
Published as a conference paper at ICLR 2025

SRSA: SKILL RETRIEVAL AND ADAPTATION FOR
ROBOTIC ASSEMBLY TASKS

Yijie Guo
1
, Bingjie Tang

2
, Iretiayo Akinola

1
, Dieter Fox

1,3
, Abhishek Gupta

1,3
& Yashraj Narang

1

1NVIDIA Corporation, 2University of Southern California, 3University of Washington

ABSTRACT

Enabling robots to learn novel tasks in a data-efficient manner is a long-standing
challenge. Common strategies involve carefully leveraging prior experiences, es-
pecially transition data collected on related tasks. Although much progress has
been made for general pick-and-place manipulation, far fewer studies have inves-
tigated contact-rich assembly tasks, where precise control is essential. We intro-
duce SRSA (Skill Retrieval and Skill Adaptation), a novel framework designed
to address this problem by utilizing a pre-existing skill library containing policies
for diverse assembly tasks. The challenge lies in identifying which skill from the
library is most relevant for fine-tuning on a new task. Our key hypothesis is that
skills showing higher zero-shot success rates on a new task are better suited for
rapid and effective fine-tuning on that task. To this end, we propose to predict
the transfer success for all skills in the skill library on a novel task, and then use
this prediction to guide the skill retrieval process. We establish a framework that
jointly captures features of object geometry, physical dynamics, and expert actions
to represent the tasks, allowing us to efficiently learn the transfer success predic-
tor. Extensive experiments demonstrate that SRSA significantly outperforms the
leading baseline. When retrieving and fine-tuning skills on unseen tasks, SRSA
achieves a 19% relative improvement in success rate, exhibits 2.6x lower standard
deviation across random seeds, and requires 2.4x fewer transition samples to reach
a satisfactory success rate, compared to the baseline. In a continual learning setup,
SRSA efficiently learns policies for new tasks and incorporates them into the
skill library, enhancing future policy learning. Furthermore, policies trained with
SRSA in simulation achieve a 90% mean success rate when deployed in the real
world. Please visit our project webpage https://srsa2024.github.io/.

1 INTRODUCTION

Humans excel at solving new tasks with few demonstrations or trial-and-error interactions. In robot
learning, a key challenge is to similarly enable robots to learn control policies from sensory input in
a data-efficient manner. Achieving data-efficient learning is crucial for deploying robots in diverse
real-world environments, such as the household and industry. A compelling approach to efficient
policy learning is the development of a foundation model or generalist policy that spans multiple
tasks, as the model or policy can offer long-term efficiency gains by providing a strong base for
adaptation to novel tasks. Significant advancements have been made in manipulation tasks, particu-
larly in visual pre-training (Parisi et al., 2022; Nair et al., 2022), multi-task policy learning (Shridhar
et al., 2022; Goyal et al., 2024), and policy generalization (Jang et al., 2022; Ebert et al., 2021).

Despite this progress, efficiently solving new tasks in contact-rich environments, such as robotic as-
sembly, remains underexplored. Robotic assembly plays a critical role in industries like automotive,
aerospace, and electronics, but learning assembly policies is uniquely difficult. These tasks require
contact-rich interactions with high levels of precision and accuracy, compounded by the physical
complexity of the environments, part variability, and strict reliability standards. Much of the exist-
ing research focuses on training specialist (i.e., single-task) policies for individual assembly tasks
(Spector & Di Castro, 2021; Spector et al., 2022; Tang et al., 2023). Building on the strengths
of these specialist approaches, we propose a novel method for tackling new assembly tasks. Our
approach leverages a skill library – a collection of diverse specialist policies and associated infor-
mation (such as object geometry and task-relevant trajectories) for various assembly tasks. These
policies and data, regardless of the training strategies or learning approaches used to develop them,
can be harnessed to efficiently solve previously-unseen assembly challenges.
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Figure 1: Overview of SRSA. We address assembly tasks, where the goal is to use a robot arm to
insert diverse plugs (i.e., the white parts) into or onto corresponding sockets (i.e., the green parts).
Specifically, we propose to predict the transfer success of applying prior skills (i.e., policies) to a
new task, retrieve the skill with the highest predicted success rate, and fine-tune it on the new task.
During fine-tuning, we accelerate and stabilize adaptation by incorporating imitation learning of
high-rewarding transitions from the agent’s own replay buffer.

To utilize prior task experiences, previous work on general pick-and-place tasks has explored meth-
ods such as imitating state-action pairs from expert demonstrations (Du et al., 2023; Lin et al., 2024;
Kuang et al., 2024) and encoding sub-task skills as macro-action choices (Lynch et al., 2020; Pertsch
et al., 2021; Nasiriany et al., 2022). Unlike these approaches, which focus on reusing data or sub-
task skills, our approach centers on adapting policies from previous tasks to solve novel tasks. These
policies encapsulate essential task-solving knowledge in a generative form, making them a valuable
starting point for further refinement. Despite having access to a library of policies, identifying the
most relevant ones for fine-tuning on new tasks is still an open question, and the success of fine-
tuning hinges on making the right selection. In this paper, we introduce SRSA (Skill Retrieval and
Skill Adaptation), a novel framework designed to retrieve policies for similar tasks and adapt them
to new tasks, as illustrated in Fig. 1. The key contributions of this paper are as follows:

(1) Skill Retrieval Method: We propose a skill retrieval method that simultaneously and explicitly
learns embeddings for three fundamental components of assembly tasks: part geometry, interaction
dynamics, and expert action choices. We subsequently introduce a novel objective that leverages
these embeddings to predict transfer success between any source policy and target task, implicitly
capturing additional critical factors for policy transfer. This approach enables the effective retrieval
of relevant skills, resulting in higher zero-shot transfer success when applied to new tasks.

(2) Skill Adaptation Method: We propose a skill adaptation method that fine-tunes retrieved skills
on new tasks while incorporating a self-imitation learning method (Oh et al., 2018) to enhance
performance and stability during fine-tuning. In a simulation-based, dense-reward setting explored
in the leading assembly baseline (Tang et al., 2024), SRSA achieves a relative improvement of 19%
in success rate with 2.4x faster training and 2.6x lower standard deviation across random seeds. In
simulation-based, sparse-reward settings without demonstrations or curricula (closely aligning with
real-world fine-tuning scenarios), SRSA outperforms the baseline with a relative improvement of
135% in success rate. Furthermore, we demonstrate that policies fine-tuned in simulation can be
directly transferred to real-world robots, achieving a 90% average success rate without the need for
additional training. This capability of effectively fine-tuning policies in simulation on novel tasks,
and transferring these policies to the real world in zero-shot, highlights the potential for deploying
high-performance solutions in real-world assembly tasks.

(3) Continual Learning with SRSA: Instead of training numerous specialist (i.e., single-task) poli-
cies from scratch, we propose gradually expanding a small set of initial skills via retrieval and
adaptation to cover a broader range of tasks. This strategy improves sample efficiency by over 80%
compared to (Tang et al., 2024) and stays consistently efficient as the skill library and target tasks
evolve. Thus, SRSA provides an efficient solution for accumulating a large-scale collection of skills.

2 RELATED WORK

Robotic Assembly Tasks Robotic assembly is a critical manufacturing process in the automotive,
aerospace, electronics, and medical device industries, but adaptive robotic assembly (e.g., robustness
to part types, initial part poses, perceptual noise, control error, and environmental perturbations)
is largely unsolved. Research (Beltran-Hernandez et al., 2020; Luo et al., 2021; Narang et al.,
2022; Tang et al., 2023; Zhang et al., 2023; Noseworthy et al., 2024) on adaptive assembly has seen
significant growth in recent years. Despite advancements in datasets and real-world benchmarks
for assembling small, realistic parts (Kimble et al., 2020; 2022; Willis et al., 2022; Tian et al.,
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2022), the exploration of policy learning across a wide variety of parts remains relatively limited.
Many recent efforts in robotic assembly have concentrated on perception (Fu et al., 2022; Wen
et al., 2022) or planning (Tian et al., 2022; 2024), rather than learning policies that are robust to
disturbances and noise. Additionally, the policy-learning efforts that have addressed the widest
range of assemblies have typically been restricted to <30 parts (Spector & Di Castro, 2021; Spector
et al., 2022; Zhao et al., 2022). The largest study, AutoMate (Tang et al., 2024), introduced a
diverse dataset featuring 100 assembly tasks with simulation environments and 3D-printable parts,
and explores policy learning across these tasks. However, its approach primarily focuses on learning
specialist (i.e., single-task) policies from scratch without leveraging prior experience or knowledge
from related tasks. In contrast, our goal is to solve novel assembly tasks by leveraging skills from
previously-solved assembly tasks.

Retrieval-based Policy Learning Many studies have explored techniques for utilizing datasets from
other tasks for pretraining, such as visual pretraining (Parisi et al., 2022; Nair et al., 2022; Xiao et al.,
2022) and multi-task imitation learning (Jang et al., 2022; Ebert et al., 2021; Shridhar et al., 2022).
Recently, in robotic manipulation, some works have investigated how to selectively incorporate of-
fline data from other tasks during policy learning, i.e., retrieving prior data according to expert
demonstrations on the target task (Nasiriany et al., 2022; Belkhale et al., 2024; Shao et al., 2021;
Zha et al., 2024). For instance, Du et al. (2023) selects pertinent state-action pairs based on visual
and action similarity from offline, unlabeled datasets and jointly trains a policy using a small amount
of expert demonstrations and the queried data via imitation learning. Lin et al. (2024), on the other
hand, emphasizes motion similarity rather than semantic similarity by retrieving state-action pairs
based on optical flow representations, followed by few-shot imitation learning with expert demon-
strations and the retrieved data. Kuang et al. (2024) takes a different approach by extracting a unified
affordance representation from diverse data sources and hierarchically retrieving and transferring 2D
affordance information based on language instructions to perform zero-shot robotic manipulation.
These works primarily study data retrieval for general pick-and-place manipulation tasks. (Zhu
et al., 2024) introduces a policy retriever for pick-and-place tasks, which selects policy candidates
from a memory bank to align closely with the current input, based on the cosine similarity between
instruction and observation features. In contrast to these works, we focus on challenging contact-rich
manipulation tasks, especially investigating transfer success predictor for policy retrieval.

Embedding Learning for Task and Skills Task embedding learning has been extensively explored
in meta-reinforcement learning and multi-task reinforcement learning problems, where shared
knowledge across tasks can significantly enhance learning efficiency for new tasks. Most previous
approaches focus on capturing task features related to visual appearance in 2D images or dynamics
in transitions (James et al., 2018; Rakelly et al., 2019; Lee et al., 2020). Contrastive learning is
often employed to bring similar tasks closer together in the embedding space while pushing dissim-
ilar tasks farther apart (James et al., 2018). Skill embedding learning, on the other hand, leverages
unstructured prior experiences (i.e., temporally extended actions that encapsulate useful behaviors)
and repurposes them to solve downstream tasks. Existing methods typically train a high-level policy
where the action space consists of the extracted skills (Pertsch et al., 2021; Nasiriany et al., 2022;
Hausman et al., 2018; Sharma et al., 2019; Lynch et al., 2020). Although most previous approaches
use skills to solve subtasks and combine sequences of skills for long-horizon tasks, we focus on
selecting and adapting a single relevant skill for a new task; our tasks of interest are assembly tasks,
which are typically short-horizon but difficult to train due to exploration challenges and precise con-
trol requirements. Additionally, we integrate multiple embedding-learning approaches by jointly

capturing three fundamental components of assembly tasks: part geometry, interaction dynamics,
and expert actions. We consolidate these perspectives for more robust task representation.

3 PROBLEM SETUP
In this work, we consider the problem setting of solving a new target task leveraging pre-existing
skills from a skill library. This library contains policies, each designed to solve a specific previously-
encountered task. Our approach is motivated by situations (Rusu et al., 2016; Tirinzoni et al., 2019;
Huang et al., 2021) where an agent can draw on knowledge from previously-learned policies to adapt
quickly to a new task at hand. Similar to the multi-task reinforcement learning (RL) formulation
(Borsa et al., 2016; Sodhani et al., 2021; Calandriello et al., 2014), we consider a task space T
where each task T 2 T is defined as a Markov decision process (MDP) (S,A, p, r, �, ⇢). In this
formulation, S represents the state space, A the action space, p(st+1|st, at) the transition dynamics,
r(st, at) the reward function, � 2 [0, 1) the discount factor, and ⇢ the initial state distribution.
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(b) 3D-printed assembly parts in real world

(c) Keyframes of assembly tasks in real-world deployment
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Figure 2: Illustration of assembly tasks in AutoMate and SRSA. (a) Samples of assembly tasks
in the AutoMate benchmark. (b) 3D-printed parts of corresponding real-world assembly tasks in
SRSA. (c) Keyframes from video recordings of our real-world deployments of performant policies.

.
Our study focuses on two-part assembly tasks, as depicted in Fig. 2. Following the setup of Au-
toMate (Tang et al., 2024), each environment includes a Franka robot, a plug (i.e., a part to be
inserted), and a socket (i.e., the part that mates with the given plug). In the initial state, we random-
ize the robot’s joint configuration and socket pose, as well as the pose of the plug within the robot’s
gripper. The goal of each task is to insert a plug into its corresponding socket. (See Appendix A.1)

The state space S consists of the robot arm’s joint angles and velocities, the end-effector pose and
its linear/angular velocities, the current plug pose, and the end-effector goal pose. The action space
A consists of incremental pose targets for a task-space impedance controller. As described in (Tang
et al., 2024), although assembly trajectories are infeasible to procedurally generate, disassembly

paths can be easily generated, serving as reverse demonstrations that can be used by an RL agent.
Specifically, the RL reward function is composed of terms that penalize the distance to the goal,
penalize simulation error, reward task difficulty in a curriculum, and imitate the reversed disassembly
paths. The assembly tasks all share the same state space S and action space A, but vary in part
geometries, transition dynamics p, and initial state distribution ⇢.

Given a target task T 2 T , we assume access to a prior task set Tprior = {T1, T2, · · · , Tn} ✓ T .
With policy space ⇧ : S ! A, the skill library contains policies ⇧prior = {⇡1,⇡2, · · · ,⇡n} ✓ ⇧
that solve each of the prior tasks, respectively. To solve a target task, the goal of RL is to find a
policy ⇡(at|st) that produces an action for each state to maximize the expected return. We propose
to first retrieve a skill (i.e., policy) for the most relevant prior task (Sec. 4.1), and then rapidly and
effectively adapt to the target task by fine-tuning the retrieved skill (Sec. 4.2).

4 METHOD

4.1 SKILL RETRIEVAL

To effectively retrieve the skills from ⇧prior that are useful for a new target task T , we require a
means to estimate the potential of applying a source policy ⇡src 2 ⇧prior to the task T . Concretely,
we aim to obtain a function F : ⇧⇥ T ! R, which takes as input a source policy and a target task,
and produces a scalar score measuring how well the source policy can be adapted to the target task.

According to the simulation lemma (Agarwal et al., 2019), the difference in expected value when
applying the same policy to different tasks partially depends on the difference in their transition
dynamics and initial state distributions. We execute a source policy ⇡src on both target task Ttrg and
its original source task Tsrc. Let rsrc,trg denote the zero-shot transfer success of ⇡src on Ttrg and
rsrc,src its success rate on Tsrc. These success rates reflect the expected value of ⇡src on Ttrg and
Tsrc, respectively. Notably, if rsrc,trg is similar to rsrc,src, it suggests that the transition dynamics
and initial state distributions of two tasks may be closely aligned. Since ⇡src is already an expert
on Tsrc with a high success rate rsrc,src, a high zero-shot transfer success rate rsrc,trg indicates
strong task similarity. Thus, we use the high transfer success rate as a heuristic indicator of similar
dynamics and initial state distributions between source and target tasks. Details are in Appendix A.2.

Subsequently, we hypothesize that fine-tuning a source policy on a target task with similar dynamics
will be efficient, as it only requires adaptation to small differences in dynamics. Therefore, we
propose using zero-shot transfer success as a metric to gauge the potential to efficiently adapt a
source policy to a target task. To identify a source policy with high zero-shot transfer success on a
given target task, we propose to learn a function F to predict zero-shot transfer success for any pair
of source policy ⇡src and target task Ttrg . The prediction F (⇡src, Ttrg) serves as an indicator of
whether ⇡src is a strong candidate to initiate fine-tuning for the target task Ttrg . Below, we describe
data collection (Sec. 4.1.1), featurization (Sec. 4.1.2), training (Sec. 4.1.3) and inference (Sec. 4.1.4)
for the transfer success predictor F .
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Figure 3: Illustration of skill retrieval approach. We decompose skill retrieval into task feature
learning(a-c) and transfer success prediction(d). (a) Geometry features are learned from point-cloud
input using a PointNet autoencoder. (b) Dynamics features are learned from transition segments
using a state-prediction objective. (c) Expert-action features are learned from transition segments
using an action-reconstruction objective. (d) The zero-shot transfer success rate (of applying a
source policy to a target task) is predicted using these task features from the source and target tasks.

4.1.1 DATASET FORMULATION

In order to train the prediction function F , we construct a dataset of tuples (⇡src, Ttrg, rsrc,trg).
We treat any two tasks from the prior task set Tprior as a source-target task pair. For each pair
(⇡src, Ttrg), we evaluate the source policy ⇡src on the target task Ttrg to obtain the zero-shot trans-
fer success rate rsrc,trg . In cases where multiple distinct policies exist for the same source task,
each solving it in a different manner, policy-specific features would be necessary to capture nu-
ances between different policies. However, in our setting, each policy in the skill library is trained
as an expert for a specific source task, with a one-to-one mapping between policies and their cor-
responding training tasks. Consequently, we use the features of the source task Tsrc as a proxy
to represent the source policy ⇡src. This process enables us to collect a training dataset of tuples
(Tsrc, Ttrg, rsrc,trg) from the prior skill library.

4.1.2 LEARNING TASK FEATURES

Given the limited number of (Tsrc, Ttrg) pairs (specifically, during training, we have n ⇥ n pairs
for a total of n tasks in Tprior), we need a strong featurization of both the source policy and target
task for efficient learning of F . For assembly tasks, each task differs along three fundamental axes:
part geometry, interaction dynamics, and expert actions that solve the task. Thus, we propose a
framework that jointly captures features of geometry, dynamics, and expert actions to represent the
tasks, allowing us to efficiently learn the transfer success predictor F (Fig. 3).

When learning geometry features, we assume access to object meshes for both seen and novel tasks.
This assumption is well-grounded in industry, where CAD models are widely available, allowing us
to learn embeddings of 3D geometry. However, learning features for dynamics and expert actions
poses a unique challenge. For new assembly tasks, we assume that expert demonstrations are not

available, as these are typically tedious to obtain and often suboptimal for assembly tasks. This
deficit prevents us from easily computing dynamics or action embeddings.

We draw insight from (Tian et al., 2022; Tang et al., 2024), which noted that, although procedu-
rally generating assembly demonstrations for new tasks is intractable (narrow-passage problem),
disassembly paths can be trivially generated by employing a compliant low-level controller to lift an
inserted plug from its socket and move it to a randomized pose. We propose learning features for
dynamics and expert actions using these disassembly paths and hypothesize that such features are
useful for predicting transfer success for assembly. We later empirically support this hypothesis.

From each task, we randomly sample a certain number of points from parts’ meshes as the point
cloud P and also randomly sample the transition segments ⌧ from the disassembly trajectories.
Using point clouds P or transition sequences ⌧ , we learn encoders EG, ED, and EA to capture fea-
tures zG (representing geometry), zD (representing forward dynamics) and zA (representing expert
actions). We also train decoders DG, DD, and DA conditioned on these features to predict the point
cloud for geometry, the next state for dynamics, and the action sequence for expert action choices.
In Appendix A.4, we explain the implementation details for learning these features.

4.1.3 LEARNING TRANSFER SUCCESS PREDICTOR

We consolidate task features of source Tsrc and target tasks Ttrg to develop the transfer success
predictor F . We feed the sampled point cloud Psrc, Ptrg and transition segments ⌧src, ⌧trg from
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Tsrc and Ttrg , into the pre-trained and frozen encoders EG, ED and EA. The geometry, dynamics,
and expert action features are concatenated together to form task features zsrc and ztrg . We then pass
the concatenated task features through an MLP to predict the transfer success rsrc,trg , as illustrated
in Fig. 3(d). Formally, we train the function F to minimize the objective function (Eq. 1):

L= kF (⇡src, Ttrg)� rsrc,trgk2 = kMLP (zsrc, ztrg)� rsrc,trgk2

= kMLP (EG(Psrc), ED(⌧src), EA(⌧src), EG(Ptrg), ED(⌧trg), EA(⌧trg))� rsrc,trgk2 (1)

4.1.4 INFERRING TRANSFER SUCCESS FOR RETRIEVAL

At test time, we use the well-trained function F to predict the transfer success of applying any
prior policy to a new task Ttrg as F (⇡src, Ttrg). As described in Sec. 4.1.2, for each task, we
can randomly sample a certain number of points from parts’ meshes as point clouds and randomly
sample transition segments from the disassembly trajectories. For each pair of source and tar-
get tasks, we sample the input data for m times and average the output of F to obtain a more
robust prediction of transfer success. Specifically, we sample point clouds P1, P2, · · · , Pm and
transition segments ⌧1, ⌧2, · · · , ⌧m, and then compute the averaged prediction for these samples,
i.e., F (⇡src,Ttrg)= 1

m

Pm
i=1 MLP (EG(Psrc,i),ED(⌧src,i),EA(⌧src,i),EG(Ptrg,i),ED(⌧trg,i),EA(⌧trg,i)). In this

way, we infer the predicted transfer success F (⇡src, Ttrg) for any source policies ⇡src in the prior
skill library ⇧prior = {⇡1,⇡2, · · · ,⇡n}.

Although the well-trained F provides transfer success prediction as an effective guidance for re-
trieval, its predictions may not always be perfectly accurate. To mitigate this, we retrieve the top-k
source skills ranked by the predictor F . Among these k candidates, we identify the most relevant
skill by evaluating their zero-shot transfer success on the target task, and ultimately select the skill
with the best transfer performance. This technique is grounded in the same intuition as introduced in
Sec. 4.1: zero-shot transfer success serves as a reliable metric for skill relevance. In the experiments
in Sec. 5.2, we set k to 5. Details are in Appendix A.12.

4.2 SKILL ADAPTATION

As mentioned in Sec. 3, our ultimate goal is to solve the new task as an RL problem. The re-
trieved skill is used to initialize the policy network ⇡✓(at|st), and we subsequently use proximal
policy optimization (PPO) (Schulman et al., 2017) to fine-tune the policy on the target task. Our
initialization provides a strong start for policy learning, as initial trials with the retrieved skills can
achieve a reasonable success rate. Inspired by self-imitation learning (Oh et al., 2018), we fully
exploit these positive experiences gained during the initial phase of fine-tuning. We maintain a re-
play buffer D = {(st, at, Rt)} to store the transitions encountered throughout the training, where
Rt =

PT
k=t �

k�trk is the discounted sum of rewards. We prioritize the state-action pairs (st, at)
based on Rt and imitate those pairs with high rewards. The objective function is defined in Eq. 2:

Lsil = E(s,a,R)2D[Lsil
policy + �Lsil

value] (2)

where Lsil
policy = � log ⇡✓(a|s)(R� V (s))+, Lsil

value =
1
2k(R� V (s))+k2, (·)+ = max(·, 0),

and ⇡✓ and V are the policy and value function (see the details in Appendix A.3).

As training progresses, the agent collects higher rewards on the target task, leading to an expanding
replay buffer filled with improved experiences. As analyzed in (Tang, 2020), this self-imitation
mechanism accelerates the agent’s convergence to encountered high-reward behavior, even though
it may introduce some bias into the policy. In our case, the behavior derived from the retrieved skill
is advantageous for the target task. We find that self-imitation learning significantly enhances and
stabilizes policy fine-tuning, proving especially beneficial in sparse-reward scenarios.

4.3 CONTINUAL LEARNING WITH SKILL-LIBRARY EXPANSION

Continual learning investigates learning various tasks in a sequential manner. The primary objec-
tive is to overcome the forgetting of previously learned tasks and to leverage earlier knowledge to
achieve better performance and/or faster convergence on incoming tasks (Ring, 1994; Xu & Zhu,
2018; Abel et al., 2024). We integrate SRSA in the continual-learning setup and gradually expand
the skill library. Specifically, we begin with an initial skill library ⇧prior corresponding to prior
tasks Tprior. When faced with a new batch of tasks T j = {T1, T2, · · · , Tk}, we apply SRSA to
retrieve and fine-tune policies for each new task Ti. The learned policies are then incorporated as
Tprior = Tprior [ {Ti}; ⇧prior = ⇧prior [ {⇡i}. This approach allows us to efficiently tackle new
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tasks by leveraging the skill library and simultaneously prevent the forgetting of all learned tasks by
maintaining and expanding the skill library. See Appendix A.3 for the algorithm pseudocode.

5 EXPERIMENTS

We design experiments to answer questions: (1) Can SRSA retrieve source policies that achieve a
better zero-shot transfer success rate on test tasks compared to baseline retrieval approaches? (2)
Can SRSA policy fine-tuning improve learning performance, stability, and efficiency on test tasks?
(3) After fine-tuning, can SRSA high-performing policies from simulation be deployed in zero-shot
to the real world? (4) Can SRSA be applied in the continual-learning scenario to improve learning
efficiency by gradually expanding a skill library? We investigate these questions on the AutoMate
benchmark (Tang et al., 2024), which consists of 100 two-part assembly tasks with diverse parts,
enabling us to study challenging contact-rich assembly tasks in simulation and the real world.

5.1 SKILL RETRIEVAL

AutoMate provides meshes and disassembly trajectories for each task. We use these data to learn the
task embedding for retrieval. We compare the following retrieval strategies. Signature: retrieve the
task with the closest path signature (Barcelos et al., 2024; Chen, 1958; Kidger et al., 2019), which
represents the disassembly trajectories as a collection of path integrals (Tang et al., 2024). Behavior:
retrieve the task with the closest VAE embedding of state-action pairs on disassembly trajectories.
Forward: retrieve the task with the closest latent vector for the transition sequence on the disassem-
bly trajectories, where the latent vector was trained to predict the forward dynamics. Geometry:
retrieve the task with the closest PointNet (Qi et al., 2017; Wang et al., 2023) encoding for the point
clouds of the assembly assets. SRSA: retrieve the source task with the highest prediction of transfer
success on the target task. Implementation details can be found in Appendix A.4.

Figure 4: Zero-shot transfer success of retrieved skills when applied to test tasks. For each test
task, we retrieve a policy from the prior skill library using 5 different approaches (4 baselines and
SRSA). If the approach involves training neural networks, we train on 3 random seeds. Optimal

represents the best transfer success rate on the target task among all source policies. Left: Mean
and standard deviation of transfer success rate, averaged over 10 test tasks with 3 seeds each. Right:
Mean and standard deviation of success rate for each test task, averaged over 3 seeds. Overall, SRSA
substantially outperforms baselines.
Given the 100 tasks in the AutoMate benchmark, we split the task set into 90 prior tasks (to build the
skill library) and 10 test tasks (as the new tasks to solve). For both SRSA and baseline methods, we
train the retrieval model with three random seeds and report the average and standard deviation of
transfer success across these seeds. Fig. 4 shows the result on the set of test tasks. SRSA performs
best or second-best on all test tasks, except for one very challenging assembly, where all methods
perform poorly (01029). In Appendix A.5, we show additional comparisons for other splits of prior
and test task sets. Overall, SRSA retrieves source policies that obtain around 20% higher success
rates on the test tasks, compared to baselines.

5.2 SKILL ADAPTATION

In this section, rather than investigating zero-shot transfer, we study policy learning on test tasks.
We compare AutoMate learning specialist policies from scratch (Tang et al., 2024) and SRSA fine-
tuning the retrieved specialist policy with self-imitation learning. Details are in Appendix A.4.
We consider both the dense-reward setting (identical to AutoMate), which includes a reward term
imitating disassembly demonstrations and a curriculum, and the sparse-reward setting, which only
provides a nonzero reward for task success. The sparse-reward setting is designed to emulate real-
world RL fine-tuning, where dense-reward information is much more challenging to acquire.
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Figure 5: Learning curves on test tasks. The x-axis represents training epochs, where each epoch
consists of 128 environment steps over 256 parallel environments. The y-axis represents success
rate. The solid line shows the mean success rate over 5 runs with different random seeds, and the
shaded area denotes the standard deviation.

Figure 6: Sample efficiency on test set.
To achieve a desired success rate (0.70,
0.75, 0.80, 0.85, or 0.90), we identify how
many training epochs are required for each
run. We illustrate the mean and standard
deviation of required epochs across 5 runs
with the points and error bars in the figure,
averaged over 10 test tasks.

Fig. 5 shows the learning curves in the set of test tasks.
In the dense-reward setting, SRSA achieves strong per-
formance with fewer training epochs than AutoMate.
In the sparse-reward setting, AutoMate struggles to
achieve a reasonable success rate, whereas SRSA ben-
efits from the retrieved skill initialization and self-
imitation learning, enabling it to reach higher perfor-
mance. Additionally, in both settings, the learning
curves of AutoMate exhibit instability with fluctuat-
ing success rates as the training goes on. Tab. 2 and
Tab. 3 in Appendix A.5 summarize the mean and stan-
dard deviation of the success rate at the last epoch of
training. These values are averaged across 5 random
seeds for each test task. In the dense-reward setting,
SRSA reaches an average success rate of 82.6% on
10 test tasks, outperforming AutoMate (69.4%), cor-
responding to a relative improvement of 19% in per-
formance. Moreover, SRSA shows greater stability,
as AutoMate exhibits a 2.6x higher standard deviation.
In the sparse-reward setting, SRSA delivers a notable
135% relative improvement in the average success rate compared to the baseline. Fig. 6 demon-
strates the number of training epochs required to reach the desired success rate in the dense-reward
setting. Averaged over 10 test tasks and 5 random seeds, SRSA requires far fewer training samples,
i.e., at least 2.4 times fewer training epochs, to achieve an arbitrary success threshold.

5.3 REAL-WORLD DEPLOYMENT
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Asset ID 01029 01053 01079 01129 01136 Overall
AutoMate 7/10 1/10 7/10 4/10 8/10 54%

SRSA 9/10 8/10 8/10 10/10 10/10 90%

Figure 7: Real-world evaluation. We take the best
checkpoint of policies across 5 runs within 500 epochs
and report the success rate over 10 trials for each task.

We now deploy the trained specialist poli-
cies in the real world. As in (Tang et al.,
2024), we place the robot in lead-through
mode (a.k.a., manual guide mode), grasp
a plug, guide it into the socket, and record
the pose as a target pose. We then program-
matically lift the plug until free from con-
tact, apply perturbations to the position and
rotation of the end effector, and deploy a policy to assemble the plug into the socket. Such conditions
emulate the perceptual noise and control error that are experienced in full robotic assembly pipelines.
In Tab. 7, we take the best checkpoint in 500 training epochs in simulation and record its performance
when deployed in the real world. In this relatively brief training time, SRSA reaches higher success
rates than the baseline on real-world assembly tasks. We show keyframes of real-world deployments
in Fig. 2(c). For videos, please refer to the project website https://srsa2024.github.io/.

5.4 CONTINUAL LEARNING

(a) (b)
Figure 8: (a) Overall sample efficiency. We report the number of training epochs required to
reach desired success rates (0.5, 0.6, 0.7, 0.8). We calculate the mean and standard deviation of the
required training epochs over 5 runs, and report the average across 90 tasks. (b) Sample efficiency

in batches. We sequentially introduce 9 batches of new tasks for policy learning, with each batch
containing 10 new tasks. For each batch, we show the mean and standard deviation of training
epochs required to reach a success rate of 0.8. SRSA consistently requires fewer training epochs.

We study the continual-learning setting to obtain policies for each of the 100 AutoMate tasks. Rather
than training 100 policies from scratch in parallel, we start from a skill library with 10 tasks, and
obtain 10 new policies for 10 new tasks utilizing the skill library. For each new task, we fine-tune
the retrieved policy over 5 runs with different random seeds. We pick the best checkpoint with the
highest success rate over 5 runs as the specialist policy for this new task. We repeat this process for
9 iterations, eventually covering the entire AutoMate benchmark. Essentially, we have a skill library
that is gradually expanded with an increasing number of specialist policies.

In Fig. 8, we compare the sample efficiency of SRSA and AutoMate when learning specialist policies
for the 90 tasks outside the initial skill library. We consider different desired success rates and report
the number of training epochs required to reach each success rate. Overall, SRSA requires fewer
training epochs to reach the desired success rate, demonstrating an 84% relative improvement in
sample efficiency on average (Fig. 8(a)). For each batch of new tasks, SRSA is more efficient than
the baseline, regardless of the skill library and test tasks (Fig. 8(b)). In Fig. 14, we show the success
rates for the best checkpoints encountered in 5 runs for each task. SRSA achieves an average success
rate of 79% compared to AutoMate’s 70% across 100 tasks, while also exhibiting better training
efficiency. In Appendix A.5, we present learning results for another ordering of batches of tasks,
showing that the advantage of SRSA is insensitive to the order of encountering new tasks.

6 ABLATION STUDY

Effect of Skill Retrieval To verify the effect of skill retrieval, we conduct skill adaptation with
retrieved skills using only a geometry embedding, i.e., the second-best skill retrieval approach eval-
uated in Fig. 3. Fig. 9 shows the performance of policy fine-tuning for both SRSA and the geometry-
based skill retrieval (SRSA-Geom). One can observe that retrieving a worse skill hinders learning
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Figure 9: Comparison across variants of SRSA. For each method, we fine-tune the policy with 5
different random seeds. The learning curves show the mean and standard deviation of success rate
over these seeds. We show learning curves for more tasks in the Appendix A.5.

efficiency, starting from a lower success rate and requiring more training epochs to reach high per-
formance. Our retrieval approach SRSA improves adaptation efficiency over SRSA-Geom.

Effect of Self-imitation Learning To demonstrate the benefits of self-imitation learning (SIL) in
policy fine-tuning, we compare SRSA to the variant without this component (SRSA-noSIL). In
Fig. 9, SRSA outperforms the variant in terms of learning stability. In particular, SRSA-noSIL
suffers from more fluctuations during fine-tuning and a larger standard deviation of success rate
(shaded area) across runs with different seeds.

Effect of Generalist Policy We analyze whether fine-tuning a generalist policy outperforms fine-
tuning a selected specialist policy. For policy initialization, we use the generalist policy for 20
training tasks from (Tang et al., 2024). Although it does not cover numerous tasks, it is the strongest
generalist policy reported to date that can solve a diverse set of assembly tasks with an average
success rate greater than 80%. Fig. 9 shows the learning curves of fine-tuning the generalist policy
on unseen tasks (SRSA-Gen). We observe that SRSA-Gen provides a weaker initialization compared
to SRSA, likely because the generalist policy’s knowledge from the training tasks is less specialized
than the skills retrieved by SRSA. Furthermore, adaptation is less efficient, possibly due to the larger
neural network in the generalist policy, which requires more fine-tuning to adapt to new tasks. As a
result, its asymptotic performance is also lower than that of SRSA.

7 CONCLUSION

Summary: In this work, we propose a pipeline to retrieve and adapt specialist policies to solve
new assembly tasks. To learn a retrieval model, we jointly learn features from geometry, dynam-
ics, and expert actions to represent tasks, and predict transfer success to implicitly capture other
transfer-related factors from tasks. By combining skill retrieval with policy fine-tuning and self-
imitation learning, our method efficiently learns high-performance simulation-based policies. We
demonstrate that these policies are transferable to real-world robots. Additionally, we demonstrate
that our approach can continuously expand a skill library through efficient learning of various skills.

Limitations: First, although we train policies for all assembly tasks in a leading benchmark (Tang
et al., 2024), we do not address assemblies requiring rotational or helical motion (e.g., nut-and-bolt
assembly). Second, we primarily concentrate on learning specialist (i.e., single-task) policies; fu-
ture work could explore learning generalist (i.e., multi-task) policies, and, furthermore, incorporate
knowledge from both specialist and generalist policies to solve novel tasks with even greater effi-
ciency. Third, although our real-world success rates outperform the state-of-the-art in sim-to-real
transfer for our examined tasks, they still fall short of the 99+% success rates required for industry-
level deployment. We believe that RL fine-tuning directly in real-world settings could help bridge
the sim-to-real gap and further improve success rates.

Future Extensions: How to utilize existing policies for new tasks (rather than training from scratch)
is an open and general question in robotics. This question is relevant not just for insertion tasks,
but also for general pick-and-place tasks, dexterous manipulation tasks, advanced assembly tasks,
etc. Most robotics tasks are governed by geometry, dynamics, and behavior/action. We believe
that our ideas of learning task features and predicting zero-shot transfer success for policy transfer
can generalize to other domains. For instance, in tool-use tasks, the skill of using scissors may be
beneficial for learning to operate pliers due to their similar shape and operating mechanism. We
leave it as future work to extend SRSA to these additional robotics applications.
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A APPENDIX

A.1 ROBOT SETUP

Bench Vise

Plug
Socket

Figure 10: Real-world experimental setup. A Franka Panda robot and a bench vise are mounted
to a tabletop. At the beginning of each episode, a 3D-printed plug is grasped by the robot gripper
and a 3D-printed socket is haphazardly placed and clamped in the bench vise. The task is to control
the robot arm to fully insert the plug into the socket.

A.2 MOTIVATION WITH THEORETICAL PERSPECTIVE

Transferring knowledge from a source task to a target task can improve training efficiency and
asymptotic performance. Consider a source task Tj and target task Ti, which are MDPs that share
state space S , action space A, and reward function r, but have distinct transition functions pi, pj
and initial state distributions ⇢i, ⇢j . To measure the transferability of a policy, we apply the same
policy on both tasks and examine the difference in their expected values. Here we note that the
value difference partially depends on the difference in their transition functions pi, pj and initial
state distributions ⇢i, ⇢j (Proposition 1).

Proposition 1. Let Ti = {S,A, pi, r, �, ⇢i} and Tj = {S,A, pj , r, �, ⇢j} be two MDPs in the task

space T . Applying a policy ⇡ on Ti and Tj , we have a function f to describe the value difference:

V ⇡(⇢i, Ti)� V ⇡(⇢j , Tj) = f(pi � pj , ⇢i � ⇢j)
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Proof.

V ⇡(⇢i, Ti)� V ⇡(⇢j , Tj) = Es⇠⇢i(·)Ea⇠⇡(·|s)Q
⇡(s, a, Ti)� Es⇠⇢j(·)Ea⇠⇡(·|s)Q

⇡(s, a, Tj)

= Es⇠⇢i(·)Ea⇠⇡(·|s)[Q
⇡(s, a, Ti)�Q⇡(s, a, Tj)]

+Es⇠⇢i(·)Ea⇠⇡(·|s)Q
⇡(s, a, Tj)� Es⇠⇢j(·)Ea⇠⇡(·|s)Q

⇡(s, a, Tj)

= Es⇠⇢i(·)Ea⇠⇡(·|s)[Q
⇡(s, a, Ti)�Q⇡(s, a, Tj)]

+Es⇠⇢i(·)V
⇡(s, Tj)� Es⇠⇢j(·)V

⇡(s, Tj)

= Es⇠⇢i(·)Ea⇠⇡(·|s)[Q
⇡(s, a, Ti)�Q⇡(s, a, Tj)] +

X

s

(⇢i � ⇢j)V ⇡(s, Tj)

For the Q-value difference Q⇡(s, a, Ti)�Q⇡(s, a, Tj), we refer to the simulation lemma in (Agarwal
et al., 2019):

Q⇡(Ti)�Q⇡(Tj) = �(I � �P⇡(Tj))
�1(pi � pj)V

⇡(Ti)

where P⇡(Tj) denotes the transition matrix on state-action pairs induced by the policy ⇡ on the task
Tj , i.e., P⇡(s,a),(s0,a0)(Tj) = pj(s0|s, a)⇡(a0|s0).

Consequently, Q⇡(s, a, Ti) � Q⇡(s, a, Tj) is the (s, a) item in the matrix Q⇡(Ti) � Q⇡(Tj), and
Q⇡(s, a, Ti)�Q⇡(s, a, Tj) can be expressed as a function of (pi � pj).

Thus, the value difference V ⇡(⇢i, Ti)�V ⇡(⇢j , Tj) partially depends on (pi�pj) and (⇢i�⇢j).

Assume the reward function r is a sparse, binary term indicating task success at the end of
an episode. The success rate of applying a policy ⇡ to a task T can be represented as
V ⇡(⇢) = Es0⇠⇢E⌧⇠p⇡(⌧ |s=s0)[

P1
t=0 �

trt]. Here, our success rate V ⇡(⇢j , Tj) will naturally be
high, as the source policy ⇡ is already an expert policy for the source task Tj . When the success rate
of applying the source policy to target task Ti is also high (i.e., V ⇡(⇢i, Ti) is close to V ⇡(⇢j , Tj)),
then Proposition 1 implies that the transition functions pi and pj , as well as the initial state distri-
butions ⇢i and ⇢j , might be similar. Consequently, if a source policy can achieve high zero-shot
transfer success on a target task, the target task might have a similar transition function and initial
state distribution as the source task. Hence, we hypothesize that fine-tuning the source policy on the
target task will be efficient.

However, it is important to note that achieving a similarly high success rate on two tasks with a single
policy does not necessarily indicate similar dynamics between the tasks. Proposition 1 establishes
that similar dynamics and initial state distributions lead to similar expected values for a given policy,
but the reverse is not guaranteed. We use the high transfer success rate as a heuristic indicator of
similar dynamics, serving as intuitive motivation rather than strict theoretical justification.
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A.3 METHOD

Algorithm 1 Policy Fine-tuning with Self-imitation Learning
Initialize parameters ✓ for policy ⇡✓ and parameters  for value function V from retrieved skill
Initialize replay buffer D  ;
Initialize episode buffer E  ;
for each iteration do

# Collect training samples

for each step do

Execute an action at ⇠ ⇡✓(at|st) in the environment and transit to the next state st+1

Store transition E  E [ {(st, at, rt)}
end for

if sT+1 is terminal then

# Update replay buffer

Compute returns Rt =
PT

k �
k�trk for all t in E

D  D [ {(st, at, Rt)} for all t in E
end if

# Update parameter using PPO objective with samples in E
✓  ✓ � ⌘r✓Lppo (Schulman et al., 2017)
   � ⌘r Lppo

# Perform self-imitation learning

Sample a mini-batch {(s, a,R)} from D according to advantages
✓  ✓ � ⌘r✓Lsil (Equation 2)
   � ⌘r Lsil

Clear episode buffer E  ;
end for

Algorithm 2 Continual Learning with Skill Library Expansion
Require: Prior tasks Tprior = {T1, T2, · · · , Tn}; Skill library ⇧prior = {⇡1,⇡2, · · · ,⇡n}
1: while given new batch of tasks T j = {T j

1 , T
j
2 , · · · , T j

m} do

2: for each task T j
i do

3: Retrieve a policy ⇡src from the skill library ⇧prior

4: Fine-tune ⇡src to get a policy ⇡k solving the task T j
i

5: Expand the skill library, Tprior = Tprior [ {T j
i }; ⇧prior = ⇧prior [ {⇡k}

6: end for

7: end while
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A.4 IMPLEMENTATION DETAILS

A.4.1 TASK FEATURE LEARNING IN SRSA

Geometry Features As shown in Fig. 3(a), we employ a PointNet-based (Qi et al., 2017) autoen-
coder EG and DG to minimize the difference between input point cloud P and reconstructed point
cloud DG(EG(P )). The autoencoder is trained using point clouds of parts from all tasks.

We follow the implementation details outlined in (Tang et al., 2024). In a large set of meshes M for
various assembly parts, each mesh mi 2 M consists of (Vi, Ei), where V denotes the vertices and
E represents the (undirected) edges. During each training iteration, we sample a batch of meshes
B ⇢M . For each mi 2 B, we generate a point cloud Pi from the mesh, with each point located on
the surface of mi. The point cloud Pi is passed through a PointNet encoder (Qi et al., 2017) based
on the implementation from (Mu et al., 2021) to produce a latent vector. The latent vector zG,i is
subsequently fed into a fully-convolutional decoder, following the implementation from (Wan et al.,
2023) to produce the reconstructed point cloud Qi = DG(EG(Pi)).

The network is trained to minimize reconstruction loss, defined here as the Chamfer distance be-
tween Pi and Qi:

LCD =
1

kPik
X

p2Pi

min
q2Qi

kp� qk22 +
1

kQik
X

q2Qi

min
p2Pi

kp� qk22

Across 100 two-parts assembly tasks, we utilize a total of 200 meshes for the plug and socket
components with |M | = 200. Each sampled point cloud Pi contains 2000 points and the dimension
of learned embedding is |zG,i| = 32. The autoencoder is trained for a total of 23,000 epochs, using
a batch size of 64 and a learning rate of 0.001.

To represent the features of one task, we gather the geometry features for the meshes of the plug,
socket, and their assembled state, where the plug is fully inserted into the socket.

Dynamics Features We build upon prior work in context-based meta-RL (Rakelly et al., 2019;
Lee et al., 2020) to utilize a context encoder ED that produces a latent vector from transition seg-
ments ⌧t�1 = {st�h, at�h, st�h+1, at�h+1, · · · , st�1, at�1}, as shown in Fig. 3(b). We sample the
transition segments from disassembly trajectories, compute the latent vector ED(⌧t�1), and feed the
latent vector from transition segments to a forward dynamics model DD across all tasks. For any
transition samples from any task, the forward dynamics model is trained to predict the next state
s0t+1 = DD(ED(⌧t�1), st, at) to be close to the ground-truth next state st+1.

As described in (Tang et al., 2024), for each task, we generate disassembly paths by initializing the
robot hand to grasp the plug in the assembled state, where the plug is fully inserted in the socket.
Using a low-level controller, we lift the plug from the socket and move it to a randomized pose. We
repeat this process until collecting 100 successful disassembly trajectories. We store the state and
action at each timestep in the disassembly trajectories. Each task has a total of 100 disassembly
trajectories, with each trajectory spanning 128 timesteps.

We sample the transition segment ⌧t�1 = {st�h, at�h, st�h+1, at�h+1, · · · , st�1, at�1} for h = 10
timesteps. The context encoder is modeled as a multi-layer perceptron (MLP) with 3 hidden layers
of sizes (256, 128, 64), producing a 32-dimensional vector zD,t = ED(⌧t�1). Then, the forward
dynamics model DD receives the context vector as an additional input, where the input consists of a
concatenation of state st, action at, and context vector zD,t. The forward dynamics model comprises
four fully-connected layers of sizes (200, 200, 200, 200) with ReLU activation functions, outputting
the prediction of the next state s0t+1. The objective is to minimize L2-distance between the ground-
truth next state st+1 and the predicted next state s0t+1. For the entire set of disassembly trajectories
across 100 tasks, we train the encoder and forward dynamics model for 200 epochs, using a batch
size of 128 and a learning rate of 0.001.

Expert Action Features We utilize the disassembly trajectories as reverse expert demonstrations
for assembly tasks and aim to capture expert action information in an embedding space. As illus-
trated in Fig. 3(c), we sample a transition segment ⌧t from the disassembly trajectories, map it to the
action embedding EA(⌧t�1), and reconstruct the action sequence {at�h, at�h+1, · · · , at�1} using
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decoder DA. We train both the encoder and decoder with transition segments from all tasks. This
embedding effectively extracts the strategy for solving the task by reconstructing the expert actions
from the disassembly trajectories.

We sample the transition segment ⌧t�1 = {st�h, at�h, st�h+1, at�h+1, · · · , st�1, at�1} for 10
timesteps (i.e., h = 10). The action encoder EA is modeled as a multi-layer perceptron (MLP)
with three hidden layers of sizes (256, 128, 64), producing a 32-dimensional vector zA,t. The
action decoder DA is an MLP with four hidden layers of sizes (200, 200, 200, 200) that pre-
dicts the sequence of expert actions {a0t�h, a

0
t�h+1, · · · , a0t�1}. We minimize the L2-distance

between input action sequence {at�h, at�h+1, · · · , at�1} and the reconstructed action sequence
{a0t�h, a

0
t�h+1, · · · , a0t�1}. The encoder and decoder are trained for 200 epochs, using a batch size

of 128 and a learning rate of 0.001.

A.4.2 TRANSFER SUCCESS PREDICTION IN SRSA

We learn the function F (⇡src, Ttrg) to predict the transfer success. For any pair of source policy
and target task in the skill library, we execute the source policy on the target task for 1000 episodes
with randomized initial conditions and average the success rate to obtain the ground-truth label for
F . For any task T in the prior task set, we sample the point cloud Pi of plug, socket, and their
combined geometry (i.e. the plug is fully inserted in the socket) to extract geometry features zG,i

with a dimension of 96. Then we sample transition segment ⌧i to obtain the dynamics features
zD,i with a dimension of 32 and action features zA,i with a dimension of 32. By concatenating
these features, we create a task feature zi with a dimension of 160 for the sampled point clouds and
transition segment. We feed the task features zsrc,i and ztrg,i for the source and target tasks into an
MLP with one hidden layer of size 128 to predict transfer success. We optimize the MLP to learn
the transfer success prediction. The training is conducted for 50 epochs with batch size 64 across all
source-target pairs in the prior task set.

A.4.3 BASELINE APPROACHES FOR SKILL RETRIEVAL

Signature: Path signatures represent trajectories as a collection of path integrals and also quantify
distances between trajectories. Inspired by (Tang et al., 2024), we find the closest path signature for
skill retrieval. For each disassembly trajectory ⌧k on the target task T , we calculate the path signature
zk and search all disassembly trajectories over all source tasks to identify a source disassembly
trajectory ⌧j with the path signature zj closest to zk. The source disassembly trajectory ⌧j belongs
to a source task in Tprior; thus we match the target trajectory ⌧k to this source task, denoted as Tk.
We count the times that one source task Tsrc 2 Tprior is assigned as the source task for a target
disassembly trajectory, C(Tsrc) =

Pn
k=1[Tk = Tsrc]. Then we retrieve the policy for the source

task with the highest count, i.e., argmaxTsrc
C(Tsrc). In the case of ties, we select one at random.

Behavior: Inspired by (Du et al., 2023), we employ state-action pairs on disassembly trajectories
across all tasks and learn a state-action embedding with a VAE for skill retrieval. For any state-
action pair (sk, ak) on the target task, we infer the embedding zsa,k and look for one state-action
pair (sj , aj) from the disassembly trajectories in source tasks with an embedding zsa,j closest to
zsa,k. The target state-action pair (sk, ak) is matched to the one source task that (sj , aj) belongs
to. We denote this source task as Tk. Sweeping through all N state-action pairs in the disassembly
trajectories on target task, we count the times that one source task Tsrc 2 Tprior is assigned as the
source task for a target state-action pair, C(Tsrc) =

PN
k=1[Tk = Tsrc]. Then we retrieve the policy

for the source task with the highest count, i.e., argmaxTsrc
C(Tsrc)

Forward: We learn the latent vector for transition sequence ⌧ on disassembly trajectories. In order
to retrieve one source task according to the distances between task embeddings, we average the
embeddings for all transition sequences from the same task to obtain the task embedding, similar to
(Guo et al., 2022). We retrieve the policy for the source task with the closest task embedding.

Geometry: As explained above, we learn an autoencoder for the point clouds of the assembly assets
to minimize the reconstruction loss, as conducted in (Tang et al., 2024). We retrieve the policy for
the source task with the closest point-cloud embedding.
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Hyperparameters Value
Policy Network Architecture [256, 128, 64]
Value Function Architecture [256, 128, 64]

LSTM network size 256
Horizon length (T) 32
Adam learning rate 1e-4
Discount factor (�) 0.99
GAE parameter (�) 0.95
Entropy coefficient 0.0
Critic coefficient 2
Minibatch size 8192

Minibatch epochs 8
Clipping parameter (✏) 0.2

LSTM network size 256
SIL update per iteration 1

SIL batch size 8192
SIL loss weight 1

SIL value loss weight (�) 0.01
Replay buffer size 105

Exponent for prioritization 0.6

Table 1: Hyperparameters in PPO and Self-imitation Learning

A.4.4 SKILL ADAPTATION IN SRSA

Implementation Details Following (Tang et al., 2024), we use PPO to train the stochastic policy
⇡✓ (i.e., actor) and an approximation of the value function V✓ (i.e., critic), parameterized by neural
networks with weights ✓. The policy is stochastic, following a multivariate normal distribution with
a learned mean and standard deviation; however, at evaluation and deployment time, the action
output from the policy is deterministic.

The input state for the policy network consists of the robot arm’s joint angles, the end-effector pose,
the goal end-effector pose, and the relative pose of the end effector to the goal. The state has a
dimensionality of 24. Due to the asymmetric actor-critic strategy, the states provided to the value
function include privileged information not available to the policy. The states for the critic include
joint velocities, end-effector velocities, and the plug pose, resulting in an input dimensionality of 44
for the value function.

The action space consists of incremental pose targets, representing the position and orientation dif-
ferences between the current pose and the target pose. We use incremental targets instead of absolute
targets to restrict selection to a small, bounded spatial range. The action dimensionality is 6.

SRSA combines PPO with a self-imitation learning (Oh et al., 2018) mechanism for policy fine-
tuning. We maintain a replay buffer D for transitions encountered during training. The data samples
in the buffer are prioritized based on the discounted accumulated reward.

As shown in Algorithm 1, each iteration includes one PPO update for the policy and value function,
along with a batch sampling from D to perform one self-imitation learning update. This update
aims to minimize the loss function Lsil defined in Sec. 4.2. For details on network architectures and
hyperparameters, refer to Tab. 1.

Input Modality We follow prior work (Tang et al., 2024) to use object poses rather than visual
observations as input to the policy. Incorporating vision-based observations would introduce addi-
tional challenges for zero-shot sim-to-real transfer, as it requires a camera. In contrast, the current
policy only relies on the fixed socket pose and the robot’s proprioceptive features (including the
end-effector pose), making it more straightforward to execute the policy in real-world settings.

Using visual observations or object pose is orthogonal to our proposed method (i.e., SRSA is in-
dependent of the observation modality). The high-level idea of retrieving a relevant skill and fine-
tuning the retrieved policy remains applicable in scenarios involving vision-based policies. The
geometry features derived from point clouds in our task representation can partially capture visual
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similarities between tasks. This enables the retrieval of source tasks that are visually similar to the
target task to some degree.

At the same time, SRSA may require modifications to better support vision-based policies, where
each policy relies on a vision encoder to process high-dimensional visual observations. There is
no guarantee that our retrieved source and target tasks are visually similar enough, and the features
extracted by the vision encoder in the policy might differ significantly on the source and target tasks.
This could pose challenges for fine-tuning the policy on the target task. To address this, we consider
two distinct directions: 1. how to perform retrieval to better account for visual similarity; 2. how
to train specialist policies with visual encoders such that the current SRSA retrieval strategy is still
likely to work. Below, we propose specific approaches for these two directions.

1. Enhancing retrieval by incorporating features from visual observations: For example, integrating a
Variational Autoencoder (VAE) to extract features from visual observations (as in BehaviorRetrieval
(Du et al., 2023)) and combining these with other task representations might improve the retrieval
process. Additionally, learning dynamics features, such as predicting future visual observations,
could implicitly encode relevant visual information in task features for retrieval.

2. Improving the robustness of the visual encoder in the policy: Training the source policy with
significant data augmentation (e.g., randomizing colors, poses, backgrounds, etc.) could make the
visual encoder in the source policy more robust to diverse visual observations. It is more likely
to extract similar features from geometrically similar tasks. Alternatively, leveraging state-of-the-
art visual foundation models (e.g., DINOv2 (Oquab et al., 2023)) as visual encoders could further
enhance generalization and robustness. These models have demonstrated strong performance in han-
dling diverse observations and sim-to-real challenges, as shown in PoliFormer (Zeng et al., 2024).
Consequently, we believe that features extracted by such visual encoders are likely to remain con-
sistent for visual observations across geometrically similar tasks.

A.5 EXPERIMENTS

A.5.1 SKILL RETRIEVAL

We first replicate specialist policy learning for 100 assembly tasks as described in (Tang et al., 2024).
These 100 tasks are then split into 90 prior tasks and 10 test tasks. For the 90 prior tasks, we use the
trained specialist policies to build the skill library.

We train the task retriever on the prior tasks (Sec. 4.1) and evaluate its performance on the test tasks.
In Fig. 4 in the main text and Fig. 11 and Fig. 12 in the Appendix, we present the test results for
three different ways of splitting the 100 tasks. Overall, SRSA demonstrates superior performance
in identifying relevant policies from the skill library, achieving a higher success rate in zero-shot
transfer.

Figure 11: Transfer success of retrieved skills applied to test tasks. For each of the test tasks, we
retrieve a policy from the prior skill library using 5 different approaches. For each approach, if it
involves training neural networks, we train it for 3 random seeds. Left: we illustrate the mean result
over 10 test tasks. Right: For each test task, we show the mean and standard deviation of transfer
success over 3 seeds. Overall, SRSA clearly outperforms baselines.

21



Published as a conference paper at ICLR 2025

Figure 12: Transfer success of retrieved skills applied to test tasks. For each of the test tasks, we
retrieve a policy from the prior skill library using 5 different approaches. For each approach, if it
involves training neural networks, we train it for 3 random seeds. Left: we illustrate the mean result
over 10 test tasks. Right: For each test task, we show the mean and standard deviation of transfer
success over 3 seeds. Overall, SRSA clearly outperforms baselines.

A.5.2 SKILL ADAPTATION

We show the learning curves in Fig. 5. At the end of 1000 training epochs, we record the success rate
of the learned policies on 10 test tasks, as shown in Tab. 2 and Tab. 3. For AutoMate, the policies
are learned from scratch using PPO. In contrast, SRSA initializes the policies with retrieved skills
and fine-tunes them using PPO combined with self-imitation learning. The retrieval mechanism is
trained on a skill library of 90 prior tasks, where the skills were pre-trained by AutoMate.

Compared to the baseline success rate of 69.4%, SRSA achieves a significantly higher success rate
of 82.6%, corresponding to an absolute improvement of 13.2% and a relative improvement of ap-
proximately 19.0%. By leveraging the knowledge from the skill library, SRSA also obtains 2.6x
lower standard deviation compared to AutoMate (Tab. 2). This advantage becomes even more pro-
nounced in sparse-reward scenarios, where SRSA shows an absolute improvement of 40.8% and a
relative improvement of 135% in comparison with the baseline. (Tab. 3).

Task ID 01029 01036 01041 01053 01079 01092 01102 01125 01129 01136 Average

AutoMate 53.4 89.0 79.1 49.1 74.3 59.4 76.4 49.6 76.0 87.3 69.4
(27.4) (7.7) (8.4) (15.3) (32.9) (13.1) (11.4) (3.2) (3.0) (4.2) (12.7)

SRSA 97.3 91.3 78.9 75.4 90.5 78.3 86.6 48.5 82.3 96.9 82.6
(1.3) (6.0) (7.7) (6.4) (2.5) (6.3) (4.6) (5.7) (5.6) (2.0) (4.8)

Table 2: Mean (standard deviation) of success rate (%) on each test task in dense-reward

setting. We calculate the mean and standard deviation over 5 runs of different random seeds at the
last training epoch (i.e., 1000 epochs).

Task ID 01029 01036 01041 01053 01079 01092 01102 01125 01129 01136 Average

AutoMate 61.3 37.2 14.4 0 81.7 0 1.4 9.8 55.6 39.7 30.1
(26.5) (31.4) (1.6) (0.5) (15.1) (0.5) (1.0) (2.0) (6.0) (5.4) (9.0)

SRSA 95.1 72.4 33.7 87.4 96.1 51.4 70.7 51.2 90.3 60.5 70.9
(1.1) (8.9) (6.4) (3.6) (1.7) (5.5) (2.9) (9.3) (7.2) (2.6) (4.9)

Table 3: Mean (standard deviation) of success rate (%) on each test task in sparse-reward

setting. We calculate the mean and standard deviation over 5 runs of different random seeds at the
last training epoch (i.e., 1000 epochs).

A.5.3 CONTINUAL LEARNING

We begin with an initial skill library containing 10 policies and expand its size by 10 policies per
round over 9 rounds, eventually reaching 100 policies. When the skill library contains fewer than
40 policies, the number of source-target task pairs from the prior task set is limited. During this
phase, we retrieve skills solely based on geometry embeddings. That is to say, the retrieved skill
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from the skill library is the one with the closest geometry embedding to the new task. Once the skill
library reaches 40 or more policies, we train the transfer success prediction function F to guide skill
retrieval for new tasks.

In the continual-learning setting, Fig. 8 in main text and Fig. 13 in Appendix show the efficiency of
SRSA and AutoMate under two different task batch orderings. In both cases, SRSA demonstrates
significantly better sample efficiency compared to AutoMate.

(a) (b)

Figure 13: (a) Overall sample efficiency. We report the number of training epochs required to
reach desired success rates (0.5, 0.6, 0.7, 0.8). We calculate the mean and standard deviation of the
required training epochs over 5 runs, and report the average across 90 tasks. (b) Sample efficiency

in batches. We sequentially introduce 9 batches of new tasks for policy learning, with each batch
containing 10 new tasks. For each batch, we show the mean and standard deviation of training
epochs required to reach a success rate of 0.8. SRSA consistently requires fewer training epochs.

Additionally, we compare SRSA and AutoMate based on the best checkpoint, measured by the
highest rewards achieved over 5 runs for each task. In our replication of AutoMate, we achieved
an average success rate of 70% across 100 assembly tasks, which is lower than the 80% reported in
the original paper. This discrepancy may be due to differences in simulator versions, asset meshes,
implementation details, and other factors.

On average, SRSA achieves a success rate of 79% in Fig. 14 and 73% in Fig. 15, for two cases of
task ordering, respectively. SRSA demonstrates a higher success rate and better sample efficiency
than the baseline AutoMate.

Figure 14: Comparison of SRSA and AutoMate success rate over 100 tasks. We replicate the
specialist policy learning in the AutoMate paper over all tasks, and run SRSA with the continual-
learning approach to train 90 specialist policies with the initial skill library of 10 policies. For both
approaches, for each task, we select the best checkpoint among 5 runs with different random seeds.
We compare the success rate on all the tasks. On average, SRSA achieves a higher success rate.
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Figure 15: Comparison of SRSA and AutoMate success rate over 100 tasks. We replicate the
specialist policy learning in the AutoMate paper over all tasks, and run SRSA with the continual-
learning approach to train 90 specialist policies with the initial skill library of 10 policies. For both
approaches, for each task, we select the best checkpoint among 5 runs with different random seeds.
We compare the success rate on all the tasks. On average, SRSA achieves a higher success rate.

A.5.4 ABLATION STUDY

Implementation Details Fig. 16 illustrates the learning curves of different SRSA variations across
10 test tasks.

Skills retrieved based solely on geometry embeddings may face challenges during adaptation due to
dynamic differences between the source and target tasks. As a result, the learning curves of SRSA-
Geom tend to be less efficient and more unstable than SRSA. We further analyze this baseline in the
following section.

When self-imitation learning is removed (SRSA-noSIL) from SRSA, the learning curves show in-
creased fluctuation and higher variance across runs.

For the generalist policy, which was trained on 20 tasks from AutoMate (including tasks 01036,
01041, 01129, 01136), fine-tuning on these tasks yields strong performance since the policy was
already optimized for them. However, on other test tasks, the generalist policy is not as effective for
efficient policy learning compared to the skills retrieved by SRSA.

Generalist Policy Fine-tuning a state-based generalist policy does not perform well because the
generalist policy has limited capacity and cannot cover more than 20 training tasks.

As prior work AutoMate (Tang et al., 2024) has shown, the training success rate of a state-based
generalist policy decreases significantly when the number of training tasks exceeds 20, given a fixed
policy architecture of RNN and MLP. We believe that this may be because each task requires precise
control across distinct geometric features, and a single policy cannot capture the strategies for all
these challenging tasks.

While “increasing model capacity” or moving toward a ”large data and large model” regime might
help mitigate this problem, it might introduce other challenges. Simply scaling model capacity
could result in a generalist policy that works well in-domain but operates more like a ”switching cir-
cuit,” effectively storing task-specific strategies without generalizing to out-of-domain tasks. This
approach is suboptimal as it prioritizes in-domain performance at the expense of out-of-distribution
generalization. Thus, we do not want to increase the model capacity indefinitely. Instead, we may
need a more advanced architecture (e.g., diffusion policy) or model-based RL approach with plan-
ning to better handle diverse tasks.

That said, several open questions remain for the state-based generalist policy: How do you design
policy architectures capable of high-precision control across many tasks? How do you train the
generalist policy efficiently on many assembly tasks considering possible gradient conflicts? How
many training tasks are needed to achieve strong out-of-distribution generalization performance on
new assembly tasks?

Fine-tuning a vision-based generalist policy presents more challenges, such as effectively learning a
generalist policy across multiple prior tasks with high-dimensional vision observations, fine-tuning
on new tasks without forgetting prior ones, and addressing continual learning scenarios, including
whether to fine-tune the original generalist policy or one already fine-tuned on other tasks. We made

24



Published as a conference paper at ICLR 2025

Figure 16: Comparison for variants of SRSA with different ablated components. For each
method, we have 5 runs with different random seeds. The learning curves show mean and standard
deviation of success rate over these runs.

an initial attempt to train a vision-based generalist policy with PPO and fine-tune it. Given 90 prior
tasks, it can only reach around 10% average success rate. We expect such a generalist policy would
perform no better than random initialization when fine-tuned for new tasks. Vision-based RL for
generalist policy on assembly tasks is a relevantly new topic, and the development of such policies
lies beyond the scope of SRSA. We leave this direction for future research.
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A.6 COMPARISON WITH GEOMETRY-BASED RETRIEVAL

During adaptation, the final performance of SRSA-geom looks close to SRSA in some cases (see
Fig. 16). However, it is statistically worse than SRSA, especially when there is a smaller number
of training epochs. To provide a more comprehensive evaluation, we run SRSA-geom and SRSA
across additional target tasks with three random seeds. The table below summarizes statistics of
success rate at different numbers of training epochs, showing that SRSA consistently achieves higher
success rates with lower variance. In industrial settings, a 2–9% difference in success rate can be
highly substantial.

Test task set 1 Test task set 2
Success rate (%) Epoch 500 Epoch 1000 Epoch 500 Epoch 1000

SRSA-geom 73.6 (± 6.9) 81.0 (±7.7) 67.7 (±7.1) 71.4 (±8.1)
SRSA 81.4 (±4.7) 82.6 (±4.8) 76.2 (±3.0) 77.6 (±3.5)

Geometry-based retrieval alone is not always sufficient. When tasks share similar geometry but
have different dynamics, SRSA-geom struggles to transfer as effectively as SRSA. For example, for
the target task 01092, SRSA-geom retrieves source task 00686, achieving a transfer success rate of
only 61.1%, whereas SRSA retrieves task 00213 with a higher success rate of 76.7%. Although
the overall shapes of 01092 and 00686 are similar (see below), the lower part of the plug in task
01092 is thinner than the upper part, and there is only a short distance to insert this lower part into
the socket. These features closely resemble task 00213, i.e., a narrow plug to be inserted a short
distance to accomplish assembly. These shared physical characteristics and similar task-solving
strategies make 00213 better suited for transfer. In assembly tasks, the dynamics of the contact
region are often more critical than overall geometry for task success. Therefore, source task 00213
works better than 00686 when transferring to the target task 01092.

(a) Assembly tasks in the first example (b) Assembly tasks in the second example

Additionally, we examine assembly tasks with identical geometry but differing physical parameters.
For instance, consider the target task 01136 with a friction value of 10.0. One source task has the
same geometry as 01136 but a significantly lower friction value of 0.5. SRSA-geom selects this
source task due to its geometric similarity; however, the corresponding source policy achieves only
88.9% transfer success on the target task due to the friction mismatch (compared to a 99.3% success
rate on its original source task). In contrast, SRSA selects the source task 00213, which not only
shares geometric similarity but also has a friction value closer to that of the target task. As a result,
SRSA retrieved policy achieve a higher zero-shot transfer success rate of 93.2%.

A.7 ANALYSIS OF SOURCE POLICY SUCCESS AS INPUT FOR RETRIEVAL

The success rate of the source policy on the source task is meaningful information to represent the
source policy. To see whether it is practically beneficial for retrieval, we modify our approach. We
simply concatenate the source success rate information with the task features of the source and target
tasks. We train the transfer success predictor F with these features as inputs.

We consider three random splits between the prior task set (90 tasks) and test task set (10 tasks).
For each split, we train F on the prior task set over three random seeds. For each seed, we test the
trained function F on the test task set for retrieval. We report the mean transfer success rate of the
retrieved skills on 10 test tasks, with the standard deviation reported over three seeds. Empirically,
the source success rate as input to F only slightly improves the retrieval results.
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Average transfer success (%) Test task set 1 Test task set 2 Test task set 3
SRSA 62.7 (±5.7) 53.7 (±5.5) 44.9 (±2.4)

SRSA+source success rate 66.7 (±0.3) 53.7(±2.6) 43.7 (±3.7)

A.8 ANALYSIS OF OUT-OF-DISTRIBUTION TEST TASKS

For out-of-distribution (OOD) tasks where no skill transfers zero-shot, SRSA may indeed struggle,
and the initialization from a retrieved skill might not help much. To tackle this, it is essential to
build a skill library which is as diverse as possible. When the target task falls outside the current
library’s distribution, we can use SRSA’s continual learning approach (section 4.3 & 5.4) to expand
the library with new tasks. By building a larger, more varied skill library, we increase the likelihood
that this target task will align better with tasks in the skill library.

We run experiments for target tasks with IDs 00004, 00015, 00016, 00028, 00030. These tasks
suffer from low transfer success rate given a small skill library with only 10 prior tasks. However,
when we have a larger and larger skill library, the retrieved skill has a higher transfer success rate on
the target task.

Transfer success rate (%) 00004 00015 00016 00028 00030
10-task library 15.9 6.9 0.2 12.2 39.1
50-task library 12.7 8.4 0.3 27.5 49.4
90-task library 24.2 28.4 19.3 18.1 82.6

As demonstrated, continual learning to expand the skill library is a promising step; however, gener-
alizing to OOD tasks is a longstanding challenge in robotics, and it is still an open question how to
optimally construct the curriculum that governs the expansion of the skill library.

A.9 ANALYSIS OF OTHER METRICS FOR RETRIEVAL

We acknowledge that zero-shot transfer success rate may not be a perfect proxy for retrieval. We
can consider several other possible metrics for retrieval: (1) Ground-truth success rate after adapta-
tion (2) Predicted success rate after adaptation (3) Predicted zero-shot success rate (i.e., SRSA) (4)
Predicted zero-shot dense reward.

Option 1 is the ideal metric to identify the best skill for retrieval, as our final goal is to obtain the
highest success rate on the target task after adaptation. However, it introduces a chicken-and-egg
problem, as we cannot get this metric without fine-tuning all candidate policies on the target task.

Option 2 requires training a predictor for the success rate after adapting any source policy on any
target task. We need the training labels of the ground-truth success rate after adaptation. Unfor-
tunately, collecting this training data would require extensive computational resources. For each
source-target pair, we need at least 20 GPU hours to finish adaptation; given a skill library of 100
tasks, 200,000 GPU hours would be required to collect training data. Furthermore, it will remain
intractable as the skill library becomes larger.

Option 3 (SRSA) requires much less resources to collect training data for the predictor. We only
need 20 minutes on a GPU to evaluate one source policy on a target task. It thus requires 3,000 GPU
hours to collect training labels. We conduct an experiment to compare the performance of Option 1
and Option 3 on two test tasks. To collect experimental results for Option 1, for each test task, we
sweep all 90 source policies in our skill library. We fine-tune each source policy with one random
seed to adapt to the test task and identify the best success rate after adaptation. Below we report the
success rate of Option 1 and Option 3 on two test tasks, after fine-tuning for 1500 epochs.

Success rate after adaptation (%) Test task 1036 Test task 1041
Option 3 (SRSA) 95.9 89.1

Option 1 98.3 94.0

Option 1 is the perfect but intractable metric for retrieval. The difference in success rate between the
SRSA-retrieved skill (Option 3) and the best source skill (Option 1) is less than 5% after adaptation.
Therefore, although zero-shot transfer success rate is not a perfect metric for retrieval, it is a high-
quality metric for retrieval in terms of both performance and computational efficiency.
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Furthermore, we consider using dense reward information to guide retrieval (Option 4). We learn to
predict the accumulated reward rather than success rate on the target task when executing the source
policies in a zero-shot manner; then we retrieve the source policy with the highest predicted transfer
reward. In the table below, we show the performance of retrieved skills when they are applied on
the target tasks.

Test task set 1 Test task set 2
Transfer reward Transfer success (%) Transfer reward Transfer success (%)

Option 3 (SRSA) 8134 62.7 7722 53.7

Option 4 7976 54.8 7935 32.6

On the AutoMate task set, Option 3 (SRSA) yields slightly better skill retrievals, especially with
higher transfer success on the target task. However, success rate may not accurately reflect the
expected value for tasks with dense rewards; the higher transfer success rate does not mean higher
transfer reward in test task set 2. Therefore, if it is critical to prioritize the reward achieved on the
target task, using the transfer-reward predictor for retrieval is a reasonable choice. Conversely, if the
success rate on the target task is more critical (as in our assembly tasks), transfer success would be
the preferred choice as a retrieval metric.

A.10 ANALYSIS OF DISTANCE METRICS FOR TASK FEATURES

In SRSA method, we jointly learn features from geometry, dynamics and expert actions to represent
tasks, and predict transfer success to implicitly capture other transfer-related factors from tasks. To
investigate the advantage of SRSA, we compare it against baselines that uses simple distance metrics
for task features to determine task retrieval. Specifically, we concatenate the features of geometry,
dynamics and expert actions as the task features and apply L2 distance, L1 distance, and negative
cosine similarity between the vectors as the distance metrics for retrieval. We consider three different
ways to split the prior task set (90 tasks) and test task set (10 tasks). For each test task, we retrieve
the source task with the closest task feature to the target task. The table below shows that SRSA
outperforms the baselines on all test task sets.

Transfer success rate (%) L2 distance L1 distance Cosine similarity SRSA
Test task set 1 51.6 50.8 52.6 62.7

Test task set 2 47.1 49.0 46.5 53.7

Test task set 3 35.3 35.0 36.1 44.9

We attribute SRSA’s advantage to its transfer success predictor F , which capture additional infor-
mation relevant to policy transfer. By explicitly learning to predict transfer success, F provides a
more effective metric for selecting source tasks with higher zero-shot transfer success.”

A.11 ABLATION STUDY ON POLICY INITIALIZATION AND SELF-IMITATION LEARNING

For policy learning, AutoMate uses PPO from random policy initialization, and SRSA uses PPO
with self-imitation learning (SIL) after initialization with the retrieved skill. Thus, the main differ-
ence between SRSA and AutoMate lies in (1) strong initialization from retrieval and (2) SIL.

In Sec. 6, we compared SRSA and SRSA-noSIL to show the effect of SIL. Below, we additionally
compare with SRSA with random initialization (SRSA-noRetr) to show the effect of initialization
from retrieval. Comparing AutoMate with SRSA-noRetr, we see the difference between PPO and
PPO+SIL when learning a policy from scratch. Both approaches started from poor performance, but
SIL has greater learning efficiency and stability. Comparing SRSA-noRetr and SRSA, we see the
difference between random initialization and initialization from retrieval. Policy retrieval provides
a good start with a reasonable success rate. As a result, SRSA more efficiently reaches higher
performance on the target task.

A.12 TOP-k RETRIEVAL SELECTION IN SRSA

Although the transfer success predictor F in SRSA effectively guides the retrieval of relevant skills,
its predictions may not always be perfectly accurate. To mitigate this issue, we retrieve the top-
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Figure 17: Comparison for variants of SRSA with different ablated components. For each
method, we have 5 runs with different random seeds. The learning curves show mean and standard
deviation of success rate over these runs.

k skills ranked by the predictor F . With these k candidates, we evaluate their zero-shot transfer
success on the target task by running each candidate for 100 episodes. We then select the best
candidate with the highest average reward, ensuring that we identify the most relevant skill based on
actual performance rather than just the predicted ranking. In Sec. 5, we set k to 5.

To illustrate the impact of this selection process, we compare SRSA with SRSA-top1. Since the
predictor F is not always precise, the top-1 skill based on predicted transfer success may not be the
best in terms of ground-truth performance. The learning curves in Fig. 18 demonstrate that SRSA
and SRSA-top1 perform similarly in most cases. However, for certain tasks (e.g., 01125, 01129,
01136), SRSA benefits from selecting among the top-5 candidates and retrieves better-performing
skills compared to SRSA-top1. Here SRSA-top1 works well in our setting because the pre-trained
predictor F is reliable given a large 90-task prior skill library. However, with a smaller skill library,
F may be prone to overfitting and top-k selection is probably more advantageous in this case.
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Figure 18: Learning curves on test tasks. The x-axis and y-axis represent training epochs (where
each epoch consists of 128 environment steps over 256 parallel environments) and success rate,
respectively. The solid line shows the mean success rate over 5 runs with different random seeds,
and the shaded area denotes the standard deviation. SRSA takes the top-5 relevant skills based on
transfer success prediction and selects one skill for policy initialization based on the ground-truth
zero-shot success rate of applying the skill on the target task. SRSA-top1 directly retrieves the skill
with the highest transfer success prediction.
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