
Supplemental Materials for
Achieving Forgetting Prevention and

KnowledgeTransfer in Continual Learning

Zixuan Ke1, Bing Liu1, Nianzu Ma1, Hu Xu2 and Lei Shu3∗
1Department of Computer Science, University of Illinois at Chicago

2Facebook AI Research
3Amazon AWS AI

1{zke4,liub,nma4}@uic.edu
2huxu@fb.com

3shulindt@gmail.com

1 Task Masks (TM) in Task Specific Module (TSM)

In this section, we detail the task mask (TM) training. TMs (Figure 2(B) in the main paper) are used
to prevent catastrophic forgetting (CF), i.e., to protect the task specific knowledge of previous tasks.
Specifically, we first detect the neurons used by each old task, and then block off or mask out all the
used neurons when learning a new task.

The task specific module (TSM) consists of differentiable layers (CBA uses a 2-layer fully-connected
network). Each layer’s output is further applied with a task mask to indicate which neurons should
be protected for that task to overcome CF and forbids gradient updates for those neurons during
backpropagation for a new task. Those tasks with overlapping masks indicate some parameter sharing.
Due to KSM, the features flowing into those overlapping neurons enable the related old tasks to also
improve in learning the new task.

Task Masks. Given the transfer capsule v(t)j , TSM maps them into input k(t)l via a fully-connected

network, where l is the l-th layer in TSM. A task mask (a “soft” binary mask) m(t)
l is trained for

each task t at each layer l in TSM during training task t’s classifier, indicating the neurons that
are important for the task. Here we borrow the hard attention idea in [1] and leverage the task ID
embedding to the train the task mask.

For a task ID t, its embedding e(t)l consists of differentiable deterministic parameters that can be
learned together with other parts of the network. It is trained for each layer in TSM. To generate
the task mask m(t)

l from e
(t)
l , Sigmoid is used as a pseudo-gate function and a positive scaling

hyper-parameter s is applied to help training. The m(t)
l is computed as follows:

m
(t)
l = σ(se

(t)
l ). (1)

Note that the neurons in m(t)
l may overlap with those in other m(iprev)

l ’s from previous tasks showing
some shared knowledge. Given the output of each layer in TSM, k(t)l , we element-wise multiply
k
(t)
l ⊗m

(t)
l . The masked output of the last layer k(t) is fed to the next layer of the BERT with a

skip-connection (Figure 1 in the main paper). After learning task t, the final m(t)
l is saved and added

to the set {m(t)
l }.

∗Work was done prior to joining Amazon.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Training. For each past task iprev ∈ Tprev, its mask m(iprev)
l indicates which neurons are used by that

task and need to be protected. In learning task t, m(iprev)
l is used to set the gradient g(t)l on all used

neurons of the layer l in TSM to 0. Before modifying the gradient, we first accumulate all used
neurons by all previous tasks’ masks. Since m(iprev)

l is binary, we use max-pooling to achieve the
accumulation:

m
(tac)
l = MaxPool({m(iprev)

l }). (2)

The term m
(tac)
l is applied to the gradient:

g
′(t)
l = g

(t)
l ⊗ (1−m(tac)

l ). (3)

Those gradients corresponding to the 1 entries inm(tac)
l are set to 0 while the others remain unchanged.

In this way, neurons in an old task are protected. Note that we expand (copy) the vector m(tac)
l to

match the dimensions of g(t)l .

Though the idea is intuitive, e(t)l is not easy to train. To make the learning of e(t)l easier and more
stable, an annealing strategy is applied. That is, s is annealed during training, inducing a gradient
flow and set s = smax during testing. Eq. 1 approximates a unit step function as the mask, with
m

(t)
l → {0, 1} when s→∞. A training epoch starts with all neurons being equally active, which

are progressively polarized within the epoch. Specifically, s is annealed as follows:

s =
1

smax
+ (smax −

1

smax
)
b− 1

B − 1
, (4)

where b is the batch index and B is the total number of batches in an epoch.

Let us walk through the learning process of the three tasks in Figure 2(B) in the main paper. After
training task 0, we obtain its useful neurons indicated by the 1 entries. Before training task 1, those
useful neurons for task 0 are first masked (those previous 1’s entries are turned to 0’s). After training
task 1, two neurons with 1 are used by the task. When task 2 arrives, all used neurons by tasks 0 and
1 are masked before training, i.e., their entries are set to 0. After training task 2, we see that tasks 2
and 1 have a shared neuron (the cell with two colors, red and green), which is used by both of tasks.

2 Detailed Datasets Statistics

Since the datasets for the document sentiment classification (DSC) application (which is the same as
a traditional classification problem) and the 20News dataset (which forms dissimilar task sequences
and is used to show the forgetting avoidance ability) have already been described in Section 5.1 in the
main paper, here we mainly focus on the datasets for aspect sentiment classification (ASC), which is
more than a traditional classification problem because of the additional input of the aspect and the
fact that in the same sentence different aspects can have different opinions. Table 1 in the main paper
has provided the number of sentences or examples in each of the 19 datasets. However, no aspects or
aspect opinions were provided. Here we provide them, as shown in Table 1.

3 Standard Deviations

We report the standard deviations (Table 2) of the accuracy (Acc.) and macro-F1 (MF1) results of
CTR and the considered baselines over 5 runs with random seeds based on one random task sequence
used in the paper. Note that this is different from Table 2 of the main paper where each result reported
is the average result of 5 random task sequences as different task sequences can produce different
results. We can see the results of CTR are stable. Some baselines can have quite large standard
deviations using Adapter-BERT.

4 Execution Time and Number of Parameters

Table 3 reports the number of parameter (regardless of trainable or non-trainable), training execution
times for different models. The execution time is computed as the average training time per task. Our
experiments were run on GeForce GTX 2080 Ti with 11G GPU memory.

2



Dataset Tasks/Domains Training Validating Testing

Liu3domain
Speaker 233 S./352 A./287 P./65 N./0 Ne. 30 S./44 A./35 P./9 N./0 Ne. 38 S./44 A./40 P./4 N./0 Ne.
Router 200 S./245 A./142 P./103 N./0 Ne. 24 S./31 A./19 P./12 N./0 Ne. 22 S./31 A./24 P./7 N./0 Ne.

Computer 187 S./283 A./218 P./65 N./0 Ne. 25 S./35 A./23 P./12 N./0 Ne. 29 S./36 A./29 P./7 N./0 Ne.

HL5domain

Nokia6610 209 S./271 A./198 P./73 N./0 Ne. 29 S./34 A./30 P./4 N./0 Ne. 28 S./34 A./25 P./9 N./0 Ne.
Nikon4300 131 S./162 A./135 P./27 N./0 Ne. 15 S./20 A./18 P./2 N./0 Ne. 15 S./21 A./19 P./2 N./0 Ne.

Creative 582 S./677 A./422 P./255 N./0 Ne. 68 S./85 A./42 P./43 N./0 Ne. 70 S./85 A./52 P./33 N./0 Ne.
CanonG3 190 S./228 A./180 P./48 N./0 Ne. 25 S./29 A./21 P./8 N./0 Ne. 24 S./29 A./24 P./5 N./0 Ne.
ApexAD 281 S./343 A./146 P./197 N./0 Ne. 35 S./43 A./16 P./27 N./0 Ne. 28 S./43 A./31 P./12 N./0 Ne.

Ding9domain

CanonD500 103 S./118 A./96 P./22 N./0 Ne. 11 S./15 A./14 P./1 N./0 Ne. 13 S./15 A./11 P./4 N./0 Ne.
Canon100 137 S./175 A./123 P./52 N./0 Ne. 19 S./22 A./20 P./2 N./0 Ne. 16 S./22 A./21 P./1 N./0 Ne.

Diaper 166 S./191 A./143 P./48 N./0 Ne. 22 S./24 A./18 P./6 N./0 Ne. 24 S./24 A./22 P./2 N./0 Ne.
Hitachi 152 S./212 A./153 P./59 N./0 Ne. 23 S./26 A./19 P./7 N./0 Ne. 23 S./27 A./14 P./13 N./0 Ne.

Ipod 124 S./153 A./101 P./52 N./0 Ne. 18 S./19 A./14 P./5 N./0 Ne. 19 S./20 A./15 P./5 N./0 Ne.
Linksys 152 S./176 A./128 P./48 N./0 Ne. 19 S./22 A./13 P./9 N./0 Ne. 20 S./23 A./16 P./7 N./0 Ne.

MicroMP3 384 S./484 A./340 P./144 N./0 Ne. 42 S./61 A./48 P./13 N./0 Ne. 51 S./61 A./39 P./22 N./0 Ne.
Nokia6600 298 S./362 A./244 P./118 N./0 Ne. 26 S./45 A./32 P./13 N./0 Ne. 39 S./46 A./30 P./16 N./0 Ne.

Norton 168 S./194 A./54 P./140 N./0 Ne. 17 S./24 A./15 P./9 N./0 Ne. 24 S./25 A./5 P./20 N./0 Ne.

SemEval14 Rest 1893 S./3452 A./2094 P./779 N./579 Ne. 84 S./150 A./70 P./26 N./54 Ne. 600 S./1120 A./728 P./196 N./196 Ne.
Laptop 1360 S./2163 A./930 P./800 N./433 Ne. 98 S./150 A./57 P./66 N./27 Ne. 411 S./638 A./341 P./128 N./169 Ne.

Table 1: Statistics of the ASC datasets. S.: number of sentences; A: number of aspects; P., N.,
and Ne.: number aspects with positive, negative and neutral opinions, respectively. Note that the
SemEval14 datasets have 3 classes of opinion polarities (positive, negative and neutral) while the
others have only 2 classes (positive and negative) because in these other datasets, those sentences
with neutral opinions were not annotated with aspects and thus cannot be used in aspect sentiment
classification (ASC). That is why we have “0 Ne.” for those datasets.

Scenarios Category Model ASC DSC (small) DSC (full) 20News
Acc. MF1 Acc. MF1 Acc. MF1 Acc. MF1

Non-continual
Learning (SDL)

BERT MTL ±0.0073 ±0.0088 ±0.0111 ±0.0117 ±0.0034 ±0.0037 ±0.0049 ±0.0049
BERT SDL ±0.0118 ±0.0263 ±0.0288 ±0.0401 ±0.0048 ±0.0052 ±0.0022 ±0.0022
BERT (Frozen) SDL ±0.0171 ±0.0265 ±0.0019 ±0.0027 ±0.0042 ±0.0063 ±0.0044 ±0.0044
Adapter-BERT SDL ±0.0175 ±0.0154 ±0.0081 ±0.0150 ±0.0053 ±0.0060 ±0.0048 ±0.0048
W2V SDL ±0.0102 ±0.0077 ±0.0082 ±0.0131 ±0.0072 ±0.0094 ±0.0022 ±0.0022

Continual
Learning (CL)

BERT NFH ±0.1051 ±0.0492 ±0.0274 ±0.0363 ±0.0736 ±0.0701 ±0.0518 ±0.0508
BERT (Frozen) NFH ±0.0042 ±0.0098 ±0.0023 ±0.0040 ±0.0051 ±0.0049 ±0.0044 ±0.0045
Adapter-BERT NFH ±0.0659 ±0.0885 ±0.0801 ±0.0608 ±0.0792 ±0.0923 ±0.0396 ±0.0677
W2V NFH ±0.0133 ±0.0325 ±0.0064 ±0.0206 ±0.0203 ±0.0337 ±0.0132 ±0.0146

BERT (frozen)

L2 ±0.0618 ±0.0405 ±0.0320 ±0.0134 ±0.0358 ±0.0731 ±0.0161 ±0.0230
A-GEM ±0.0078 ±0.0142 ±0.0036 ±0.0036 ±0.0037 ±0.0042 ±0.0037 ±0.0037
DER++ ±0.0067 ±0.0077 ±0.0056 ±0.0060 ±0.0135 ±0.0160 ±0.0530 ±0.0759
KAN ±0.0099 ±0.0170 ±0.0348 ±0.0361 ±0.0088 ±0.0089 ±0.0335 ±0.0432
SRK ±0.0105 ±0.0175 ±0.0184 ±0.0230 ±0.0052 ±0.0059 ±0.0247 ±0.0318
EWC ±0.0714 ±0.0392 ±0.0154 ±0.0368 ±0.0329 ±0.0398 ±0.0509 ±0.0808
UCL ±0.0205 ±0.0477 ±0.0053 ±0.0053 ±0.0046 ±0.0047 ±0.0048 ±0.0048

OWM ±0.0165 ±0.0206 ±0.0002 ±0.0027 ±0.0174 ±0.0078 ±0.0139 ±0.0144
HAT ±0.0209 ±0.0304 ±0.0146 ±0.0200 ±0.0047 ±0.0065 ±0.0423 ±0.0567
CAT ±0.0246 ±0.0649 ±0.0584 ±0.1012 ±0.0103 ±0.0097 ±0.0067 ±0.0068

Adapter-BERT

L2 ±0.0313 ±0.0499 ±0.0766 ±0.1237 ±0.0383 ±0.0449 ±0.0278 ±0.0374
A-GEM ±0.0941 ±0.0609 ±0.0934 ±0.1319 ±0.0624 ±0.0662 ±0.0235 ±0.0318
DER++ ±0.0853 ±0.0712 ±0.0813 ±0.1195 ±0.1005 ±0.0963 ±0.0984 ±0.1161
EWC ±0.0943 ±0.0991 ±0.0610 ±0.0831 ±0.1209 ±0.1215 ±0.0409 ±0.0616
UCL ±0.0731 ±0.0341 ±0.0436 ±0.0203 ±0.1017 ±0.1022 ±0.1322 ±0.0890

OWM ±0.0347 ±0.0419 ±0.0381 ±0.0344 ±0.0046 ±0.0044 ±0.0316 ±0.0461
HAT ±0.0058 ±0.0091 ±0.0112 ±0.0119 ±0.0197 ±0.0205 ±0.0037 ±0.0037

W2V

L2 ±0.0124 ±0.0078 ±0.0116 ±0.0233 ±0.0252 ±0.0157 ±0.0128 ±0.0219
A-GEM ±0.0062 ±0.0238 ±0.0164 ±0.0301 ±0.0191 ±0.0250 ±0.0076 ±0.0086
DER++ ±0.0059 ±0.0130 ±0.0249 ±0.0415 ±0.0163 ±0.0219 ±0.0140 ±0.0148
KAN ±0.0111 ±0.0044 ±0.0083 ±0.0162 ±0.0473 ±0.0302 ±0.0067 ±0.0065
SRK ±0.0074 ±0.0029 ±0.0161 ±0.0162 ±0.0031 ±0.0057 ±0.0123 ±0.0151
EWC ±0.0264 ±0.0581 ±0.0478 ±0.0952 ±0.0155 ±0.0208 ±0.0412 ±0.0424
UCL ±0.0148 ±0.0110 ±0.0056 ±0.0131 ±0.0209 ±0.0313 ±0.0113 ±0.0121

OWM ±0.0258 ±0.0299 ±0.0228 ±0.0348 ±0.0167 ±0.0194 ±0.0196 ±0.0249
HAT ±0.0194 ±0.0203 ±0.0192 ±0.0220 ±0.0484 ±0.0553 ±0.0422 ±0.0700
CAT ±0.0114 ±0.0278 ±0.0001 ±0.0002 ±0.0182 ±0.0242 ±0.0251 ±0.0317

B-CL ±0.0093 ±0.0324 ±0.0177 ±0.0208 ±0.0111 ±0.0117 ±0.0085 ±0.0087
LAMOL ±0.0256 ±0.0085 ±0.0089 ±0.0241 ±0.0316 ±0.0300 ±0.0254 ±0.0265

CTR ±0.0107 ±0.0123 ±0.0083 ±0.0076 ±0.0011 ±0.0016 ±0.0067 ±0.0067

Table 2: Standard deviations of the accuracy (Acc.) and Macro-F1 (MF1) results of the proposed
CTR model and the baselines on the four experiments.

5 Hyperparameter Search

We use grid search to find the best parameters based on the validation data performance. We search
within {32, 64, 128} for batch size, within {140, 200, 300, 400} for smax, within {300, 768, 2000}
for dimension of Task Specific Module (TSM) and within {10, 20, 30, 40} for the number of BERT

3



Scenarios Category Model #Parameters (M) Running time (min)
ASC DSC (small) DSC (full) 20News

Non-continual
Learning (SDL)

BERT MTL 109.5 1.3 0.8 19.1 3.4
BERT SDL 109.5 2.1 1.7 23.8 4.9
BERT (Frozen) SDL 110.4 3.3 3.2 17.3 7.0
Adapter-BERT SDL 183.3 5.1 3.4 32.8 6.4

W2V SDL 6.7 0.7 0.2 0.6 0.5

Continual
Learning (CL)

BERT NFH 109.5 2.1 1.7 23.8 4.9
BERT (Frozen) NFH 110.4 3.3 3.2 17.3 7.0
Adapter-BERT NFH 183.3 5.1 3.4 32.8 6.4

W2V NFH 6.7 0.7 0.2 0.6 0.5

BERT (frozen)

L2 110.4 3.4 2.5 17.6 7.4
A-GEM* 110.4 3.3 3.2 17.3 7.0
DER++* 110.4 3.3 3.2 17.3 7.0

KAN 116.6 1.4 1.0 7.5 1.9
SRK 117.8 3.3 8.8 35.9 7.1
EWC 110.4 5.7 2.6 29.7 12.4
UCL 110.4 3.4 2.0 17.2 7.2

OWM 110.6 3.4 2.0 17.1 7.2
HAT 111.3 3.4 2.0 17.4 7.3
CAT 227.4 23.8 23.0 124.56 50.4

Adapter-BERT

L2 183.3 2.7 2.5 31.7 6.5
A-GEM* 183.3 5.1 3.4 32.8 6.4
DER++* 183.3 5.1 3.4 32.8 6.4

EWC 183.3 4.8 3.9 60.3 12.3
UCL 183.4 2.3 2.2 26.8 5.5

OWM 184.4 2.7 2.6 30.1 6.2
HAT 185.2 2.7 2.5 30.3 6.2

W2V

L2 6.2 8.2 0.2 0.6 0.5
A-GEM* 6.2 0.7 0.2 0.6 0.5
DER++* 6.2 0.7 0.2 0.6 0.5

KAN 7.0 0.1 0.1 0.2 0.1
SRK 7.2 2.4 2.8 3.1 4.2
EWC 6.2 1.2 0.4 3.0 1.4
UCL 6.2 0.7 0.3 0.7 0.5

OWM 6.4 0.7 0.2 0.8 0.5
HAT 6.4 0.8 0.3 1.0 0.6
CAT 24.5 5.0 1.4 4.5 3.6

B-CL 287.4 27.8 14.5 90.2 35.1
LAMOL 124.4 7.2 6.0 18.0 24.0

CTR 223.1 65.9 26.0 131.6 87.3
Table 3: Network size (#parameters in millions, regardless of trainable or non-trainable) and average
training time per task of each model measured in minutes. We use “*” to indicate a replay method
with a memory buffer. Here we report #parameters without including the memory buffer. The extra
parameters and more training time used by our system are mainly due to the use of capsules and
adapters.

training epochs. All reported test results in the paper are given by the parameters with the best
validation performance.

References
[1] J. Serrà, D. Suris, M. Miron, and A. Karatzoglou. Overcoming catastrophic forgetting with hard

attention to the task. In ICML, 2018.

4


	Task Masks (TM) in Task Specific Module (TSM)
	Detailed Datasets Statistics
	Standard Deviations
	Execution Time and Number of Parameters
	Hyperparameter Search

