
Acknowledgments and Disclosure of Funding

We thank anonymous reviewers for their time and effort in reviewing this paper. This work is
supported in part by the National Natural Science Foundation of China (No. U20B2045, 62192784,
62172052, 62002029, U1936014).

References
[1] Self-supervised learning on graphs: Contrastive, generative, or predictive. IEEE Transactions

on Knowledge and Data Engineering, 2021.

[2] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

[3] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and deep
locally connected networks on graphs. In ICLR, 2014.

[4] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks
via importance sampling. In ICLR, 2018.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework
for contrastive learning of visual representations. In ICML, 2020.

[6] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In NeurIPS, 2016.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In NAACL-HLT, 2019.

[8] Paul Erdos and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 1960.

[9] Alan Frieze and Michał Karoński. Introduction to random graphs. Cambridge University Press,
2016.

[10] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent - A
new approach to self-supervised learning. In NeurIPS, 2020.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

[12] Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view representation learning
on graphs. In ICML, 2020.

[13] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast
for unsupervised visual representation learning. In CVPR, 2020.

[14] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. In ICLR, 2018.

[15] Weiran Huang, Mingyang Yi, and Xuyang Zhao. Towards the generalization of contrastive
self-supervised learning. arXiv e-prints, 2021.

[16] Jian Kang, Yan Zhu, Yinglong Xia, Jiebo Luo, and Hanghang Tong. Rawlsgcn: Towards
rawlsian difference principle on graph convolutional network. In WWW, 2022.

[17] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[18] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In ICLR, 2018.

10

[19] Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and Philip Yu. Graph
self-supervised learning: A survey. IEEE Transactions on Knowledge and Data Engineering,
2022.

[20] Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. Tail-gnn: Tail-node graph neural networks. In
KDD, 2021.

[21] Zemin Liu, Wentao Zhang, Yuan Fang, Xinming Zhang, and Steven CH Hoi. Towards locality-
aware meta-learning of tail node embeddings on networks. In CIKM, 2020.

[22] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan
Wang, and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In
KDD, 2020.

[23] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. In NeurIPS Workshop on Relational Representation
Learning, 2018.

[24] Fan-Yun Sun, Jordon Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. In
ICLR, 2020.

[25] Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu Aggarwal, Prasenjit Mi-
tra, and Suhang Wang. Investigating and mitigating degree-related biases in graph convoltuional
networks. In CIKM, 2020.

[26] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar
Veličković, and Michal Valko. Bootstrapped representation learning on graphs. In ICLR
Workshop on Geometrical and Topological Representation Learning, 2021.

[27] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In ECCV,
2020.

[28] Aaron Van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv e-prints, 2018.

[29] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

[30] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR, 2019.

[31] Ruijia Wang, Shuai Mou, Xiao Wang, Wanpeng Xiao, Qi Ju, Chuan Shi, and Xing Xie. Graph
structure estimation neural networks. In WWW, 2021.

[32] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In ICML, 2019.

[33] Jun Wu, Jingrui He, and Jiejun Xu. Net: Degree-specific graph neural networks for node and
graph classification. In KDD, 2019.

[34] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

[35] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. In NeurIPS, 2020.

[36] Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. From canonical correlation
analysis to self-supervised graph neural networks. In NeurIPS, 2021.

[37] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI Open, 1:57–81, 2020.

11

[38] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep Graph
Contrastive Representation Learning. In ICML Workshop on Graph Representation Learning
and Beyond, 2020.

[39] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive
learning with adaptive augmentation. In WWW, 2021.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3
and Appendix B.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix B.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] See the
supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 2, Section 5, Appendix A and C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 5.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix C.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 2 and

Section 5.
(b) Did you mention the license of the assets? [Yes] See Appendix C.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See the supplemental material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See Appendix C.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See Appendix C.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

12

10 20 30 40
Degree

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. A
cc

.

y=0.0053x+0.6578

(a) GCN on Photo

10 20 30 40
Degree

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. A
cc

.

y=0.0038x+0.7139

(b) DGI on Photo

10 20 30 40
Degree

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. A
cc

.

y=0.0135x+0.4843

(c) GCN on Computer

10 20 30 40
Degree

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. A
cc

.

y=0.0117x+0.5415

(d) DGI on Computer

Figure 6: More results for the fairness of models to degree bias on Photo and Computer datasets.

A Details of Section 2

A.1 Implementation Details

We choose the commonly used Cora [17] , Citeseer [17] , Photo [23] and Computer [23] for evaluation.
In Cora and Citeseer datasets, nodes represent papers, edges are the citation relationship between
papers, node features comprise bag-of-words vector of keywords and labels represent the research
field of papers. Photo and Computer datasets are segments of the Amazon co-purchase graph, where
nodes represent products, edges indicate that two products are frequently bought together, node
features are bag-of-words encoded product reviews and labels are given by the product category.
The statistics of these datasets are summarized in Table 4. The above datasets are public and do
not contain personally identifiable information and offensive content. The URL of our datasets is
https://docs.dgl.ai/api/python/dgl.data.html and the license is Apache License 2.0.

We train DGI2 [30] and GraphCL3 [35] on these datasets with codes provided by authors. To compare
with GCN4 [17], our linear evaluation protocol deploys the semi-supervised split [17], where 20
labeled nodes per class form training set and test set composes of randomly sampled 1000 nodes with
degree less than 50. GCN follows the standard training paradigm [17] with the above train-test split.
All these methods are initialized as the corresponding papers and consist of two GCN layers, where
their hyperparameters are carefully searched to achieve optimal performance on the test set.

A.2 Additional Results

More comparison results between GCL methods and GCN on Photo and Computer datasets are
shown in Figure 6. Please note that GraphCL has an out-of-memory issue on these datasets. From
the figure, the gap between the slopes of DGI and GCN is relatively small. A reasonable hypothesis
is that average node degrees of Photo and Computer datasets are much larger than those of Cora and
Citeseer datasets, where the advantage of GCL to alleviate the neighborhood sparsity of tail nodes
cannot be well exhibited.

B Details of Section 3

Theorem 1 Intra-community Concentration. Let pre-transformation representations L̃X be sub-
Gaussian random variable with variance σ2. For all nodes vi ∈ Sε, if ε2 ≤ βm

6M2κ , their representa-
tions f(Gi) fit sub-Gaussian distribution with variance σ2

f,ε ≤ 1
κσ

2.

Proof For node vi in Sε, we have ∥f(Gi)− f(Ĝi)∥2 ≤ ε2. This implies that for nodes vi, vj ∈ Sε

such that ∥L̃iX − L̃jX∥2 ≤ 2βm, there exists a region of overlap so that ∥f(Gi) − f(Gj)∥2 ≤
∥f(Gi)− f(Ĝi)∥2 + ∥f(Ĝi)− f(Gj)∥2 ≤ 2ε2. That is, there are graph augmentations of vi which
are sufficiently similar to graph augmentations of vj so that their representations should be similar,
thereby driving f(Gi) and f(Gj) to be closer.

2(MIT license) https://github.com/PetarV-/DGI
3(MIT license) https://github.com/Shen-Lab/GraphCL
4(MIT license) https://github.com/tkipf/pygcn

13

https://docs.dgl.ai/api/python/dgl.data.html
https://github.com/PetarV-/DGI
https://github.com/Shen-Lab/GraphCL
https://github.com/tkipf/pygcn

The variance of ε-close node representations in f space is

σ2
f,ε =

1

2N2(1−Rε)2

∑
vi∈Sε

∑
vj∈Sε

∥f(Gi)− f(Gj)∥2. (11)

The overlap βm < ∥L̃iX−L̃jX∥2 ≤ 2βm induces a graph where we say vj ∈ N (i)∀vj s.t. ∥L̃iX−
L̃jX∥2 ≤ 2βm. For N(1−Rε) samples, we can decompose the variance as

σ2
f,ε =

1

2N2(1−Rε)2

∑
vi∈Sε

∑
vj∈Sε

∥f(Gi)− f(Gj)∥2

=
1

2N2(1−Rε)2

∑
vi∈Sε

 ∑
vj∈N (i)

∥f(Gi)− f(Gj)∥2 +
∑

v′
j /∈N (i)

∥f(Gi)− f(Gj′)∥2
 .

(12)

By the smoothness of f we always have ∥f(Gi)−f(Gj′)∥2 ≤ M2∥L̃iX−L̃j′X∥2. By the constraint
we have that ∥f(Gi)− f(Gj)∥2 ≤ 2ε2M2

βm ∥L̃iX − L̃jX∥2∀vj ∈ N (i) and for η = 2ε2M2

βm < 1.

Assuming that there is a constant proportion 0 ≤ λ ≤ 1 of nodes in the set N (i)∀vi ∈ Sε, thus this
graph is an Erdős-Renyi graph. From Theorem 4, if λ ≥ c logN

N for c > 1 then with high probability,
there are no unconnected components in graph. Every node is reachable from any other nodes in
a finite number of steps. We can then decompose nodes in the graph into adjacent ones and those
which are reachable within a certain number of steps. Let the shortest path between any two nodes be
at most D, then we obtain the following inequality

σ2
f,ε =

1

2N2(1−Rε)2

∑
vi∈Sε

∑
vj∈Sε

∥f(Gi)− f(Gj)∥2

≤ λησ2
x + (1− λ)Dησ2

x.

(13)

From Theorem 5, we have 3 ≤ D ≤ 4 with high probability. So for σ2
f,ε ≤ 1

κσ
2
x with κ ≥ 1, we

require ε2 ≤ βm
2M2κ(3−2λ) ≤

βm
6M2κ . □

Theorem 4 [8] If p = c logN
N where c > 1 with high probability, then the graph G(N, p) has no

unconnected components.

Theorem 5 [9] Let q ≥ 2 be a fixed positive integer. For c > 0 and

pqNq−1 = log(
N2

c
). (14)

Then diam(GN,p) ≥ q with probability e−
c
2 and diam(GN,p) ≤ q + 1 with probability 1− e−

c
2 .

Definition 1 (α, γ, d̂)-Augmentation. The augmentation set T is a (α, γ, d̂)-augmentation, if for
each community Ck, there exists a subset C0

k ⊂ Ck such that the following two conditions hold

1. P[vi ∈ C0
k] ≥ αP[vi ∈ Ck] where α ∈ (0, 1],

2. supvi,vj∈C0
k
dT (vi, vj) ≤ γ(B

d̂k
min

)
1
2 where γ ∈ (0, 1],

where d̂kmin = minvi∈C0
k,Ĝi∈T (Gi)

d̂i, and B is the feature dimension.

14

Remark Since the node feature X has been mapped to surface of the unit sphere SB−1 = {Xi ∈
RB : ∥Xi∥ = 1}, there is a natural supremum for dT (vi, vj) bounded by the node degree,

dT (vi, vj) = min
Ĝi∈T (Gi),Ĝj∈T (Gj)

∥(Âi

d̂i
− Âj

d̂j
)X∥

≤ min
Ĝi∈T (Gi),Ĝj∈T (Gj)

∥ Âi

d̂i
− Âj

d̂j
∥ ·

√
B

=
√
B · min

Ĝi∈T (Gi),Ĝj∈T (Gj)
∥ Âi

d̂i
− Âj

d̂i
+

Âj

d̂i
− Âj

d̂j
∥

≤
√
B · min

Ĝi∈T (Gi),Ĝj∈T (Gj)

∥Âi − Âj∥
d̂i

+ ∥Âj∥

∣∣∣∣∣ 1d̂i − 1

d̂j

∣∣∣∣∣ .

(15)

Without loss of generality, we assume that d̂i ≥ d̂j

dT (vi, vj) =
√
B · min

Ĝi∈T (Gi),Ĝj∈T (Gj)

∥Âi − Âj∥
d̂i

+ ∥Âj∥

(
1

d̂j
− 1

d̂i

)

≤
√
B · min

Ĝi∈T (Gi),Ĝj∈T (Gj)

√
d̂i + d̂j

d̂i
+

√
d̂j

(
1

d̂j
− 1

d̂i

)

=
√
B · min

Ĝi∈T (Gi),Ĝj∈T (Gj)

√
d̂i + d̂j −

√
d̂j

d̂i
+

1√
d̂j

≤
√
B · min

Ĝi∈T (Gi),Ĝj∈T (Gj)

1√
d̂i

+
1√
d̂j

≤ 2
√
B · min

Ĝi∈T (Gi),Ĝj∈T (Gj)

1√
d̂j

.

(16)

Following this form, we define the RHS of the second condition to delineate the concentrated part.

Lemma 1 For a (α, γ, d̂)-augmentation with subset C0
k of each community Ck, if nodes belonging to

(C0
1 ∪ · · · ∪ C0

K) ∩ Sε can be correctly assigned by the community indicator Ff , then the error of all
nodes can be bounded by (1− α) +Rε, where Rε = P[Sε] is the proportion of complement.

Proof Since every node vi ∈ (C0
1 ∪ · · · ∪C0

K)∩Sε can be correctly assigned by Ff , the error rate

Err(Ff) =

K∑
k=1

P[Ff (Gi) ̸= k,∀vi ∈ Ck]

≤ P
[
(C0

1 ∪ · · · ∪ C0
K) ∩ Sε

]
= P

[
C0

1 ∪ · · · ∪ C0
K ∪ Sε

]
≤ (1− α) + P[Sε]

= (1− α) +Rε.

(17)

□

Lemma 2 For a (α, γ, d̂)-augmentation and each ℓ ∈ [K], if

µ⊤
ℓ µk < r2(1− ρℓ(α, γ, d̂, ε)−

√
2ρℓ(α, γ, d̂, ε)−

∆µ

2
)

holds for all k ̸= ℓ, then every node vi ∈ C0
ℓ∩Sε can be correctly assigned by the community indicator

Ff , where ρℓ(α, δ, ε) = 2(1− α) + 2Rε

pℓ
+ α(Mγ

√
B

r
√

d̂ℓ
min

+ 2ε
r) and ∆µ = 1−mink∈[K] ∥µk∥2/r2.

15

Proof To show that every node vi ∈ C0
ℓ ∩ Sε can be correctly assigned by Ff , we need to prove

that for all k ̸= ℓ, ∥f(Gi)− µℓ∥ < ∥f(Gi)− µk∥. It is equivalent to prove

f(Gi)
⊤µℓ − f(Gi)

⊤µk − (
1

2
∥µℓ∥2 −

1

2
∥µk∥2) > 0. (18)

Let f̃(Gi) = EĜi∈T (Gi)
[f(Ĝi)]. Then ∥f̃(Gi)∥ = ∥EĜi∈T (Gi)

[f(Ĝi)]∥ ≤ EĜi∈T (Gi)
[∥f(Ĝi)∥] = r.

One the one hand,

f(Gi)
⊤µℓ =

1

pℓ
f(Gi)

⊤E
vj
[f̃(Gj)I(vj ∈ Cℓ)]

=
1

pℓ
f(Gi)

⊤E
vj
[f̃(Gj)I(vj ∈ Cℓ ∩ C0

ℓ ∩ Sε)] +
1

pℓ
f(Gi)

⊤E
vj

[
f̃(Gj)I

(
vj ∈ Cℓ ∩ C0

ℓ ∩ Sε

)]
=

P[C0
ℓ ∩ Sε]

pℓ
f(Gi)

⊤ E
vj∈C0

ℓ∩Sε

[f̃(Gj)] +
1

pℓ
E
vj

[
f(Gi)

⊤f̃(Gj) · I(vj ∈ Cℓ\C0
ℓ ∩ Sε)

]
≥ P[C0

ℓ ∩ Sε]

pℓ
f(Gi)

⊤ E
vj∈C0

ℓ∩Sε

[f̃(Gj)]−
r2

pℓ
P[Cℓ\C0

ℓ ∩ Sε],

(19)
where I(·) is the indicator function. Note that

P[Cℓ\C0
ℓ ∩ Sε] ≤ P[(Cℓ\C0

ℓ) ∪ Sε] = (1− α)pℓ +Rε, (20)

and

P[C0
ℓ ∩ Sε] = P[Cℓ]− P[Cℓ\C0

ℓ ∩ Sε] ≥ pℓ − ((1− α)pℓ +Rε) = αpℓ −Rε. (21)

Plugging to Eq. (19), we have

f(Gi)
⊤µℓ ≥

P[C0
ℓ ∩ Sε]

pℓ
f(Gi)

⊤ E
vj∈C0

ℓ∩Sε

[f̃(Gj)]−
r2

pℓ
P[Cℓ\C0

ℓ ∩ Sε]

≥
(
α− Rε

pℓ

)
f(Gi)

⊤ E
vj∈C0

ℓ∩Sε

[f̃(Gj)]− r2
(
1− α+

Rε

pℓ

)
.

(22)

Notice that vi ∈ C0
ℓ ∩ Sε. For any vj ∈ C0

ℓ ∩ Sε, we have dT (vi, vj) ≤ γ(B
d̂ℓ
min

)
1
2 . Let (Ĝ∗

i , Ĝ∗
j) =

argminĜi∈T (Gi),Ĝj∈T (Gj)
∥f(Ĝi)− f(Ĝj)∥, thus ∥f(Ĝ∗

i)− f(Ĝ∗
j)∥ ≤ Mγ(B

d̂ℓ
min

)
1
2 . Since vj ∈ Sε,

for any Ĝj ∈ T (Gj), ∥f(Ĝj)− f(Ĝ∗
j)∥ ≤ ε. Similarly, since vi ∈ Sε, we have ∥f(Ĝi)− f(Ĝ∗

i)∥ ≤ ε.
The first term of Eq. (22) can be bounded by

f(Gi)
⊤ E
vj∈C0

ℓ∩Sε

[f̃(Gj)] = E
vj∈C0

ℓ∩Sε

E
Ĝj∈T (Gj)

[f(Gi)
⊤f(Ĝj)]

= E
vj∈C0

ℓ∩Sε

E
Ĝj∈T (Gj)

[f(Gi)
⊤(f(Ĝj)− f(Gi) + f(Gi))]

≥ r2 + E
vj∈C0

ℓ∩Sε

E
Ĝj∈T (Gj)

[f(Gi)
⊤(f(Ĝj)− f(Gi))]

= r2 + E
vj∈C0

ℓ∩Sε

E
Ĝj∈T (Gj)

[f(Gi)
⊤(f(Ĝj)− f(Ĝ∗

j)︸ ︷︷ ︸
∥·∥≤ε

+ f(Ĝ∗
j)− f(Ĝ∗

i)︸ ︷︷ ︸
∥·∥≤Mγ(B

d̂ℓ
min

)
1
2

+ f(Ĝ∗
i)− f(Ĝi)︸ ︷︷ ︸
∥·∥≤ε

)]

= r2 − r(Mγ(
B

d̂ℓmin

)
1
2 + 2ε).

(23)

16

Therefore, Eq. (22) turns to

f(Gi)
⊤µℓ ≥

(
α− Rε

pℓ

)
f(Gi)

⊤ E
vj∈C0

ℓ∩Sε

[f̃(Gj)]− r2
(
1− α+

Rε

pℓ

)
≥
(
α− Rε

pℓ

)
(r2 − r(Mγ(

B

d̂ℓmin

)
1
2 + 2ε))− r2

(
1− α+

Rε

pℓ

)

= r2

1− 2(1− α)− 2Rε

pℓ
−
(
α− Rε

pℓ

)Mγ
√
B

r
√

d̂ℓmin

+
2ε

r


= r2(1− ρℓ(α, γ, d̂, ε)).

(24)

On the other hand,

f(Gi)
⊤µk = (f(Gi)− µℓ)

⊤µk + µ⊤
ℓ µk

≤ ∥f(Gi)− µℓ∥ · ∥µk∥+ µ⊤
ℓ µk

≤ r
√

∥f(Gi)∥2 − 2f(Gi)⊤µℓ + ∥µℓ∥2 + µ⊤
ℓ µk

≤ r
√

2r2 − 2f(Gi)⊤µℓ + µ⊤
ℓ µk

≤
√
2ρℓ(α, γ, d̂, ε)r

2 + µ⊤
ℓ µk.

(25)

Note that ∆µ = 1−mink ∥µk∥2/r2, the LHS of Eq. (18) is

f(Gi)
⊤µℓ − f(Gi)

⊤µk − (
1

2
∥µℓ∥2 −

1

2
∥µk∥2) ≥ f(Gi)

⊤µℓ − f(Gi)
⊤µk − 1

2
r2∆µ

≥ r2(1− ρℓ(α, γ, d̂, ε))−
√
2ρℓ(α, γ, d̂, ε)r

2 − µ⊤
ℓ µk − 1

2
r2∆µ

= r2
(
1− ρℓ(α, γ, d̂, ε)−

√
2ρℓ(α, γ, d̂, ε)−

1

2
∆µ

)
− µ⊤

ℓ µk > 0.

(26)

□

Theorem 2 Inter-community Scatter. For a (α, γ, d̂)-augmentation, if

µ⊤
ℓ µk < r2(1− ρmax(α, γ, d̂, ε)−

√
2ρmax(α, γ, d̂, ε)−

∆µ

2
) (27)

holds for any pair of (ℓ, k) with ℓ ̸= k, then the error of the community indicator Ff can be

bounded by (1 − α) + Rε, where ρmax(α, γ, d̂, ε) = 2(1 − α) + maxℓ

(
2Rε

pℓ
+ Mαγ

√
B

r
√

d̂ℓ
min

)
+ 2αε

r)

and ∆µ = 1−mink∈[K] ∥µk∥2/r2.

Proof Since the augmentation T is (α, γ, d̂)-augmentation, there exists a subset C0
k for each

community Ck such that P[C0
k] ≥ αpk and supvi,vj∈C0

k
dT (vi, vj) ≤ γ(B

d̂k
min

)
1
2 . Since for any ℓ ̸= k,

we have µ⊤
ℓ µk < r2(1 − ρmax(α, γ, d̂, ε) −

√
2ρmax(α, γ, d̂, ε) − ∆µ

2) ≤ r2(1 − ρℓ(α, γ, d̂, ε) −√
2ρℓ(α, γ, d̂, ε)− ∆µ

2). According to Lemma 2, every node vi ∈ C0
ℓ ∩ Sε can be correctly assigned

by Ff . Therefore, every node vi ∈ (C0
1 ∪ · · · ∪C0

K)∩Sε can be correctly assigned by Ff . According
to Lemma 1, the error rate Err(Ff) ≤ (1− α) +Rε. □

Theorem 3 The term Rε is upper bounded by

Rε ≤
[C(N − 1,m)]2

ε
Evi

EĜ1
i ,Ĝ2

i ∈T (Gi)
∥f(Ĝ1

i)− f(Ĝ2
i)∥. (28)

Proof For any given node vi, we have

sup
Ĝ1
i ,Ĝ2

i ∈T (Gi)

∥f(Ĝ1
i)− f(Ĝ2

i)∥ ≥ [C(N − 1,m)]2 E
Ĝ1
i ,Ĝ2

i ∈T (Gi)
∥f(Ĝ1

i)− f(Ĝ2
i)∥. (29)

17

Table 4: Statistics of datasets.

Dataset # Nodes # Edges # Features # Classes # Avg. Degree

Cora 2,708 10,556 1,433 7 3.89
Citeseer 3,327 9,228 3,703 6 2.77
Photo 7,650 238,163 745 8 31.13
Computer 13,752 491,722 767 10 35.75

Therefore, the following set S is a subset of Sε,

S =

{
vi : E

Ĝ1
i ,Ĝ2

i ∈T (Gi)
∥f(Ĝ1

i)− f(Ĝ2
i)∥ ≤ ε

[C(N − 1,m)]2

}
⊆ Sε. (30)

By Markov’s inequality, we have

Rε = P[Sε] ≤ P[S̄]

≤
EviEĜ1

i ,Ĝ2
i ∈T (Gi)

∥f(Ĝ1
i)− f(Ĝ2

i)∥
ε

[C(N−1,m)]2

=
[C(N − 1,m)]2

ε
EviEĜ1

i ,Ĝ2
i ∈T (Gi)

∥f(Ĝ1
i)− f(Ĝ2

i)∥.

(31)

□

C Details of Section 5

Baselines We compare GRADE with state-of-the-art GCL models DGI [30], GraphCL [35],
GRACE5 [38], MVGRL6 [12] and CCA-SSG7 [36] and semi-supervised GCN [17] with their original
codes. For GCL models, we follow the linear evaluation scheme introduced in [30], where each
model is firstly trained in an unsupervised manner and node representations are subsequently fed into
a simple logistic regression classifier. We adopt two universally accepted splits for full evaluation:
1) semi-supervised split [30, 35] that 20 labeled nodes per class are for training and 1000 nodes are
for testing, 2) supervised split [38, 36] that 1000 nodes are for testing and the rest of nodes form the
training set. It is worth noting that 1000 nodes in the test set are randomly sampled with degrees
less than 50 to provide an appropriate degree range for analysis. GCN is trained by the original
paradigm [17] with the above train-test split. All these methods are initialized as the corresponding
papers and consist of two GCN layers, where their hyperparameters are carefully searched to achieve
optimal performance on the test set.

Implementation For GRADE, we also utilize two GCN layers as the encoder. For hyperparameter
settings, we vary the temperature τ in range [0.5, 2], and the threshold ζ is searched in [5, 15]. The
edge drop rate pedr and feature drop rate pfdr are tested in [0.1, 0.4]. We randomly initialize model
parameters and use the Adam optimizer. Additionally, we employ random augmentation as a warmup
since our graph augmentation relies on the quality of node representations. The number of epochs for
a warmup is 200. The environment where we run experiments is:

• Operating system: Linux version 3.10.0-693.el7.x86_64
• CPU information: Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz
• GeForce RTX 3090

5(MIT license) https://github.com/CRIPAC-DIG/GRACE
6(MIT license) https://github.com/kavehhassani/mvgrl
7(MIT license) https://github.com/hengruizhang98/CCA-SSG

18

https://github.com/CRIPAC-DIG/GRACE
https://github.com/kavehhassani/mvgrl
https://github.com/hengruizhang98/CCA-SSG

	Introduction
	Exploring the Behavior of Graph Contrastive Learning on Degree Bias
	Analysis on the Structural Fairness of Graph Contrastive Learning
	Preliminary Notations
	Theoretical Analysis

	GRADE Methodology
	Graph Augmentation
	Optimization Objective

	Experiments
	Main Results and Analysis
	Ablation Study and Hyperparameter Sensitivity

	Related Work
	Conclusion
	Details of Section 2
	Implementation Details
	Additional Results

	Details of Section 3
	Details of Section 5

