv:2102.00546, 2021. 1, 8, 18

Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast graph generative model via spectral diffusion.
arXiv preprint arXiv:2211.08892, 2022. 7, 8, 17, 18

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. In International Conference on Machine Learning, pp. 7192–7203. PMLR, 2021. 2, 8,
18

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An invertible
flow model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019. 1

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spec-
tral conditioning helps to overcome the expressivity limits of one-shot graph generators. In
International Conference on Machine Learning, pp. 15159–15179. PMLR, 2022. 7, 8, 18

Łukasz Maziarka, Agnieszka Pocha, Jan Kaczmarczyk, Krzysztof Rataj, Tomasz Danel, and Michał
Warchoł. Mol-cyclegan: a generative model for molecular optimization. Journal of Cheminformat-
ics, 12(1):1–18, 2020. 1

Chris Mueller. Sparse matrix reordering algorithms for cluster identification. Machune Learning in
Bioinformatics, 2004. 23

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permu-
tation invariant graph generation via score-based generative modeling. In International Conference
on Artificial Intelligence and Statistics, pp. 4474–4484. PMLR, 2020. 8, 18

11

https://openreview.net/forum?id=98J48HZXxd5
https://openreview.net/forum?id=98J48HZXxd5

Published as a conference paper at ICLR 2024

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019. 18

Sriram Raghavan and Hector Garcia-Molina. Representing web graphs. In Proceedings 19th
International Conference on Data Engineering (Cat. No. 03CH37405), pp. 405–416. IEEE, 2003.
3

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014. 2, 8

Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn, and
Dietmar Schomburg. Brenda, the enzyme database: updates and major new developments. Nucleic
acids research, 32(suppl_1):D431–D433, 2004. 2, 8

Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused
molecule libraries for drug discovery with recurrent neural networks. ACS central science, 4(1):
120–131, 2018. 1, 3

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155, 2018. 9

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a
flow-based autoregressive model for molecular graph generation. arXiv preprint arXiv:2001.09382,
2020. 2, 8, 18

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In Artificial Neural Networks and Machine Learning–ICANN 2018:
27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27, pp. 412–422. Springer, 2018. 1, 8, 18

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017. 2, 6, 9, 18

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734,
2022. 1, 2, 8, 18

Soojung Yang, Doyeong Hwang, Seul Lee, Seongok Ryu, and Sung Ju Hwang. Hit and lead discovery
with explorative rl and fragment-based molecule generation. Advances in Neural Information
Processing Systems, 34:7924–7936, 2021. 3

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018. 23

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models. In International conference on machine learning,
pp. 5708–5717. PMLR, 2018. 2, 8, 18, 23

Hao Yu, Xu Sun, Wei Deng Solvang, and Xu Zhao. Reverse logistics network design for effective
management of medical waste in epidemic outbreaks: Insights from the coronavirus disease 2019
(covid-19) outbreak in wuhan (china). International journal of environmental research and public
health, 17(5):1770, 2020. 1

Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 617–626, 2020. 8, 18

12

Published as a conference paper at ICLR 2024

A CONSTRUCTION OF A K2–TREE FROM THE GRAPH

Algorithm 1 K2–tree construction

Input:Adjacency matrix A and partitioning factor K.
1: Initialize the tree T ← (V, E) with V = ∅, E = ∅. ▷ K2–tree.
2: Initialize an empty queue Q. ▷ Candidates to be expanded into child nodes.
3: Set V ← V ∪ {r}, xr ← 1 and let A(r) ← A. Insert r into the queue Q. ▷ Add root node r.
4: while Q ̸= ∅ do
5: Pop u from Q.
6: if xu = 0 then ▷ Condition for not expanding the node u.
7: Go to line 4.
8: end if
9: Update s← dim(A(u))/K

10: for i = 1, . . . ,K do ▷ Row-wise indices.
11: for j = 1, . . . ,K do ▷ Column-wise indices.
12: Set Bi,j ← A(u)[(i− 1)s : is, (j − 1)s : js].

▷ Operation to obtain s× s submatrix Bi,j of A(u).
13: If Bi,j is filled with zeros, set xv ← 1. Otherwise, set xv ← 0.

▷ Update tree-node attribute.
14: If dim(vi,j) > 1, update Q ← vi,j .
15: end for
16: end for
17: Set V ← V ∪ {v1,1, . . . , vK,K}. ▷ Update tree nodes.
18: Set E ← E ∪ {(u, v1,1), . . . , (u, vK,K)}. ▷ Update tree edges.
19: end while

Output: K2–tree (T ,X) where X = {xu : u ∈ V}.

In this section, we explain our algorithm to construct a K2–tree (T ,X) from a given graph G = A
where G is a symmetric non-featured graph and A is an adjacency matrix. Note that he K2-ary tree
T = (V, E) is associated with binary node attributes X = {xu : u ∈ V}. In addition, let dim(A) to
denote the number of rows(or columns) n of the square matrix A ∈ {0, 1}n×n. We describe the full
procedure in Algorithm 1. Note that the time complexity of the procedure is O(N2) (Brisaboa et al.,
2009), where N denotes the number of nodes in the graph G.

13

Published as a conference paper at ICLR 2024

B CONSTRUCTING A GRAPH FROM THE K2–TREE

Algorithm 2 Graph G construction

Input: K2–tree (T ,X) and partitioning factor K.
Set m← KDT . ▷ Full adjacency matrix size.
Initialize A ∈ {0, 1}m×m with zeros.
for u ∈ L do ▷ For each leaf node with xu = 1.

pos(u) = ((iv1 , jv1), . . . , (ivL , jvL)). ▷ Position of node u.
(pu, qu) = (

∑L
ℓ=1 K

L−ℓ(ivℓ − 1) + 1,
∑L

ℓ=1 K
L−ℓ(jvℓ − 1) + 1). ▷ Location of node u.

Set Apu,qu ← 1.
end for
Output: Adjacency matrix A.

We next describe the algorithm to generate a graph G = A given the K2–tree (T ,X)
with tree depth DT . Let L ⊂ V be the set of leaf nodes in K2–tree with node at-
tributes 1. Note that we represent the tree-node position of u ∈ V as pos(u) =
((iv1 , jv1), . . . , (ivL , jvL)) based on a downward path v0, v1, . . . , vL from the root node r = v0
to the tree-node u = vL. In addition, the location of corresponding submatrix A(u) is denoted
as (pu, qu) = (

∑L
ℓ=1 K

L−ℓ(ivℓ − 1) + 1,
∑L

ℓ=1 K
L−ℓ(jvℓ − 1) + 1) in as described in Section 4.1.

We describe the full procedure as in Algorithm 2. Note that the time complexity of the procedure is
O(N2), where N denotes the number of nodes in the graph G, since it requires querying for each
element in the adjacency matrix.

14

Published as a conference paper at ICLR 2024

C GENERALIZING K2–TREE TO ATTRIBUTED GRAPHS

Algorithm 3 Featured K2–tree construction

Input: Modified adjacency matrix A and partitioning factor K.
1: Initialize the tree T ← (V, E) with V = ∅, E = ∅. ▷ Featured K2–tree.
2: Initialize an empty queue Q. ▷ Candidates to be expanded into child nodes.
3: Set V ← V ∪ {r}, xr ← 1 and let A(r) ← A. Insert r into the queue Q. ▷ Add root node r.
4: while Q ̸= ∅ do
5: Pop u from Q.
6: if xu = 0 then ▷ Condition for not expanding the node u.
7: Go to line 4.
8: end if
9: Update s← dim(A(u))/K

10: for i = 1, . . . ,K do ▷ Row-wise indices.
11: for j = 1, . . . ,K do ▷ Column-wise indices.
12: Set Bi,j ← A(u)[(i− 1)s : is, (j − 1)s : js].

▷ Operation to obtain s× s submatrix Bi,j of A(u).
13: if Bi,j is filled with zeros then ▷ Update tree-node attribute.
14: Set xv ← 0.
15: else if |Bi,j | > 1 then ▷ Non-leaf tree-nodes with attribute 1.
16: Set xv ← 1.
17: else ▷ Leaf tree-nodes with node features and edge features.
18: Set xv ← Bi,j . ▷ We treat 1× 1 matrix Bi,j as a scalar.
19: end if
20: if dim(Bi,j) > 1 then Q ← vi,j .
21: end if
22: end for
23: end for
24: Set V ← V ∪ {v1,1, . . . , vK,K}. ▷ Update tree nodes.
25: Set E ← E ∪ {(u, v1,1), . . . , (u, vK,K)}. ▷ Update tree edges.
26: end while

Output: Featured K2–tree (T ,X) where X = {xu : u ∈ V}.

Algorithm 4 Featured graph G construction

1: Input: Featured K2–tree (T ,X) and partitioning factor K.
2: m← KDT ▷ Full adjacency matrix size.
3: Initialize A ∈ {0, 1}m×m with zeros.
4: for u ∈ L do ▷ For each leaf node with xu ̸= 0.
5: pos(u) = ((iv1 , jv1), . . . , (ivL , jvL)). ▷ Position of node u.
6: (pu, qu) = (

∑L
ℓ=1 K

L−ℓ(ivℓ − 1) + 1,
∑L

ℓ=1 K
L−ℓ(jvℓ − 1) + 1). ▷ Location of node u.

7: Set Apu,qu ← xu.
8: end for
9: Output: Modified adjacency matrix A.

In this section, we describe a detailed process to construct a K2–tree for featured graphs with node
features and edge features (e.g., molecular graphs), which is described briefly in Section 4.1. We
modify the original adjacency matrix by incorporating categorical features into each element, thereby
enabling the derivation of the featured K2–tree from the modified adjacency matrix.

Edge features. Integrating edge features into the adjacency matrix is straightforward. It can be
accomplished by simply replacing the ones with the appropriate categorical edge features.

Node features. Integrating node features into the adjacency matrix is more complex than that of
edge features since the adjacency matrix only describes the connectivity between node pairs. To
address this issue, we assume that all graph nodes possess self-loops, which leads to filling ones to
the diagonal elements. Then we replace ones on the diagonal with categorical node features that
correspond to the respective node positions.

15

Published as a conference paper at ICLR 2024

Let xu ∈ X be the non-binary tree-node attributes that include node features and edge features and L
be the set of leaf nodes in K2–tree with non-zero node attributes. Then we can construct a featured
K2–tree with a modified adjacency matrix and construct a graph G from the featured K2–tree as
described in Algorithm 3 and Algorithm 4, respectively.

16

Published as a conference paper at ICLR 2024

D EXPERIMENTAL DETAILS

In this section, we provide the details of the experiments. Note that we chose k = 2 in all experiments
and provide additional experimental results for k = 3 in Appendix G.

D.1 GENERIC GRAPH GENERATION

Table 4: Hyperparameters of HGGT in generic graph generation.

Hyperparameter Community-small Planar Enzymes Grid

Transformer

Dim. of feed-forward network 512 512 512 512
Transformer dropout rate 0.1 0 0.1 0.1
of attention heads 8 8 8 8
of layers 3 3 3 3

Train

Batch size 128 32 32 8
of epochs 500 500 500 500
Dim. of token embedding 512 512 512 512
Gradient clipping norm 1 1 1 1
Input dropout rate 0 0 0 0
Learning rate 1× 10−3 1× 10−3 2× 10−4 5× 10−4

We used the same split with GDSS (Jo et al., 2022) for Community-small, Enzymes, and Grid
datasets. Otherwise, we used the same split with SPECTRE (Luo et al., 2022) for the Planar
dataset. We fix k = 2 and perform the hyperparameter search to choose the best learning rate in
{0.0001, 0.0002, 0.0005, 0.001} and the best dropout rate in {0, 0.1}. We select the model with the
best MMD with the lowest average of three graph statistics: degree, clustering coefficient, and orbit
count. Finally, we provide the hyperparameters used in the experiment in Table 6.

D.2 MOLECULAR GRAPH GENERATION

Table 5: Statstics of molecular datasets: QM9 and ZINC250k.

Dataset # of graphs # of nodes # of node types # of edge types

QM9 133,885 1 ≤ |V | ≤ 9 4 3
ZINC250k 249,455 6 ≤ |V | ≤ 38 9 3

Table 6: Hyperparameters of HGGT in molecular graph generation.

Hyperparameter QM9 ZINC250k

Transformer

Dim. of feedforward network 512 512
Transformer dropout rate 0.1 0.1
of attention heads 8 8
of layers 2 3

Train

Batch size 1024 256
of epochs 500 500
Dim. of token embedding 512 512
Gradient clipping norm 1 1
Input dropout rate 0.5 0
Learning rate 5× 10−4 5× 10−4

The statistics of training molecular graphs (i.e., QM9 and ZINC250k datasets) are summarized in
Table 5 and we used the same split with GDSS (Jo et al., 2022) for a fair evaluation. We fix k = 2 and
perform the hyperparameter search to choose the best number of layers in {2, 3} and select the model
with the best validity. In addition, we provide the hyperparameters used in the experiment in Table 6.

17

Published as a conference paper at ICLR 2024

E IMPLEMENTATION DETAILS

E.1 COMPUTING RESOURCES

We used PyTorch (Paszke et al., 2019) to implement HGGT and train the Transformer (Vaswani et al.,
2017) models on a single GeForce RTX 3090 GPU.

E.2 MODEL ARCHITECTURE

<latexit sha1_base64="y9ZFRzkmDuRgDysRJfh2JPjDtSw=">AAACHnicbVDJTgJBEO1xRdxQj15aiYknMmPcjkQvHjHKkgAhPU0NdOhZ7K4xkAlnf8Mf8Kp/4M141R/wO2xgDgJW0umX96pSr54bSaHRtr+thcWl5ZXVzFp2fWNzazu3s1vRYaw4lHkoQ1VzmQYpAiijQAm1SAHzXQlVt3c90quPoLQIg3scRND0WScQnuAMDdXKHTQQ+uh6yR08xBBwoEPacEPZ1gPffMlg2Mrl7YI9LjoPnBTkSVqlVu6n0Q557EOAXDKt644dYTNhCgWXMMw2Yg0R4z3WgbqBAfNBN5PxKUN6ZJg29UJlXoB0zP6dSJivR9ZMp8+wq2e1EfmfVo/Ru2wmIohiNGdOFnmxpBjSUS60LRRwlAMDGFfCeKW8yxTjaNKb2tKfWM2aYJzZGOZB5aTgnBfObk/zxas0ogzZJ4fkmDjkghTJDSmRMuHkibyQV/JmPVvv1of1OWldsNKZPTJV1tcvkgij4w==</latexit>

Sequence y 1 1 1 0 1 0 1 0 0 1

Token embedding

Tree positional encoding

Transformer decoder

+

Multilayer perceptron

0.01 0.34 0.05 0.08 …
<latexit sha1_base64="gLNcLchgROJuul+8ZSb/5Fig48g=">AAACG3icbVDJSgNBFOyJW4xb1KMgjUHwFGbE7Rj04s0IZoEkhJ7Om6RJz0L3G0kYcvM3/AGv+gfexKsHf8DvsCfJwSQWNBRV7/G6yo2k0Gjb31ZmaXlldS27ntvY3Nreye/uVXUYKw4VHspQ1V2mQYoAKihQQj1SwHxXQs3t36R+7RGUFmHwgMMIWj7rBsITnKGR2vnDJsIAXS+5izGKkUYqdJkrpEABepRr5wt20R6DLhJnSgpkinI7/9PshDz2IUAumdYNx46wlTCFgksY5ZqxhojxPutCw9CA+aBbyTjHiB4bpUO9UJkXIB2rfzcS5ms99F0z6TPs6XkvFf/zGjF6V61EBCYhBHxyyIslxZCmpdCOUMBRDg1hXJnsnPIeU4yjqW7mymDy1bQYZ76GRVI9LToXxfP7s0LpelpRlhyQI3JCHHJJSuSWlEmFcPJEXsgrebOerXfrw/qcjGas6c4+mYH19QvcEaJs</latexit>

Output probabilities

Figure 8: The architecture of HGGT.

We describe the architecture of the proposed trans-
former generator of HGGT in Figure 8. The generator
takes a sequential representation of K2–tree as input
and generates the output probability of each token
as described in Section 4.2. The model consists of a
token embedding layer, transformer encoder(s), and
multilayer perceptron layer with tree positional en-
coding.

E.3 DETAILS FOR BASELINE IMPLEMENTATION

Generic graph generation. The baseline results
from prior works are as follows. Results for Graph-
VAE (Simonovsky & Komodakis, 2018), GraphRNN
(You et al., 2018), GNF (Liu et al., 2019), EDP-
GNN (Niu et al., 2020), GraphAF (Shi et al., 2020),
GraphDF (Luo et al., 2021), and GDSS (Jo et al., 2022) are obtained from GDSS, while the results
for GRAN (Liao et al., 2019), SPECTRE (Martinkus et al., 2022), and GDSM (Luo et al., 2022) are
derived from their respective paper. Additionally, we reproduced DiGress (Vignac et al., 2022) and
GraphGen (Goyal et al., 2020) using their open-source codes. We used original hyperparameters
when the original work provided them. DiGress takes more than three days for the Planar, Enzymes,
and Grid datasets, so we report the results from fewer epochs after convergence.

Molecular graph generation. The baseline results from prior works are as follows. The results for
EDP-GNN (Niu et al., 2020), MoFlow (Zang & Wang, 2020), GraphAF (Shi et al., 2020), GraphDF
(Luo et al., 2021), GraphEBM (Liu et al., 2021), and GDSS (Jo et al., 2022) are from GDSS, and the
GDSM (Luo et al., 2022) result is extracted from the corresponding paper. Moreover, we reproduced
DiGress (Vignac et al., 2022) using their open-source codes.

E.4 DETAILS FOR THE IMPLEMENTATION

We adapted node ordering code from (Diamant et al., 2023), evaluation scheme from (Jo et al., 2022;
Martinkus et al., 2022), and NSPDK computation from (Goyal et al., 2020).

18

Published as a conference paper at ICLR 2024

F GENERATED SAMPLES

In this section, we provide the visualizations of the generated graphs for generic and molecular graph
generation.

F.1 GENERIC GRAPH GENERATION

Community-small

(a) Train (b) GraphGen (c) GDSS

(d) DiGress (e) Ours (HGGT)

Figure 9: Visualization of the graphs from the Community-small dataset and the generated graphs.

Planar

(a) Train (b) GraphGen

(d) DiGress (e) Ours (HGGT)

Figure 10: Visualization of the graphs from the Planar dataset and the generated graphs.

We present visualizations of graphs from the training dataset and generated samples from GraphGen,
DiGress, GDSS, and HGGT in Figure 9, Figure 10, Figure 11, and Figure 12. Note that we reproduced
GraphGen and DiGress using open-source codes while utilizing the provided checkpoints for GDSS.
However, given that the checkpoints provided for GDSS do not include the Planar dataset, we have
omitted GDSS samples for this dataset. We additionally give the number of nodes and edges of each
graph.

19

Published as a conference paper at ICLR 2024

Enzymes

(a) Train (b) GraphGen (c) GDSS

(d) DiGress (e) Ours (HGGT)

Figure 11: Visualization of the graphs from the enzymes dataset and the generated graphs.

Grid

(a) Train (b) GraphGen (c) GDSS

(d) DiGress (e) Ours (HGGT)

Figure 12: Visualization of the graphs from the Grid dataset and the generated graphs.

20

Published as a conference paper at ICLR 2024

F.2 MOLECULAR GRAPH GENERATION

Figure 13: Visualization of the molecules generated from the QM9 dataset.

Figure 14: Visualization of the molecules generated from the ZINC250k dataset.

We present visualizations of generated molecules from HGGT in Figure 13 and Figure 14. Note that
the 24 molecules are non-cherry-picked and randomly sampled.

21

Published as a conference paper at ICLR 2024

G ADDITIONAL EXPERIMENTAL RESULTS

In this section, we report additional experimental results.

Figure 15: Generation results of HGGT with k = 3.

Community-small Planar

Degree Cluster. Orbit Degree Cluster. Orbit

k = 2 0.001 0.006 0.003 0.000 0.001 0.000
k = 3 0.007 0.050 0.001 0.001 0.003 0.000

G.1 GENERIC GRAPH GENERATION

We provide generic graph generation results for k = 3. Increasing k decreases the sequence length,
while vocabulary size increases to 23

2

+ 26 = 578.

We used Community-small and Planar datasets and measured MMD between the test graphs and
generated graphs. We perform the same hyperparameter search for a fair evaluation as k = 2. The
results are in Figure 15. We can observe that HGGT still outperforms the baselines even with different
k.

G.2 MOLECULAR GRAPH GENERATION

Table 7: Additional molecular graph generation performance.

QM9

Method Frag. ↑ Intdiv. ↑ QED ↓ SA ↓ SNN ↑ Scaf. ↑ Weight ↓
DiGress 0.9737 0.9189 0.0015 0.0189 0.5216 0.9063 0.1746
HGGT (Ours) 0.9874 0.9150 0.0012 0.0304 0.5156 0.9368 0.2430

ZINC250k

Method Frag. ↑ Intdiv. ↑ QED ↓ SA ↓ SNN ↑ Scaf. ↑ Weight ↓
DiGress 0.7702 0.9061 0.1284 1.9290 0.2491 0.0001 62.9923

HGGT (Ours) 0.9877 0.8644 0.0164 0.2407 0.4383 0.5298 1.8592

We additionally report seven metrics of the generated molecules: (a) fragment similarity (Frag.), which
measures the BRICS fragment frequency similarity between generated molecules and test molecules,
(b) internal diversity (Intdiv.), which measures the chemical diversity in generated molecules, (c)
quantitative estimation of drug-likeness (QED), which measures the drug-likeness similarity between
generated molecules and test molecules, (d) synthetic accessibility score (SA), which compares the
synthetic accessibility between generated molecules and test molecules, (e) similarity to the nearest
neighbor (SNN), an average of Tanimoto similarity between the fingerprint of a generated molecule
and test molecule, (f) scaffold similarity (Scaf.), the Bemis-Murcko scaffold frequency similarity
between generated molecules and test molecules, and (g) weight, the atom weight similarity between
generated molecules and test molecules. The results are in Table 7.

22

Published as a conference paper at ICLR 2024

H DISCUSSION

H.1 HIERARCHY OF K2–TREE REPRESENTATION

K2–tree representation is hierarchical as it forms a parent-child hierarchy between nodes. In detail,
each node in K2–tree corresponds to a block (i.e., submatrix) in the adjacency matrix. Given a child
and its parent node, the child node block is a submatrix of the parent block node, which enables
K2–tree to represent a hierarchical structure between the blocks. While this hierarchy may differ
from the exact hierarchical community structure, the K2–tree representation still represents a valid
hierarchy present in the adjacency matrix. We also note that our K2–tree representation should
not be confused with the hierarchical representation learned by graph neural networks with pooling
functions (Ying et al., 2018).

Nevertheless, bandwidth minimization algorithms (including C-M node ordering) often induce node
orderings that align with underlying clusters. Prior works (Barik et al., 2020; Mueller, 2004) have
empirically figured out that bandwidth minimization tends to cluster the points along the diagonal,
which leads to a partial capture of the underlying community structure. This also supports our
statement that K2–tree representation is hierarchical.

H.2 COMPARISON WITH PRIOR WORKS ON AUTOREGRESSIVE GRAPH GENERATIVE MODEL

In this section, we compare HGGT to two prior works on autoregressive graph generative models:
GraphRNN (You et al., 2018) and GRAN (Liao et al., 2019). The main difference comes from the
key idea of HGGT: the ability to capture recurring patterns and the hierarchy of the adjacency matrix.
In detail, HGGT maps the recurring patterns in the dataset (large zero-filled block matrices) into a
simple object (a zero-valued node in the K2–tree that the model can easily generate. This mapping
allows the generative model to focus on learning instance-specific details rather than the generation
of the whole pattern that is common across the dataset. In addition, K2–tree representation can
represent a valid hierarchy present in the adjacency matrix, as described in Appendix H.1

121110987654321

1

2

3

4

5

6

7

8

9

10

11

12

121110982173645

5

4

6

3

7

1

2

8

9

10

11

12

<latexit sha1_base64="oIrNmTDC5cxsKgAGUwOkkrnNQTo=">AAACHXicbVDJSgNBEO1xjXGLevTSGIR4CTPidhQF9RTcYgJJCD2dmqSxp2forhHDkKu/4Q941T/wJl7FH/A77CwHNT4oeLxXRVU9P5bCoOt+OhOTU9Mzs5m57PzC4tJybmX1xkSJ5lDmkYx01WcGpFBQRoESqrEGFvoSKv7tcd+v3IE2IlLX2I2hEbK2EoHgDK3UzNE6wj36QXp0ckUj3QItVJsWTjWLO5el0lavmcu7RXcAOk68EcmTEc6bua96K+JJCAq5ZMbUPDfGRso0Ci6hl60nBmLGb1kbapYqFoJppINPenTTKi0aRNqWQjpQf06kLDSmG/q2M2TYMX+9vvifV0swOGikQsUJguLDRUEiKUa0HwttCQ0cZdcSxrWwt1LeYZpxtOH92nI/PDVrg/H+xjBObraL3l5x92Inf3g0iihD1skGKRCP7JNDckbOSZlw8kCeyDN5cR6dV+fNeR+2TjijmTXyC87HN2SCogI=</latexit>

BFS ordering (GraphRNN)
<latexit sha1_base64="LoE4E3zCTHE97OoJrcNw+/4m+C4=">AAACGnicbVDLSgNBEJyN7/iKehRhMAiewq74OoqCeFQ0RkhCmJ30JkNmZ5aZXjEsOfkb/oBX/QNv4tWLP+B3OHkcTLSgoajqprsrTKSw6PtfXm5qemZ2bn4hv7i0vLJaWFu/tTo1HMpcS23uQmZBCgVlFCjhLjHA4lBCJeyc9f3KPRgrtLrBbgL1mLWUiARn6KRGYauG8IBhlFUEtnWK9PT8mmrTBCNUq9coFP2SPwD9S4IRKZIRLhuF71pT8zQGhVwya6uBn2A9YwYFl9DL11ILCeMd1oKqo4rFYOvZ4I0e3XFKk0bauFJIB+rviYzF1nbj0HXGDNt20uuL/3nVFKPjeiZUkiIoPlwUpZKipv1MaFMY4Ci7jjBuhLuV8jYzjKNLbmzLw/DUvAsmmIzhL7ndKwWHpYOr/eLJ6SiiebJJtskuCcgROSEX5JKUCSeP5Jm8kFfvyXvz3r2PYWvOG81skDF4nz95mqGn</latexit>

Without BFS ordering

Figure 16: Reduced representation size of GraphRNN.

Comparison to GraphRNN. Both HGGT and GraphRNN reduce the representation size, which
removes the burden of the graph generative models learning long-range dependencies. In detail,
HGGT reduces the representation size by leveraging K2–tree, pruning, and tokenization. Otherwise,
GraphRNN employs BFS node ordering constraining the upper-corner elements of the adjacency
matrix to be consecutively zero as described in Figure 16.

Comm. Planar Enzymes Grid

Full matrix 241.3 4096.0 1301.6 50356.1
GraphRNN 75.2 2007.3 234.7 4106.3

HGGT (ours) 30.3 211.7 67.3 419.1

Table 8: Representation size of GraphRNN and HGGT

23

Published as a conference paper at ICLR 2024

Dataset Rep. size N2

Comm. 48 400
Enzymes 238 15625
Planar 230 4696
Grid 706 130321

The reduction of HGGT is higher as shown in Table 8 that reports the average size of the representation
empirically. Note that the representation size of HGGT and GraphRNN indicates the number of
tokens and the number of elements limited by the maximum size of the BFS queue, respectively.
While the comparison is not fair due to different vocabulary sizes, one could expect HGGT to suffer
less from the long-range dependency problem due to the shorter representation.

Comparison to GRAN. The main difference between HGGT and GRAN comes from the different
generated representations. HGGT generates K2–tree representation with large zero-filled blocks,
which is further summarized into a single node in the K2–tree while GRAN generates the conventional
adjacency matrix. Notably, the block of nodes of GRAN is solely used for parallel decoding, which
is conceptually irrelevant to the graph representation.

In addition, the concept of block and the decoding process of the blocks differ in both methods.
On one hand, the square-shaped HGGT block defines connectivity between a pair of equally-sized
node sets. HGGT sequentially specifies these block matrix elements in a hierarchical way, i.e.,
first specifying whether the whole block matrix is filled with zeros and then specifying its smaller
submatrices. On the other hand, the rectangular-shaped GRAN block defines connectivity between
a set of newly added nodes and the existing nodes. GRAN can optionally decode the block matrix
elements in parallel, speeding up the decoding process at the cost of lower performance.

24

	Introduction
	Related Work
	K2–tree Representation of a Graph
	Hierarchical Graph Generation with K2–trees
	Sequential K2–tree representation
	Generating K2–tree with Transformer and K2–tree positional encoding

	Experiment
	Generic graph generation
	Molecular graph generation
	Ablation studies

	Conclusion
	Construction of a K2–tree from the graph
	Constructing a graph from the K2–tree
	Generalizing K2–tree to Attributed Graphs
	Experimental Details
	Generic graph generation
	Molecular graph generation

	Implementation Details
	Computing resources
	Model architecture
	Details for baseline implementation
	Details for the implementation

	Generated samples
	Generic graph generation
	Molecular graph generation

	Additional Experimental Results
	Generic graph generation
	Molecular graph generation

	Discussion
	Hierarchy of K2–tree representation
	Comparison with prior works on autoregressive graph generative model

