
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ROBOT SETUP

Bench Vise

Plug
Socket

Figure 10: Real-world experimental setup. A Franka Panda robot and a bench vise are mounted
to a tabletop. At the beginning of each episode, a 3D-printed plug is grasped by the robot gripper
and and a 3D-printed socket is haphazardly placed in the bench vise. The task is to control the robot
arm and fully insert the plug into the socket.

A.2 MOTIVATION WITH THEORETICAL PERSPECTIVE

Transferring knowledge from a source task to a target task can improve training efficiency and
asymptotic performance. Consider a source task Tj and target task Ti, which are MDPs that share
state space S , action space A, and reward function r, but have distinct transition functions pi, pj
and initial state distributions ρi, ρj . To measure the transferability of a policy, we apply the same
policy on both tasks and examine the difference in their expected values. Here we note that the
value difference depends primarily on the difference in their transition functions pi, pj and initial
state distributions ρi, ρj (Proposition 1).

Proposition 1. Let Ti = {S,A, pi, r, γ, ρi} and Tj = {S,A, pj , r, γ, ρj} be two MDPs in the task
space T . Applying a policy π on Ti and Tj , we have a function f to describe the value difference:

V π(ρi, Ti)− V π(ρj , Tj) = f(pi − pj , ρi − ρj)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof.

V π(ρi, Ti)− V π(ρj , Tj) = Es∼ρi(·)Ea∼π(·|s)Q
π(s, a, Ti)− Es∼ρj(·)Ea∼π(·|s)Q

π(s, a, Tj)

= Es∼ρi(·)Ea∼π(·|s)[Q
π(s, a, Ti)−Qπ(s, a, Tj)]

+Es∼ρi(·)Ea∼π(·|s)Q
π(s, a, Tj)− Es∼ρj(·)Ea∼π(·|s)Q

π(s, a, Tj)

= Es∼ρi(·)Ea∼π(·|s)[Q
π(s, a, Ti)−Qπ(s, a, Tj)]

+Es∼ρi(·)V
π(s, Tj)− Es∼ρj(·)V

π(s, Tj)

= Es∼ρi(·)Ea∼π(·|s)[Q
π(s, a, Ti)−Qπ(s, a, Tj)] +

∑

s

(ρi − ρj)V
π(s, Tj)

For the Q-value difference Qπ(s, a, Ti)−Qπ(s, a, Tj), we refer to the simulation lemma in (Agarwal
et al., 2019):

Qπ(Ti)−Qπ(Tj) = γ(I − γPπ(Tj))
−1(pi − pj)V

π(Ti)

where Pπ(Tj) denotes the transition matrix on state-action pairs induced by the policy π on the task
Tj , i.e., Pπ

(s,a),(s′,a′)(Tj) = pj(s′|s, a)π(a′|s′).

Consequently, Qπ(s, a, Ti) − Qπ(s, a, Tj) is the (s, a) item in the matrix Qπ(Ti) − Qπ(Tj), and
Qπ(s, a, Ti)−Qπ(s, a, Tj) can be expressed as a function of (pi − pj).

Overall, the value difference V π(ρi, Ti) − V π(ρj , Tj) depends primarily on (pi − pj) and (ρi −
ρj).

Assume the reward function r is a sparse, binary term indicating task success at the end of
an episode. The success rate of applying a policy π to a task T can be represented as
V π(ρ) = Es0∼ρEτ∼pπ(τ |s=s0)[

∑∞
t=0 γ

trt]. Here, our success rate V π(ρj , Tj) will naturally be
high, because the source policy π is already an expert policy for the source task Tj . When the
success rate of applying the source policy to target task Ti is also high, i.e., V π(ρi, Ti) is close to
V π(ρj , Tj), then Proposition 1 implies that the transition functions pi and pj might be similar, as are
the initial state distributions ρi and ρj . Consequently, if a source policy can achieve high zero-shot
transfer success on a target task, the target task might have a similar transition function and initial
state distribution as the source task. Hence, we hypothesize that fine-tuning the source policy on the
target task will be efficient.

However, it is important to note that achieving a similarly high success rate on two tasks with a single
policy does not necessarily indicate similar dynamics between the tasks. Proposition 1 establishes
that similar dynamics and initial state distributions lead to similar expected values for a given policy,
but the reverse is not guaranteed. We use the high transfer success rate as a heuristic indicator of
similar dynamics, serving as intuitive motivation rather than strict theoretical justification.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 METHOD

Algorithm 1 Policy finetuning with Self-imitation Learning
Initialize parameter θ for policy πθ and value function Vθ with retrieved skill
Initialize replay buffer D ← ∅
Initialize episode buffer E ← ∅
for each iteration do

Collect training samples
for each step do

Execute an action st, at, rt, st+1 ∼ πθ(at|st)
Store transition E ← E ∪ {(st, at, rt)}

end for
if st+1 is terminal then

Update replay buffer
Compute returns Rt =

∑∞
k γk−trk for all t in E

D ← D ∪ {(st, at, Rt)} for all t in E
Clear episode buffer E ← ∅

end if
Update parameter θ using PPO objective
θ ← θ − η∇θLppo (Schulman et al., 2017)
Perform self-imitation learning
for m = 1 to M do

Sample a mini-batch {(s, a,R)} from D
θ ← θ − η∇θLsil

end for
end for

Algorithm 2 Continual Learning with Skill Library Expansion
Require: Prior tasks Tprior = {T1, T2, · · · , Tn}; Skill library Πprior = {π1,π2, · · · ,πn}
1: while given newly coming batch of tasks T j = {T1, T2, · · · , Tk} do
2: for each task Ti do
3: Retrieve a policy πsrc from the skill library Πprior

4: Finetune πsrc to get a policy πi solving the task Ti

5: Expand the skill library, Tprior = Tprior ∪ {Ti}; Πprior = Πprior ∪ {πi}
6: end for
7: end while

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.4 IMPLEMENTATION DETAIL

A.4.1 TASK FEATURE LEARNING IN SRSA

Geometry Features As shown in Fig. 3(a), we employ a PointNet-based (Qi et al., 2017) autoen-
coder EG and DG to minimize the difference between input point cloud P and reconstructed point
cloud DG(EG(P)). The autoencoder is trained using point clouds of parts from all tasks.

We follow the implementation details outlined in (Tang et al., 2024). In a large set of meshes M for
various assembly parts, each mesh mi ∈ M consists of (Vi, Ei), where V denotes the vertices and
E represents the (undirected) edges. During each training iteration, we sample a batch of meshes
B ⊂ M . For each mi ∈ B, we generate a point cloud Pi from the mesh, with each point located
on the surface of mi. The point cloud Pi ghdn is passed through a PointNet encoder (Qi et al.,
2017) based on the implementation from (Mu et al., 2021) to produce a latent vector. The latent
vector zG,i is subsequently fed into a fully-convolutional decoder, following the implementation
from (Wan et al., 2023) to produce the reconstructed point cloud P ′

i .

The network is trained to minimize reconstruction loss, defined here as the Chamfer distance be-
tween Pi and P ′

i :

LCD =
1

∥Pi∥
∑

p∈Pi

min
q∈Qi

∥p− q∥22 +
1

∥Qi∥
∑

q∈Qi

min
p∈Pi

∥p− q∥22

Across 100 two-parts assembly tasks, we utilize a total of 200 meshes for the plug and socket
components with |M | = 200. Each sampled point cloud Pi contains 2000 points and the dimension
of learned embedding is |zG,i| = 32. The autoencoder is trained for a total of 23,000 epochs, using
a batch size of 64 and a learning rate of 0.001.

To represent the feature of one task, we gather the geometry features for the meshes of plug, socket,
and the assembled state of the plug inserted in the socket. Therefore, the geometry feature of one
task is concatenation of these three features, resulting in a dismensionality of, |zG,i| = 96.

Dynamics Features We build upon prior work in context-based meta-RL (Rakelly et al., 2019;
Lee et al., 2020) to utilize a context encoder ED that produces a latent vector from transition seg-
ments τt−1 = {st−h, at−h, st−h+1, at−h+1, · · · , st−1, at−1}, as shown in Fig. 3(b). We sample the
transition segments from disassembly trajectories, compute the latent vector ED(τt−1), and feed the
latent vector from transition segments to a forward dynamics model DD across all tasks. For any
transition samples from any task, the forward dynamics model is trained to predict the next state
s′t+1 = DD(ED(τt−1), st, at) to be close to the ground-truth next state st+1.

As described in (Tang et al., 2024), for each task, we generate disassembly paths by initializing the
robot hand to grasp the plug in the assembled state, where the plug is fully inserted in the socket.
Using a low-level controller, we lift the plug from the socket and move it to a randomized pose.
We repeat this process until collecting 100 successful disassembly trajectories. We store the state
of end-effector position and the action of moving end-effector at each timestep in the disassembly
trajectories. Each task has a total of 100 disassembly trajectories, with each trajectory spanning 128
timesteps.

We sample the transition segment τt−1 = {st−h, at−h, st−h+1, at−h+1, · · · , st−1, at−1} for h = 10
timesteps. The context encoder is modeled as multi-layer perceptrons (MLPs) with 3 hidden lay-
ers of sizes (256, 128, 64), producing a 32-dimensional vector zD,t. Then, the forward dynamics
model DD receives the context vector as an additional input, where the input consists of a concate-
nation of state st, action at, and context vector zD,t. The forward dynamics model comprises four
fully-connected layers of sizes (200, 200, 200, 200) with ReLU activation functions, outputing the
prediction of the next state s′t+1. The objective is to minimize L2-distance between the ground-truth
next state st+1 and the predicted next state s′t+1. For the entire set of disassembly trajectories across
100 tasks, we train the encoder and forward dynamics model for 200 epochs, using a batch size of
128 and a learning rate of 0.001.

Expert Action Features We utilize the disassembly trajectories as reverse expert demonstrations
for assembly tasks and aim to capture expert action information in an embedding space. As illus-
trated in Fig. 3(c), we sample a transition segment τt−1 from the disassembly trajectories, map it

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

to the action embedding EA(τt−1), and reconstruct the action sequence {at−h, at−h+1, · · · , at−1}
using decoder DA. We train both the encoder and decoder with transition segments from all tasks.
This embedding effectively extracts the strategy for solving the task by reconstructing the expert
actions from the disassembly trajectories.

We sample the transition segment τt−1 = {st−h, at−h, st−h+1, at−h+1, · · · , st−1, at−1} for 10
timesteps (i.e., h = 10). The action encoder EA is modeled as multi-layer perceptrons (MLPs)
with three hidden layers of sizes (256, 128, 64), producing a 32-dimensional vector zA,t. The
action decoder DA is an MLP with four hidden layers of sizes (200, 200, 200, 200) that pre-
dicts the sequence of expert actions {a′t−h, a

′
t−h+1, · · · , a′t−1}. We minimize the L2-distance

between input action sequence {at−h, at−h+1, · · · , at−1} and the reconstructed action sequence
{a′t−h, a

′
t−h+1, · · · , a′t−1}. The encoder and decoder are trained for 200 epochs, using a batch size

of 128 and a learning rate of 0.001.

A.4.2 TRANSFER SUCCESS PREDICTION IN SRSA

We learn the function F (πsrc, Ttrg) to predict the transfer success. For any pair of source policy
and target task in the skill library, we execute the source policy in the target task for 1000 episodes
and average the success rate to obtain the ground-truth label for F . For any task T in the prior task
set, we sample the point cloud Pi of plug, socket and assembly state to extract the geometry feature
zG,i with a dimension of 96. Then we sample transition segment τi to obtain the dynamics feature
zD,i with a dimension of 32 and action feature zA,i with a dimension of 32. By concatenating
these features, we create a task feature zi with a dimension of 160 for the sampled point clouds and
transition segment. With both the task features zsrc,i and ztrg,i for source and target tasks, we feed
them into an MLP with one hidden layer of size 128 to predict the transfer success. We optimize
the MLP while jointly finetuning the feature encoders EG, ED, and EA to learn the transfer success
prediction. The training is conducted for 50 epochs across all source-target pairs in the prior task
set.

A.4.3 BASELINES OF SKILL RETRIEVAL APPROACHES

Signature : path signature can represent trajectories as a collection of path integrals and also
quantify distances between trajectories. Inspired by (Tang et al., 2024), we find the closest path
signature for skill retrieval. For each disassembly trajectory τk on the target task T , we calculate the
path signature zk and search all disassembly trajectories over all source tasks to identify a source
disassembly trajectory τj with the path signature zj closest to zk. The source disassembly trajectory
τj belongs to a source task in Tprior, and thus we match the target trajectory τk to this source task,
denoted as Tk. We count the times that one source task Tsrc ∈ Tprior is assigned as the source
task for a target disassembly trajectory, C(Tsrc) =

∑n
k=1[Tk = Tsrc]. Then we retrieve the source

policy for one source task with the highest count, i.e. argmaxTsrc
C(Tsrc)

Behavior : Inspired by (Du et al., 2023), we employ state-action pairs on disassembly trajectories
across all tasks and learn a state-action embedding with a VAE for skill retrieval. For any state-
action pair (sk, ak) on the target task, we infer the embedding zsa,k and look for one state-action
pair (sj , aj) from the disassembly trajectories in source tasks with the embedding zsa,j closest
to zsa,k. The target state-action pair (sk, ak) is matched to one source task, which (sj , aj) be-
longs to. We denote this source task as Tk. Similar to the method above, we count the times
that one source task Tsrc ∈ Tprior is assigned as the source task for a target state-action pair,
C(Tsrc) =

∑n
k=1[Tk = Tsrc]. Then we retrieve the source policy for one source task with the high-

est count, i.e. argmaxTsrc
C(Tsrc)

Forward : As explained above, we learn the latent vector for transition sequence τ on disassembly
trajectories. In order to retrieve one source task according to the distances between task embeddings,
we average embedding for all transition sequences from the same task to obtain the task embedding,
similar to (Guo et al., 2022). We retrieve the policy for the source task that has the closest task
embedding.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Hyperparameters Value
Policy Network Architecture [256, 128, 64]
Value Function Architecture [256, 128, 64]

LSTM network size 256
Horizon length (T) 32
Adam learning rate 1e-4
Discount factor (γ) 0.99
GAE parameter (λ) 0.95
Entropy coefficient 0.0
Critic coefficient 2
Minibatch size 8192

Minibatch epochs 8
Clipping parameter (ϵ) 0.2

LSTM network size 256
SIL update per iteration 1

SIL batch size 8192
SIL loss weight 1

SIL value loss weight (β) 0.01
Replay buffer size 105

Exponent for prioritization 0.6

Table 1: Hyperparameters in PPO and Self-imitation learning

Geometry : As explained above, we learn an autoencoder for the point clouds of the assembly
assets to minimize the reconstruction loss, as conducted in (Tang et al., 2024). We retrieve the
policy for the source task with the closest point-cloud embedding.

A.4.4 SKILL ADAPTATION IN SRSA

Following (Tang et al., 2024), we use PPO to train the stochastic policy πθ (i.e., actor) and an ap-
proximation of the value function Vθ (i.e., critic), parameterized by a neural networks with weights
θ. While the policy is stochastic following a multivariant normal distribution with the learned mean
and standard deviation, at evaluation and deployment time, the action output from well-trained pol-
icy is deterministic.

The input state for the policy network consists of the robot arm’s joint angles, the end-effector pose,
the goal end-effector pose, and the relative pose of the end effector to the goal. The state has a
dimensionality of 28.

Due to the asymmetric actor-critic strategy, the states provided to the value function include privi-
leged information not available to the policy. The states for the critic include joint velocities, end-
effector velocities, and the plug pose, resulting in an input dimensionality of 44 for the value func-
tion.

The action space consists of incremental pose targets, representing the position and orientation dif-
ferences between the current pose and the target pose. We use incremental targets instead of absolute
targets to restrict selection to a small, bounded spatial range. The action dimensionality is 6.

SRSA combines PPO with a self-imitation learning mechanism for policy fine-tuning. We maintain
a replay buffer D for transitions encountered during training, defined as D = {si, ai, Ri}. The data
samples in the buffer are prioritized based on the discounted accumulated reward.

As shown in Algorithm 1, each iteration includes one PPO update for the policy and value function,
along with a batch sampling from D to perform one self-imitation learning update. This update
aims to minimize the loss function Lsil defined in Sec. 4.2. For details on network architectures and
hyperparameters, refer to Tab. 1.

We follow prior work to use object poses rather than visual observations as input to the policy.
Incorporating vision-based observations would introduce additional challenges for zero-shot sim-
to-real transfer, as it requires a camera. In contrast, the current policy only relies on the fixed
socket pose and the robot’s proprioceptive features (including the end-effector pose), making it
more straightforward to execute the policy in real-world settings.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Using visual observations or object pose is orthogonal to our proposed method (i.e., SRSA is in-
dependent of the observation modality). The high-level idea of retrieving a relevant skill and fine-
tuning the retrieved policy remains applicable in scenarios involving vision-based policies. The
geometry features derived from point clouds in our task representation can partially capture visual
similarities between tasks. This enables the retrieval of source tasks that are visually similar to the
target task to some degree.

At the same time, SRSA may require modifications to better support vision-based policies. Here is
no guarantee that the retrieved source and target tasks are visually similar enough and the features
extracted by the vision encoder in policy might differ significantly on source and target tasks. This
could pose challenges for fine-tuning the policy on the target task.

To address this, we consider two distinct directions: 1. how to perform retrieval to better account
for visual similarity; 2. how to train specialist policies with visual encoders such that the current
SRSA retrieval strategy is still likely to work. Below, we propose specific approaches for these two
directions.

1. Enhancing retrieval by incorporating features from visual observations: For example, integrating a
Variational Autoencoder (VAE) to extract features from visual observations (as in BehaviorRetrieval
(Du et al., 2023)) and combining these with other task representations might improve the retrieval
process. Additionally, learning dynamics features, such as predicting future visual observations,
could implicitly encode relevant visual information in task features for retrieval.

2. Improving the robustness of the visual encoder in policy: Training the specialist source policy
with significant data augmentation (e.g., randomizing colors, poses, backgrounds, etc.) could make
the visual encoder in the source policy more robust to diverse visual observations. It is more likely
to extract similar features from geometrically similar tasks. Alternatively, leveraging state-of-the-art
visual foundation models (e.g., DINOv2 (Oquab et al., 2023)) as visual encoders in specialist poli-
cies could further enhance generalization and robustness. These models have demonstrated strong
performance in handling diverse observations and sim-to-real challenges, as shown in PoliFormer
(Zeng et al., 2024). Consequently, we believe that features extracted by such visual encoders are
likely to remain consistent for visual observations across geometrically similar tasks.

A.5 EXPERIMENTS

A.5.1 SKILL RETRIEVAL

We first replicate the specialist policy learning for 100 assembly tasks as described in (Tang et al.,
2024). Then, these 100 tasks are split into 90 prior tasks and 10 test tasks. For the 90 prior tasks, we
use the well-trained specialist policies to build the skill library.

We train the skill-retrieval method on the prior tasks and evaluate its performance on the test tasks.
In Fig. 4 in main text, 11, and 12 in Appendix, we present the test results for three different ways
of splitting the 100 tasks. Overall, SRSA demonstrates superior performance in identifying relevant
policies from the skill library, achieving a high success rate in zero-shot transfer.

Figure 11: Transfer success of retrieved skills applied to test tasks. For each of the test tasks, we
retrieve a policy from the prior skill library using 5 different approaches. For each approach, if it
involves training neural networks, we train it for 3 random seeds. Left: we illustrate the mean result
over 10 test tasks. Right: For each test task, we show the mean and standard deviation of transfer
success over 3 seeds. Overall, SRSA clearly outperforms baselines.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 12: Transfer success of retrieved skills applied to test tasks. For each of the test tasks, we
retrieve a policy from the prior skill library using 5 different approaches. For each approach, if it
involves training neural networks, we train it for 3 random seeds. Left: we illustrate the mean result
over 10 test tasks. Right: For each test task, we show the mean and standard deviation of transfer
success over 3 seeds. Overall, SRSA clearly outperforms baselines.

A.5.2 SKILL ADAPTATION

We show the learning curves in Fig. 5 in main text. At the end of 1000 training epochs, we record
the success rate of the learned policies on 10 test tasks. For AutoMate, the policies are learned from
scratch using PPO on the 10 test tasks. In contrast, SRSA initializes the policies with retrieved skills
and fine-tunes them using PPO combined with self-imitation learning. The retrieval mechanism is
trained on a skill library of 90 prior tasks, where the skills were pre-trained by AutoMate.

Compared to the baseline success rate of 69.4%, SRSA achieves a significantly higher success rate
of 84.7%, corresponding to an absolute improvement of 15.3 percentage points and a relative im-
provement of approximately 22.0%. By leveraging the knowledge from the skill library, SRSA also
obtains 3.7x lower standard deviation compared to AutoMate (Tab. 2). This advantage becomes
even more pronounced in sparse-reward scenarios, where SRSA shows an absolute improvement of
41.9 percentage points and a relative improvement of 139% in comparison with baseline. (Tab. 3).

Task ID 01029 01036 01041 01053 01079 01092 01102 01125 01129 01136 Average

AutoMate 53.4 89.0 79.1 49.1 74.3 59.4 76.4 49.6 76.0 87.3 69.4
(27.4) (7.7) (8.4) (15.3) (32.9) (13.1) (11.4) (3.2) (3.0) (4.2) (12.7)

SRSA 98.5 91.3 83.3 75.4 93.60 78.3 92.5 50.6 85.8 98.4 84.7
(0.4) (6.0) (4.4) (6.4) (3.6) (6.3) (0.5) (1.6) (4.0) (0.4) (3.4)

Table 2: Mean (standard deviation) of success rate (%) on each test task, in dense-reward
setting. We calculate the mean and standard deviation over 5 runs of different random seeds, at the
last training epoch (i.e. 1000 epochs).

Task ID 01029 01036 01041 01053 01079 01092 01102 01125 01129 01136 Average

AutoMate 61.3 37.2 14.4 0 81.7 0 1.4 9.8 55.6 39.7 30.1
(26.5) (31.4) (1.6) (0.5) (15.1) (0.5) (1.0) (2.0) (6.0) (5.4) (9.0)

SRSA 95.1 78.7 33.7 92.5 96.1 51.4 70.7 51.2 90.3 60.5 72.0
(1.1) (8.9) (6.4) (2.2) (1.7) (5.5) (2.9) (9.3) (7.2) (2.6) (4.8)

Table 3: Mean (standard deviation) of success rate (%) on each test task, in sparse-reward
setting. We calculate the mean and standard deviation over 5 runs of different random seeds, at the
last training epoch (i.e., 1000 epochs).

A.5.3 CONTINUAL LEARNING

We begin with an initial skill library containing 10 policies and expand its size by 10 policies per
round over 9 rounds, eventually reaching 100 policies. When the skill library contains fewer than 40
policies, the number of source-target task pairs from the prior task set is limited. During this phase,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

we retrieve skills solely based on geometry embeddings. Once the skill library reaches 40 or more
policies, we train the transfer success prediction function F to guide skill retrieval for new tasks.

In the continual learning setting, Fig. 8 in main text and Fig. 13 in Appendix show the efficiency of
SRSA and AutoMate under two different task batch orderings. In both cases, SRSA demonstrates
significantly better sample efficiency compared to AutoMate.

(a) (b)

Figure 13: (a) Sample efficiency of policy learning in a continual-learning setting. We report how
many training epochs are required to reach desired success rates (0.5, 0.6, 0.7, 0.8). We calculate the
mean and standard deviation of training epochs over 5 runs, and report the average over 90 tasks.(b)
Number of training epochs required for different batches. In the continual-learning scenario,
we proceed through 9 batches of new tasks for policy learning, with each batch containing 10 new
tasks. For each batch, we show the mean and standard deviation of training epochs required to reach
a success rate of 0.8. SRSA requires less number of training epochs to reach a good success rate.

Additionally, we compare SRSA and AutoMate based on the best checkpoint, measured by the
highest rewards achieved over 5 runs for each task. In our replication of AutoMate, we achieved
an average success rate of 70% across 100 assembly tasks, which is lower than the 80% reported in
the original paper. This discrepancy may be due to differences in simulator versions, asset meshes,
implementation details, and other factors.

On average, SRSA achieves a success rate of 79% in Fig. 14 and 73% in Fig. 15, for two cases of
task ordering, respectively. SRSA demonstrates a higher success rate and better sample efficiency
than the baseline AutoMate.

Figure 14: Comparison of SRSA and AutoMate success rate over 100 tasks. We replicate the
specialist policy learning in the AutoMate paper over all tasks, and run SRSA with the continual-
learning approach to train 90 specialist policies with initial skill library of 10 policies. For both
approaches, for each task, we select the best checkpoint among 5 runs with different random seeds.
We compare the success rate on all the tasks. On average, SRSA achieves a higher success rate.

A.5.4 ABLATION STUDY

Fig. 16 illustrates the learning curves of different SRSA variations across 10 test tasks.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 15: Comparison of SRSA and AutoMate success rate over 100 tasks. We replicate the
specialist policy learning in the AutoMate paper over all tasks, and run SRSA with the continual-
learning approach to train 90 specialist policies with the initial skill library of 10 policies. For both
approaches, for each task, we select the best checkpoint among 5 runs with different random seeds.
We compare the success rate on all the tasks. On average, SRSA achieves a higher success rate.

Skills retrieved based solely on geometry embeddings may face challenges during adaptation due
to dynamic differences between the source and target tasks. As a result, the learning curves of
SRSA-Geom tend to be less efficient and more unstable than SRSA.

When self-imitation learning is removed (SRSA-noSIL) from SRSA, the learning curves show in-
creased fluctuation and higher variance across runs.

For the generalist policy, which was trained on 20 tasks from AutoMate (including tasks 01036,
01041, 01129, 01136), fine-tuning on these tasks yields strong performance since the policy was
already optimized for them. However, on other test tasks, the generalist policy is not as effective for
efficient policy learning compared to the skills retrieved by SRSA.

Fine-tuning a state-based generalist policy does not perform well because the generalist policy has
limited capacity and it cannot cover more than 20 training tasks.

As prior work AutoMate (Tang et al., 2024) has shown, the training success rate of a state-based
generalist policy decreases significantly when the number of training tasks exceeds 20, given a fixed
policy architecture of RNN and MLP. We believe that this may be because each task requires precise
control across distinct geometric features, and their single policy cannot capture the strategies for all
these challenging tasks.

While “increasing model capacity” or moving toward a ”large data and large model” regime might
help mitigate this problem, it might introduce other challenges. Simply scaling model capacity
could result in a generalist policy that works well in-domain but operates more like a ”switching
circuit,” effectively storing task-specific strategies without generalizing to out-of-domain tasks. This
approach is suboptimal as it prioritizes in-domain performance at the expense of out-of-distribution
generalization. So we do not want to increase the model capacity indefinitely. Instead, we may need
a more advanced architecture (e.g. diffusion policy) or model-based RL approach with planning to
better handle diverse tasks.

That said, several open questions remain for state-based generalist policy: How to design policy
architectures capable of high-precision control across many tasks? How to train the generalist policy
efficiently on many assembly tasks considering possible gradient conflicts? How many training tasks
are needed to achieve strong out-of-distribution generalization performance for new assembly tasks?

Fine-tuning a vision-based generalist policy presents additional challenges, such as effectively learn-
ing a generalist policy across multiple prior tasks with high-dimensional vision observations, fine-
tuning on new tasks without forgetting prior ones, and addressing continual learning scenarios, in-
cluding whether to fine-tune the original generalist policy or one already fine-tuned on other tasks.
We made an initial attempt to train a vision-based generalist policy with PPO and fine-tune it. Given
90 prior tasks, it can only reach around 10% average success rate after training for two days. We
expect such a generalist policy would perform no better than random initialization when fine-tuned
for new tasks. Vision-based RL for generalist policy on assembly tasks is a relevantly new topic, and
the development of such policies lies beyond the scope of SRSA. We leave this direction for future
research.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 16: Comparison for variants of SRSA with different ablated components. For each
method, we have 5 runs with different random seeds. The learning curves show mean and standard
deviation of success rate over these runs.

A.6 COMPARISON WITH GEOMETRY-BASED RETRIEVAL

During adaptation, the final performance of SRSA-geom looks close to SRSA in some cases (see
Fig. 16). However, it is statistically worse than SRSA, especially when there is a smaller number of
training epochs. To provide a more comprehensive evaluation, we run SRSA-geom and SRSA across
additional target tasks with three random seeds. The table below summarizes statistics of success
rate at different numbers of training epochs, showing that SRSA consistently achieves higher success
rates with lower variance. In industrial settings, a 3–9% difference in success rate can be significant.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Test task set 1 Test task set 2
Success rate (%) Epoch 500 Epoch 1000 Epoch 500 Epoch 1000

SRSA-geom 73.6 (± 6.9) 81.0 (±7.7) 67.7(±7.1) 71.4(±8.1)
SRSA 82.8(±4.2) 84.3(±3.4) 76.2(±3.0) 77.6(±3.5)

Geometry-based retrieval alone is not always sufficient. When tasks share similar geometry but have
different dynamics, SRSA-geom struggles to transfer as effectively as SRSA.

For example, for the target task 01092, SRSA-geom retrieves source task 00686, achieving a transfer
success rate of only 61.1%, whereas SRSA retrieves task 00213 with a higher success rate of 76.7%.
While the overall shapes of 01092 and 00686 are similar (see below), the lower part of plug in task
01092 is thinner than the upper part, and there is only a short distance to insert this lower part into
the socket. These features closely resemble task 00213, i.e., a narrow plug to be inserted a short
distance to accomplish assembly. These shared physical characteristics and similar task-solving
strategies make 00213 better suited for transfer. In assembly tasks, the dynamics of the contact
region are often more critical than overall geometry for task success. Therefore, source task 00213
works better than 00686 when transferring to the target task 01092.

(a) Assembly tasks in the first example (b) Assembly tasks in the second example

Additionally, we examine assembly tasks with identical geometry but differing physical parameters.
For instance, consider the target task 01136 with a friction value of 10.0. One source task has the
same geometry as 01136 but a significantly lower friction value of 0.5. SRSA-geom selects this
source task due to its geometric similarity; however, the corresponding source policy achieves only
88.9% transfer success on the target task, due to the friction mismatch (despite achieving a 99.3%
success rate on its original source task). In contrast, SRSA selects the source task 00213, whose
policy better aligns with the target task’s dynamics, resulting in a higher transfer success rate of
93.2%

A.7 ANALYSIS OF SOURCE POLICY SUCCESS AS INPUT FOR RETRIEVAL

The success rate of the source policy on the source task is meaningful information to represent the
source policy. To see whether it is practically beneficial for retrieval, we modify our approach. We
simply concatenate this source success rate information with the task features of source and target
tasks. We train the transfer success predictor F with these features as inputs.

We consider three random splits between the prior task set (90 tasks) and test task set (10 tasks).
For each split, we train F on the prior task set over three random seeds. For each seed, we test the
trained function F on the test task set for retrieval. We report the mean transfer success rate of the
retrieved skills on 10 test tasks, with the standard deviation reported over three seeds. Empirically,
the source success rate as input to F only slightly improves the retrieval results.

Average transfer success (%) Test task set 1 Test task set 2 Test task set 3
SRSA 62.7 (+-5.7) 53.7 (+-5.5) 44.9 (+-2.4)

SRSA+source success rate 66.7 (+-0.3) 53.7(+-2.6) 43.7 (+-3.7)

A.8 ANALYSIS OF OUT-OF-DISTRIBUTION TEST TASKS

For out-of-distribution (OOD) tasks where no skill transfers zero-shot, SRSA may indeed struggle,
and the initialization from a retrieved skill might not help much. To tackle this, it’s essential to build
a skill library that’s as diverse as possible. When the target task falls outside the current library’s
distribution, we can use SRSA’s continual learning approach (section 4.3 & 5.4) to expand the library
with new tasks. By building a larger, more varied skill library, we increase the likelihood that this
target task will align better with tasks in the skill library.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

We run experiments for target tasks with IDs 00004, 00015, 00016, 00028, 00030. These tasks
suffer from low transfer success rate given a small skill library with only 10 prior tasks. However,
when we have a larger and larger skill library, the retrieved skill has a higher transfer success rate on
the target task.

Transfer success rate (%) 00004 00015 00016 00028 00030
10-task library 15.9 6.9 0.2 12.2 39.1
50-task library 12.7 8.4 0.3 27.5 49.4
90-task library 24.2 28.4 19.3 18.1 82.6

As demonstrated, continual learning to expand the skill library is a promising step; however, gener-
alizing to OOD tasks is a longstanding challenge in robotics, and it is still an open question how to
optimally construct the curriculum that governs the expansion of the skill library.

A.9 ANALYSIS OF OTHER METRICS FOR RETRIEVAL

We acknowledge that zero-shot transfer success rate may not be a perfect proxy for retrieval. We can
consider several other possible metrics for retrieval: (1) Ground-truth success rate after adaptation
(2) Predicted success rate after adaptation (3) Predicted success rate in zero-shot manner (i.e. SRSA)
(4) Predicted dense rewards in zero-shot manner.

Option 1 is the ideal metric to identify the best skill for retrieval, as our final goal is to obtain the
highest success rate on the target task after adaptation. However, it introduces a chicken-and-egg
problem, as we cannot get this metric without fine-tuning all candidate policies on the target task.

Option 2 requires training a predictor for the success rate after adapting any source policy on any
target task. We need the training labels of the ground-truth success rate after adaptation. Unfor-
tunately, collecting this training data would require extensive computational resources. For each
source-target pair, we need at least 20 GPU hours to finish adaptation; given a skill library of 100
tasks, 200,000 GPU hours would be required to collect training data. Furthermore, it will remain
intractable as the skill library becomes larger.

Option 3 (SRSA) requires much less resources to collect training data for the predictor. We only
need 20 minutes on a GPU to evaluate one source policy on a target task. It thus requires 3,000 GPU
hours to collect training labels. We conduct an experiment to compare the performance of Option 1
and Option 3 on two test tasks. To collect experimental results for Option 1, for each test task, we
sweep all 90 source policies in our skill library. We finetune each source policy with one random
seed to adapt to the target task and identify the best success rate after adaptation. We only afford the
computational resources for two test tasks to sweep fine-tuning for Option 1. Below we report the
success rate of Option 1 and Option 3 after fine-tuning for 1500 epochs

Success rate after adaptation (%) Test task 1036 Test task 1041
Option 3 (SRSA) 95.9 89.1

Option 1 98.3 94.0

Option 1 is the perfect but intractable metric for retrieval. The difference of success rate between the
SRSA-retrieved skill (Option 3) and the best source skill (Option 1) is less than 5% after adaptation.
Therefore, although zero-shot transfer success rate is not a perfect metric for retrieval, it is a high-
quality metric for retrieval in terms of both performance and computational efficiency.

Furthermore, we consider using dense reward information to guide retrieval (Option 4). We learn to
predict the accumulated reward rather than success rate on the target task when executing the source
policies in a zero-shot manner; then we retrieve the source policy with the highest predicted transfer
reward. In the table below, we show the performance of retrieved skills when they are applied on
the target tasks.

In the AutoMate task set, Option 3 (SRSA) yields slightly better skill retrievals, especially with
higher transfer success on the target task. However, success rate may not accurately reflect the
expected value for tasks with dense rewards. The higher transfer success rate does not mean higher
transfer reward in test task set 2. Therefore, if it is critical to prioritize the reward achieved on the

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Test task set 1 Test task set 2
Transfer reward Transfer success (%) Transfer reward Transfer success (%)

Option 3 (SRSA) 8134 62.7 7722 53.7
Option 4 7976 54.8 7935 32.6

target task, using the transfer-reward predictor for retrieval is a reasonable choice. Conversely, if the
success rate on the target task is more critical (as in our assembly tasks), the transfer success would
be the preferred choice as a retrieval metric.

A.10 ANALYSIS OF DISTANCE METRICS FOR TASK FEATURES

We concatenate the features of geometry, dynamics and expert actions as the task features, and apply
some distance metrics between the vectors as the metrics for retrieval. We consider three different
ways to split the prior task set (90 tasks) and test task set (10 tasks). We consider L2 distance, L1
distance, and negative cosine similarity as distance metrics. For each test task, we retrieve the source
task with the closest task feature to the target task. However, the retrieval result is worse than SRSA
on three different test task sets.

Transfer success rate (%) L2 distance L1 distance Cosine similarity SRSA
Test task set 1 51.6 50.8 52.6 62.7
Test task set 2 47.1 49.0 46.5 53.7
Test task set 3 35.3 35.0 36.1 44.9

We jointly learn features from geometry, dynamics and expert actions to represent tasks, and pre-
dict transfer success to implicitly capture other transfer-related factors from tasks. SRSA learning
function F aims to capture additional information for transfer success prediction. Therefore, the pre-
diction function F provides a better metric to identify the source task with higher zero-shot transfer
success.

A.11 ABLATION STUDY ON POLICY INITIALIZATION AND SELF-IMITATION LEARNING

As for policy learning, AutoMate is PPO from random policy initialization, and SRSA is PPO with
self-imitation learning (SIL) after initialization with the retrieved skill. Thus, the main difference
between SRSA and AutoMate lies in (1) strong initialization from retrieval and (2) SIL. In section
6, we compared SRSA and SRSA-noSIL to show the effect of SIL. Below, we additionally com-
pare with SRSA with random initialization (SRSA-noRetr) to show the effect of initialization from
retrieval.

Comparing AutoMate with SRSA-noRetr, we see the difference between PPO and PPO+SIL when
learning a policy from scratch. Both approaches started from poor performance, but SIL has greater
learning efficiency and stability. Comparing SRSA-noRetr and SRSA, we see the difference between
random initialization and initialization from retrieval. Policy retrieval provides a good start with a
reasonable success rate. As a result, SRSA more efficiently reaches higher performance on the target
task.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 17: Comparison for variants of SRSA with different ablated components. For each
method, we have 5 runs with different random seeds. The learning curves show mean and standard
deviation of success rate over these runs.

29

