
A Related Works210

Self-supervision has recently emerged as one of the most promising approaches to ease the need for211

supervision and yet maintain high performance. Self-supervision builds on the fact pretext tasks can212

be very useful for pre-training networks without the need for expensive manual annotations. With213

such pre-trained networks, only a modest amount of labelled data will be needed to fine-tune for214

a target task. Specifically, [11] shows that colorization can be a powerful pretext task as it serves215

as a cross-channel encoder. Deep features (e.g. ImageNet-trained VGG/ResNet features) are also216

demonstrated to be remarkably useful as a training loss for tasks including image synthesis and217

outperform all previous metrics by large margins in [12]. In [9], it is found out that pre-training218

on vision tasks (e.g. object detection) significantly improves generalization and sample efficiency219

for learning to manipulate objects. Therefore, directly transferring model parameters from vision220

networks to affordance prediction networks can result in successful zero-shot adaptation, where221

a robot can pick up certain objects with zero robotic experience. A comprehensive study [10] is222

proposed recently giving analysis of self-supervision. Specially, authors conclude that the weights of223

the early layers in a deep network contain low-level statistics of natural images, which can be learned224

decently through solely self-supervision or captured via synthetic transformations instead of using a225

large image dataset. Slightly more related are works that exploit the possibility of pre-training without226

natural images [3, 4]. Recently, authors of [3] generate image patterns and their category labels to227

construct FractalDB, a database without natural images, automatically by assigning fractals based228

on a natural law existing in the background knowledge of the real world. [4] further demonstrates229

the usefulness of FractalDB in pre-training Vision Transformers (ViTs). Beyond fractal noise, [2]230

provides a comprehensive study on how different noise types affect representation learning.231

B Data Collection232

B.1 Interaction Data Collection233

For training, we choose ten Gibson environments—‘Crandon,’ ‘Delton,’ ‘Goffs,’ ‘Oyens,’ ‘Placida,’234

‘Roane,’ ‘Springhill,’ ‘Sumas,’ ‘Superior,’ and ‘Woonsocket.’ We create a 20k/10k training/validation235

set and a 50k/10k training/validation set from sampling 40/20 and 100/20 starting locations in each of236

the ten environments. We also create a small 1k/1k training/validation set from sampling 20 starting237

locations from ‘Superior’ and 20 starting locations from ‘Crandon’ respectively. Collectively, we238

have created three interaction dataset D2k, D30k and D60k. For our random exploration strategy, we239

refer the readers to [5].240

B.2 PTZ training Data Collection241

First, we generate a training set from similar domains to the navigation experiments. Specifically,242

we sample 6500 photo-realistic home images sourced from 65 Gibson environments rendered by243

the Habitat-Sim simulator to form the training set and 2300 home images from 23 other Gibson244

environments to form the test set. Notice these images are generated i.i.d. without any action labels.245

We refer to this dataset as Dhabitat246

Second, we generate Perlin noise and fractal noise using [7]. Perlin noise is generated from 2, 4, 8247

periods and fractal noise is generated from 2, 4, 8 periods and 1-5 octaves. We generate 10k Perlin248

noise, 10k fractal noise, and 20k random shapes to form a 40k noise dataset Dall_noise. However,249

this particular composition of noise is rather wishful as we do not know yet which one is the best250

for PTZ encoder training. To uncover which noise is the best surrogate data source for natural home251

images, we also create a 40k Dperlin, Dfractal and Dshape, each containing only one kind of noise.252

B.3 Noise Choice for PTZ Pre-training253

We first tried training our PTZ encoder on Gaussian noise. The resulting poor performance suggests254

the particular choice of noise is critical. We hypothesize that patterned noise rather than high255
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frequency noise should be more useful as the encoder probably needs some visual cues to find relative256

transformations. To this end we include Perlin noise, which can be used to simulate cloud formations257

in the sky, and fractal noise, which can be found in nature [3], in the dataset to train the encoder. We258

further include random geometric shapes as they are found in man-made environments and can help259

the encoder learn edges and orientations. A sample of these three different kinds of random noise260

is shown in Fig 3. We follow the same procedure as before to sample random crops on these noise261

images. Using noise for pre-training completely removes the need to access an testing environment262

for data.263
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