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Veličković, and Michal Valko. Bootstrapped representation learning on graphs. In ICLR
Workshop on Geometrical and Topological Representation Learning, 2021.

[27] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In ECCV,
2020.

[28] Aaron Van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv e-prints, 2018.
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(c) GCN on Computer
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Figure 6: More results for the fairness of models to degree bias on Photo and Computer datasets.

A Details of Section 2

A.1 Implementation Details

We choose the commonly used Cora [17] , Citeseer [17] , Photo [23] and Computer [23] for evaluation.
In Cora and Citeseer datasets, nodes represent papers, edges are the citation relationship between
papers, node features comprise bag-of-words vector of keywords and labels represent the research
field of papers. Photo and Computer datasets are segments of the Amazon co-purchase graph, where
nodes represent products, edges indicate that two products are frequently bought together, node
features are bag-of-words encoded product reviews and labels are given by the product category.
The statistics of these datasets are summarized in Table 4. The above datasets are public and do
not contain personally identifiable information and offensive content. The URL of our datasets is
https://docs.dgl.ai/api/python/dgl.data.html and the license is Apache License 2.0.

We train DGI2 [30] and GraphCL3 [35] on these datasets with codes provided by authors. To compare
with GCN4 [17], our linear evaluation protocol deploys the semi-supervised split [17], where 20
labeled nodes per class form training set and test set composes of randomly sampled 1000 nodes with
degree less than 50. GCN follows the standard training paradigm [17] with the above train-test split.
All these methods are initialized as the corresponding papers and consist of two GCN layers, where
their hyperparameters are carefully searched to achieve optimal performance on the test set.

A.2 Additional Results

More comparison results between GCL methods and GCN on Photo and Computer datasets are
shown in Figure 6. Please note that GraphCL has an out-of-memory issue on these datasets. From
the figure, the gap between the slopes of DGI and GCN is relatively small. A reasonable hypothesis
is that average node degrees of Photo and Computer datasets are much larger than those of Cora and
Citeseer datasets, where the advantage of GCL to alleviate the neighborhood sparsity of tail nodes
cannot be well exhibited.

B Details of Section 3

Theorem 1 Intra-community Concentration. Let pre-transformation representations L̃X be sub-
Gaussian random variable with variance σ2. For all nodes vi ∈ Sε, if ε2 ≤ βm

6M2κ , their representa-
tions f(Gi) fit sub-Gaussian distribution with variance σ2

f,ε ≤ 1
κσ

2.

Proof For node vi in Sε, we have ∥f(Gi)− f(Ĝi)∥2 ≤ ε2. This implies that for nodes vi, vj ∈ Sε

such that ∥L̃iX − L̃jX∥2 ≤ 2βm, there exists a region of overlap so that ∥f(Gi) − f(Gj)∥2 ≤
∥f(Gi)− f(Ĝi)∥2 + ∥f(Ĝi)− f(Gj)∥2 ≤ 2ε2. That is, there are graph augmentations of vi which
are sufficiently similar to graph augmentations of vj so that their representations should be similar,
thereby driving f(Gi) and f(Gj) to be closer.

2(MIT license) https://github.com/PetarV-/DGI
3(MIT license) https://github.com/Shen-Lab/GraphCL
4(MIT license) https://github.com/tkipf/pygcn
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The variance of ε-close node representations in f space is

σ2
f,ε =

1

2N2(1−Rε)2

∑
vi∈Sε

∑
vj∈Sε

∥f(Gi)− f(Gj)∥2. (11)

The overlap βm < ∥L̃iX−L̃jX∥2 ≤ 2βm induces a graph where we say vj ∈ N (i)∀vj s.t. ∥L̃iX−
L̃jX∥2 ≤ 2βm. For N(1−Rε) samples, we can decompose the variance as

σ2
f,ε =

1

2N2(1−Rε)2

∑
vi∈Sε

∑
vj∈Sε

∥f(Gi)− f(Gj)∥2

=
1

2N2(1−Rε)2

∑
vi∈Sε

 ∑
vj∈N (i)

∥f(Gi)− f(Gj)∥2 +
∑

v′
j /∈N (i)

∥f(Gi)− f(Gj′)∥2
 .

(12)

By the smoothness of f we always have ∥f(Gi)−f(Gj′)∥2 ≤ M2∥L̃iX−L̃j′X∥2. By the constraint
we have that ∥f(Gi)− f(Gj)∥2 ≤ 2ε2M2

βm ∥L̃iX − L̃jX∥2∀vj ∈ N (i) and for η = 2ε2M2

βm < 1.

Assuming that there is a constant proportion 0 ≤ λ ≤ 1 of nodes in the set N (i)∀vi ∈ Sε, thus this
graph is an Erdős-Renyi graph. From Theorem 4, if λ ≥ c logN

N for c > 1 then with high probability,
there are no unconnected components in graph. Every node is reachable from any other nodes in
a finite number of steps. We can then decompose nodes in the graph into adjacent ones and those
which are reachable within a certain number of steps. Let the shortest path between any two nodes be
at most D, then we obtain the following inequality

σ2
f,ε =

1

2N2(1−Rε)2

∑
vi∈Sε

∑
vj∈Sε

∥f(Gi)− f(Gj)∥2

≤ λησ2
x + (1− λ)Dησ2

x.

(13)

From Theorem 5, we have 3 ≤ D ≤ 4 with high probability. So for σ2
f,ε ≤ 1

κσ
2
x with κ ≥ 1, we

require ε2 ≤ βm
2M2κ(3−2λ) ≤

βm
6M2κ . □

Theorem 4 [8] If p = c logN
N where c > 1 with high probability, then the graph G(N, p) has no

unconnected components.

Theorem 5 [9] Let q ≥ 2 be a fixed positive integer. For c > 0 and

pqNq−1 = log(
N2

c
). (14)

Then diam(GN,p) ≥ q with probability e−
c
2 and diam(GN,p) ≤ q + 1 with probability 1− e−

c
2 .

Definition 1 (α, γ, d̂)-Augmentation. The augmentation set T is a (α, γ, d̂)-augmentation, if for
each community Ck, there exists a subset C0

k ⊂ Ck such that the following two conditions hold

1. P[vi ∈ C0
k ] ≥ αP[vi ∈ Ck] where α ∈ (0, 1],

2. supvi,vj∈C0
k
dT (vi, vj) ≤ γ( B

d̂k
min

)
1
2 where γ ∈ (0, 1],

where d̂kmin = minvi∈C0
k,Ĝi∈T (Gi)

d̂i, and B is the feature dimension.
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Remark Since the node feature X has been mapped to surface of the unit sphere SB−1 = {Xi ∈
RB : ∥Xi∥ = 1}, there is a natural supremum for dT (vi, vj) bounded by the node degree,

dT (vi, vj) = min
Ĝi∈T (Gi),Ĝj∈T (Gj)

∥( Âi

d̂i
− Âj

d̂j
)X∥

≤ min
Ĝi∈T (Gi),Ĝj∈T (Gj)

∥ Âi

d̂i
− Âj

d̂j
∥ ·

√
B

=
√
B · min

Ĝi∈T (Gi),Ĝj∈T (Gj)
∥ Âi

d̂i
− Âj

d̂i
+

Âj

d̂i
− Âj

d̂j
∥

≤
√
B · min

Ĝi∈T (Gi),Ĝj∈T (Gj)

∥Âi − Âj∥
d̂i

+ ∥Âj∥

∣∣∣∣∣ 1d̂i − 1

d̂j

∣∣∣∣∣ .

(15)

Without loss of generality, we assume that d̂i ≥ d̂j

dT (vi, vj) =
√
B · min

Ĝi∈T (Gi),Ĝj∈T (Gj)

∥Âi − Âj∥
d̂i

+ ∥Âj∥

(
1

d̂j
− 1

d̂i

)

≤
√
B · min

Ĝi∈T (Gi),Ĝj∈T (Gj)

√
d̂i + d̂j

d̂i
+

√
d̂j

(
1

d̂j
− 1

d̂i

)

=
√
B · min

Ĝi∈T (Gi),Ĝj∈T (Gj)

√
d̂i + d̂j −

√
d̂j

d̂i
+

1√
d̂j

≤
√
B · min

Ĝi∈T (Gi),Ĝj∈T (Gj)

1√
d̂i

+
1√
d̂j

≤ 2
√
B · min

Ĝi∈T (Gi),Ĝj∈T (Gj)

1√
d̂j

.

(16)

Following this form, we define the RHS of the second condition to delineate the concentrated part.

Lemma 1 For a (α, γ, d̂)-augmentation with subset C0
k of each community Ck, if nodes belonging to

(C0
1 ∪ · · · ∪ C0

K) ∩ Sε can be correctly assigned by the community indicator Ff , then the error of all
nodes can be bounded by (1− α) +Rε, where Rε = P[Sε] is the proportion of complement.

Proof Since every node vi ∈ (C0
1 ∪ · · · ∪C0

K)∩Sε can be correctly assigned by Ff , the error rate

Err(Ff ) =

K∑
k=1

P[Ff (Gi) ̸= k,∀vi ∈ Ck]

≤ P
[
(C0

1 ∪ · · · ∪ C0
K) ∩ Sε

]
= P

[
C0

1 ∪ · · · ∪ C0
K ∪ Sε

]
≤ (1− α) + P[Sε]

= (1− α) +Rε.

(17)

□

Lemma 2 For a (α, γ, d̂)-augmentation and each ℓ ∈ [K], if

µ⊤
ℓ µk < r2(1− ρℓ(α, γ, d̂, ε)−

√
2ρℓ(α, γ, d̂, ε)−

∆µ

2
)

holds for all k ̸= ℓ, then every node vi ∈ C0
ℓ∩Sε can be correctly assigned by the community indicator

Ff , where ρℓ(α, δ, ε) = 2(1− α) + 2Rε

pℓ
+ α( Mγ

√
B

r
√

d̂ℓ
min

+ 2ε
r ) and ∆µ = 1−mink∈[K] ∥µk∥2/r2.
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Proof To show that every node vi ∈ C0
ℓ ∩ Sε can be correctly assigned by Ff , we need to prove

that for all k ̸= ℓ, ∥f(Gi)− µℓ∥ < ∥f(Gi)− µk∥. It is equivalent to prove

f(Gi)
⊤µℓ − f(Gi)

⊤µk − (
1

2
∥µℓ∥2 −

1

2
∥µk∥2) > 0. (18)

Let f̃(Gi) = EĜi∈T (Gi)
[f(Ĝi)]. Then ∥f̃(Gi)∥ = ∥EĜi∈T (Gi)

[f(Ĝi)]∥ ≤ EĜi∈T (Gi)
[∥f(Ĝi)∥] = r.

One the one hand,

f(Gi)
⊤µℓ =

1

pℓ
f(Gi)

⊤E
vj
[f̃(Gj)I(vj ∈ Cℓ)]

=
1

pℓ
f(Gi)

⊤E
vj
[f̃(Gj)I(vj ∈ Cℓ ∩ C0

ℓ ∩ Sε)] +
1

pℓ
f(Gi)

⊤E
vj

[
f̃(Gj)I

(
vj ∈ Cℓ ∩ C0

ℓ ∩ Sε

)]
=

P[C0
ℓ ∩ Sε]

pℓ
f(Gi)

⊤ E
vj∈C0

ℓ∩Sε

[f̃(Gj)] +
1

pℓ
E
vj

[
f(Gi)

⊤f̃(Gj) · I(vj ∈ Cℓ\C0
ℓ ∩ Sε)

]
≥ P[C0

ℓ ∩ Sε]

pℓ
f(Gi)

⊤ E
vj∈C0

ℓ∩Sε

[f̃(Gj)]−
r2

pℓ
P[Cℓ\C0

ℓ ∩ Sε],

(19)
where I(·) is the indicator function. Note that

P[Cℓ\C0
ℓ ∩ Sε] ≤ P[(Cℓ\C0

ℓ ) ∪ Sε] = (1− α)pℓ +Rε, (20)

and

P[C0
ℓ ∩ Sε] = P[Cℓ]− P[Cℓ\C0

ℓ ∩ Sε] ≥ pℓ − ((1− α)pℓ +Rε) = αpℓ −Rε. (21)

Plugging to Eq. (19), we have

f(Gi)
⊤µℓ ≥

P[C0
ℓ ∩ Sε]

pℓ
f(Gi)

⊤ E
vj∈C0

ℓ∩Sε

[f̃(Gj)]−
r2

pℓ
P[Cℓ\C0

ℓ ∩ Sε]

≥
(
α− Rε

pℓ

)
f(Gi)

⊤ E
vj∈C0

ℓ∩Sε

[f̃(Gj)]− r2
(
1− α+

Rε

pℓ

)
.

(22)

Notice that vi ∈ C0
ℓ ∩ Sε. For any vj ∈ C0

ℓ ∩ Sε, we have dT (vi, vj) ≤ γ( B
d̂ℓ
min

)
1
2 . Let (Ĝ∗

i , Ĝ∗
j ) =

argminĜi∈T (Gi),Ĝj∈T (Gj)
∥f(Ĝi)− f(Ĝj)∥, thus ∥f(Ĝ∗

i )− f(Ĝ∗
j )∥ ≤ Mγ( B

d̂ℓ
min

)
1
2 . Since vj ∈ Sε,

for any Ĝj ∈ T (Gj), ∥f(Ĝj)− f(Ĝ∗
j )∥ ≤ ε. Similarly, since vi ∈ Sε, we have ∥f(Ĝi)− f(Ĝ∗

i )∥ ≤ ε.
The first term of Eq. (22) can be bounded by

f(Gi)
⊤ E
vj∈C0

ℓ∩Sε

[f̃(Gj)] = E
vj∈C0

ℓ∩Sε

E
Ĝj∈T (Gj)

[f(Gi)
⊤f(Ĝj)]

= E
vj∈C0

ℓ∩Sε

E
Ĝj∈T (Gj)

[f(Gi)
⊤(f(Ĝj)− f(Gi) + f(Gi))]

≥ r2 + E
vj∈C0

ℓ∩Sε

E
Ĝj∈T (Gj)

[f(Gi)
⊤(f(Ĝj)− f(Gi))]

= r2 + E
vj∈C0

ℓ∩Sε

E
Ĝj∈T (Gj)

[f(Gi)
⊤(f(Ĝj)− f(Ĝ∗

j )︸ ︷︷ ︸
∥·∥≤ε

+ f(Ĝ∗
j )− f(Ĝ∗

i )︸ ︷︷ ︸
∥·∥≤Mγ( B

d̂ℓ
min

)
1
2

+ f(Ĝ∗
i )− f(Ĝi)︸ ︷︷ ︸
∥·∥≤ε

)]

= r2 − r(Mγ(
B

d̂ℓmin

)
1
2 + 2ε).

(23)
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Therefore, Eq. (22) turns to

f(Gi)
⊤µℓ ≥

(
α− Rε

pℓ

)
f(Gi)

⊤ E
vj∈C0

ℓ∩Sε

[f̃(Gj)]− r2
(
1− α+

Rε

pℓ

)
≥
(
α− Rε

pℓ

)
(r2 − r(Mγ(

B

d̂ℓmin

)
1
2 + 2ε))− r2

(
1− α+

Rε

pℓ

)

= r2

1− 2(1− α)− 2Rε

pℓ
−
(
α− Rε

pℓ

)Mγ
√
B

r
√

d̂ℓmin

+
2ε

r


= r2(1− ρℓ(α, γ, d̂, ε)).

(24)

On the other hand,

f(Gi)
⊤µk = (f(Gi)− µℓ)

⊤µk + µ⊤
ℓ µk

≤ ∥f(Gi)− µℓ∥ · ∥µk∥+ µ⊤
ℓ µk

≤ r
√

∥f(Gi)∥2 − 2f(Gi)⊤µℓ + ∥µℓ∥2 + µ⊤
ℓ µk

≤ r
√

2r2 − 2f(Gi)⊤µℓ + µ⊤
ℓ µk

≤
√
2ρℓ(α, γ, d̂, ε)r

2 + µ⊤
ℓ µk.

(25)

Note that ∆µ = 1−mink ∥µk∥2/r2, the LHS of Eq. (18) is

f(Gi)
⊤µℓ − f(Gi)

⊤µk − (
1

2
∥µℓ∥2 −

1

2
∥µk∥2) ≥ f(Gi)

⊤µℓ − f(Gi)
⊤µk − 1

2
r2∆µ

≥ r2(1− ρℓ(α, γ, d̂, ε))−
√
2ρℓ(α, γ, d̂, ε)r

2 − µ⊤
ℓ µk − 1

2
r2∆µ

= r2
(
1− ρℓ(α, γ, d̂, ε)−

√
2ρℓ(α, γ, d̂, ε)−

1

2
∆µ

)
− µ⊤

ℓ µk > 0.

(26)

□

Theorem 2 Inter-community Scatter. For a (α, γ, d̂)-augmentation, if

µ⊤
ℓ µk < r2(1− ρmax(α, γ, d̂, ε)−

√
2ρmax(α, γ, d̂, ε)−

∆µ

2
) (27)

holds for any pair of (ℓ, k) with ℓ ̸= k, then the error of the community indicator Ff can be

bounded by (1 − α) + Rε, where ρmax(α, γ, d̂, ε) = 2(1 − α) + maxℓ

(
2Rε

pℓ
+ Mαγ

√
B

r
√

d̂ℓ
min

)
+ 2αε

r )

and ∆µ = 1−mink∈[K] ∥µk∥2/r2.

Proof Since the augmentation T is (α, γ, d̂)-augmentation, there exists a subset C0
k for each

community Ck such that P[C0
k ] ≥ αpk and supvi,vj∈C0

k
dT (vi, vj) ≤ γ( B

d̂k
min

)
1
2 . Since for any ℓ ̸= k,

we have µ⊤
ℓ µk < r2(1 − ρmax(α, γ, d̂, ε) −

√
2ρmax(α, γ, d̂, ε) − ∆µ

2 ) ≤ r2(1 − ρℓ(α, γ, d̂, ε) −√
2ρℓ(α, γ, d̂, ε)− ∆µ

2 ). According to Lemma 2, every node vi ∈ C0
ℓ ∩ Sε can be correctly assigned

by Ff . Therefore, every node vi ∈ (C0
1 ∪ · · · ∪C0

K)∩Sε can be correctly assigned by Ff . According
to Lemma 1, the error rate Err(Ff ) ≤ (1− α) +Rε. □

Theorem 3 The term Rε is upper bounded by

Rε ≤
[C(N − 1,m)]2

ε
Evi

EĜ1
i ,Ĝ2

i ∈T (Gi)
∥f(Ĝ1

i )− f(Ĝ2
i )∥. (28)

Proof For any given node vi, we have

sup
Ĝ1
i ,Ĝ2

i ∈T (Gi)

∥f(Ĝ1
i )− f(Ĝ2

i )∥ ≥ [C(N − 1,m)]2 E
Ĝ1
i ,Ĝ2

i ∈T (Gi)
∥f(Ĝ1

i )− f(Ĝ2
i )∥. (29)
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Table 4: Statistics of datasets.

Dataset # Nodes # Edges # Features # Classes # Avg. Degree

Cora 2,708 10,556 1,433 7 3.89
Citeseer 3,327 9,228 3,703 6 2.77
Photo 7,650 238,163 745 8 31.13
Computer 13,752 491,722 767 10 35.75

Therefore, the following set S is a subset of Sε,

S =

{
vi : E

Ĝ1
i ,Ĝ2

i ∈T (Gi)
∥f(Ĝ1

i )− f(Ĝ2
i )∥ ≤ ε

[C(N − 1,m)]2

}
⊆ Sε. (30)

By Markov’s inequality, we have

Rε = P[Sε] ≤ P[S̄]

≤
EviEĜ1

i ,Ĝ2
i ∈T (Gi)

∥f(Ĝ1
i )− f(Ĝ2

i )∥
ε

[C(N−1,m)]2

=
[C(N − 1,m)]2

ε
EviEĜ1

i ,Ĝ2
i ∈T (Gi)

∥f(Ĝ1
i )− f(Ĝ2

i )∥.

(31)

□

C Details of Section 5

Baselines We compare GRADE with state-of-the-art GCL models DGI [30], GraphCL [35],
GRACE5 [38], MVGRL6 [12] and CCA-SSG7 [36] and semi-supervised GCN [17] with their original
codes. For GCL models, we follow the linear evaluation scheme introduced in [30], where each
model is firstly trained in an unsupervised manner and node representations are subsequently fed into
a simple logistic regression classifier. We adopt two universally accepted splits for full evaluation:
1) semi-supervised split [30, 35] that 20 labeled nodes per class are for training and 1000 nodes are
for testing, 2) supervised split [38, 36] that 1000 nodes are for testing and the rest of nodes form the
training set. It is worth noting that 1000 nodes in the test set are randomly sampled with degrees
less than 50 to provide an appropriate degree range for analysis. GCN is trained by the original
paradigm [17] with the above train-test split. All these methods are initialized as the corresponding
papers and consist of two GCN layers, where their hyperparameters are carefully searched to achieve
optimal performance on the test set.

Implementation For GRADE, we also utilize two GCN layers as the encoder. For hyperparameter
settings, we vary the temperature τ in range [0.5, 2], and the threshold ζ is searched in [5, 15]. The
edge drop rate pedr and feature drop rate pfdr are tested in [0.1, 0.4]. We randomly initialize model
parameters and use the Adam optimizer. Additionally, we employ random augmentation as a warmup
since our graph augmentation relies on the quality of node representations. The number of epochs for
a warmup is 200. The environment where we run experiments is:

• Operating system: Linux version 3.10.0-693.el7.x86_64
• CPU information: Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz
• GeForce RTX 3090

5(MIT license) https://github.com/CRIPAC-DIG/GRACE
6(MIT license) https://github.com/kavehhassani/mvgrl
7(MIT license) https://github.com/hengruizhang98/CCA-SSG
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