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ABSTRACT

Reconstructing high-quality images under low bitrates conditions presents a chal-
lenge, and previous methods have made this task feasible by leveraging the priors
of diffusion models. However, the effective exploration of pre-trained latent dif-
fusion models and semantic information integration in image compression tasks
still needs further study. To address this issue, we introduce Diffusion-based High
Perceptual Fidelity Image Compression with Semantic Refinement (DiffPC), a
two-stage image compression framework based on stable diffusion. DiffPC ef-
ficiently encodes low-level image information, enabling the highly realistic re-
construction of the original image by leveraging high-level semantic features and
the prior knowledge inherent in diffusion models. Specifically, DiffPC utilizes
a multi-feature compressor to represent crucial low-level information with mini-
mal bitrates and employs pre-embedding to acquire more robust hybrid semantics,
thereby providing additional context for the decoding end. Furthermore, we have
devised a control module tailored for image compression tasks, ensuring struc-
tural and textural consistency in reconstruction even at low bitrates and preventing
decoding collapses induced by condition leakage. Extensive experiments demon-
strate that our method achieves state-of-the-art perceptual fidelity and surpasses
previous perceptual image compression methods by a significant margin in statis-
tical fidelity.

1 INTRODUCTION

In this epoch of rapid multimedia advancement, the constraints of limited network bandwidth and
costly storage hinder the transmission and preservation of large-scale high-definition raw images,
rendering image compression algorithms with high compression rates increasingly crucial. Tra-
ditional compression standards (Bellard; Wallace, 1992) employ manually crafted transformations
to seek compression representations, yet these methods may exhibit severe block artifacts or even
chromatic aberrations at low bitrates (≤ 0.2 bpp). Neural image compression algorithms (Ballé
et al., 2016; Cheng et al., 2020; He et al., 2022), based on end-to-end optimization schemes for rate-
distortion have demonstrated superior performance compared to traditional compression standards.
Nonetheless, these distortion-driven approaches may still yield displeasing blurriness in scenarios
with constrained bandwidth. At low bitrates, the relevance of pixel-level metrics such as Mean
Squared error (MSE) as an evaluation criterion drops, directly resulting in the loss of substantial
texture details and realism (also known as perceptual fidelity)1 in such compression schemes. (Blau
& Michaeli, 2019; Agustsson et al., 2023) characterize this phenomenon as a triple trade-off be-
tween bit rate, distortion, and realism. This signifies that seeking compact representations at low
bit rates in the pixel domain inevitably leads to a decline in human perception and a lack of hu-
man observer’s image semantic consistency. These semantic deficiencies diminish the practicality
of compression algorithms at low bitrates, thus making exploring the trade-offs between bit rate and
perceptual fidelity an imperative subject of study.

∗Corresponding author(s). † Equal contribution.
1We will utilize this pair of synonyms simultaneously, both of which can be measured using perceptual

metrics such as LPIPS and FID.
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Figure 1: Qualitative comparison between HiFiC (Mentzer et al., 2020), MS-ILLM (Muckley et al.,
2023) , ELIC (He et al., 2022), CDC (Yang & Mandt, 2024), and our proposed approach. DiffPC
(Ours) is capable of reconstructing complex textures with realism, even at extremely low bit rates. In
contrast, both HiFiC and MS-ILLM exhibit significant artifacts and texture loss. Best viewed when
zoomed in.

The encoder-decoder architecture enhances the realism of decoded images by introducing perceptual
loss and generative adversarial frameworks (Mentzer et al., 2020; Muckley et al., 2023). These ef-
forts partially compensate for the semantic information and texture lost in distortion-driven schemes.
Yet, excessive reliance on handcrafted losses leads to inevitable artifacts in low bitrate scenarios,
diminishing the model’s statistical fidelity. Compared to GAN, diffusion models have proven to
generate high-realism images with enhanced statistical fidelity over the years (Dhariwal & Nichol,
2021; Rombach et al., 2022). This suggests that diffusion models are better suited for low bitrate im-
age compression scenarios. (Yang & Mandt, 2024) realizes this concept by employing the DDPM
framework (Ho et al., 2020) in the image domain and achieves superior result. However, these
endeavors entail substantial time investment for retraining diffusion components, and the model’s
generalization is highly constrained by training data and computational resources.

Recently, the text-to-image Latent Diffusion Model (LDM) (Rombach et al., 2022) has further ex-
plored the potential of diffusion models in generative tasks. These data-driven foundational diffu-
sion models have proven to offer strong priors for various visual tasks such as image segmentation
(Tian et al., 2024) and image super-resolution (Lin et al., 2023) and possess the capability to fuse
multimodal semantic information. (Lei et al., 2023) have attempted to control pre-trained LDMs
by encoding sketches and textual semantics, sampling image recovery during the decoding process
within the diffusion framework. Given the challenges in jointly optimizing semantic embeddings
and compressing representations of target transmissions, they have invested significant resources in
iterative semantic embedding and alignment. Furthermore, while encoding solely semantic infor-
mation significantly reduces the bitrate, the trade-off dramatically decreases fidelity. (Careil et al.,
2024) have employed fully trained conditional LDM and encoded conditional images using train-
able codebooks. On one hand, this requires meticulous model optimization on datasets consisting
of millions of images; on the other hand, VQ-based compressors that exclusively accept latent in-
puts cannot recover information lost during the encoding process in the LDM encoder, resulting in
suboptimal bitrate allocation during compression.

To address the challenges above, we have proposed the Diffusion-based High Perceptual Fidelity
Image Compression with Semantic Refinement (DiffPC). DiffPC leverages image-level control flow
and semantic-level control flow to faithfully reconstruct highly realistic decoded images. At the
encoding end, we employ a multi-feature compressor that can reconstruct high-quality image-level
control flows even at extremely low bit rates. Furthermore, we have devised IC-ControlNet to enable
pixel-level precision control for these low-level image controls. At the decoding end, to compensate
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for semantic deficiencies leading to edge distortions and texture losses, we have devised a pre-
embedding module to efficiently generate robust hybrid semantics: textual semantic signals of the
images are pre-modulated with low-level image signals and injected into the diffusion model through
a linear mapping layer. With these characteristics, DiffPC can achieve superior perceptual and
statistical fidelity even at low bit rates, effectively recovering texture details that align more closely
with human perception, as illustrated in Figure 1.

In sum, our contributions are as follows:

• We propose a two-stage lossy image compression framework. In the first stage, DiffPC
can attain superior bitrate allocation and reconstruct a more precise low-level image con-
trol branch guided by importance-weighted losses. In the second stage, DiffPC efficiently
integrates a high-level semantic control branch to exert more precise control.

• We devise IC-ControlNet (ICCN) to utilize a low-level image control branch and effec-
tively integrate the robust prior of pre-trained LDM. ICCN enables precise control over
the sampling process, ensuring the denoising model faithfully recovers the pre-compressed
image.

• We introduce a hybrid semantic refinement module to generate a high-level semantic con-
trol branch. This module adopts a pre-embedding approach that combines textual semantics
with visual semantics, producing a hybrid semantic representation that is easily injectable
into the denoising model.

2 RELATED WORK

Learned lossy Image Compression The advancement of deep neural networks has spurred the
emergence of deep compression algorithms, showcasing performance surpassing traditional image
compression standards like JPEG (Wallace, 1992). (Ballé et al., 2016)pioneered an end-to-end
model based on autoencoders. (Ballé et al., 2018) introduced a hyperprior entropy model, while
(Minnen et al., 2018) elevated performance significantly by introducing prior through autoregres-
sive context modeling at the expense of decoding complexity. (Cheng et al., 2020) employed a
discrete mixture model to more precisely model the latent distribution. (He et al., 2022), based on
the orthogonality of features in channel and spatial dimensions, devised an asymmetric autoregres-
sive entropy encoder. Based on Shannon’s rate-distortion theory (Shannon, 1948), the optimization
objectives of these approaches can be formalized as follows:

L = R(ŷ) + λD (x, x̂) . (1)

In the above, ŷ represents the distorted latent representation of the input image x, and R(ŷ) es-
timates the entropy of ŷ to provide the required number of bits for encoding. D (x, x̂) measures
the distortion of the reconstructed image, which is often defined as pixel-wise loss (i.e., MSE). As
(Blau & Michaeli, 2019) has indicated that solely optimizing the MSE-bitrate function can severely
compromise the statistical fidelity of compressed data, (Mentzer et al., 2020) proposed the use of
generative adversarial network structures combined with adversarial and perceptual losses, effec-
tively enhancing the realism of decoded images. Subsequently, (Muckley et al., 2023) introduced
a discriminator based on local image representations, greatly improving statistical fidelity. Sub-
sequent work has explored image compression at ultra-low bitrates within generative architectures
(Jiang et al., 2023; Mao et al., 2024; Lu et al., 2024). (Lee et al., 2024) enhances perceptual fidelity
by incorporating additional textual semantics into the GAN structure. Influenced by the develop-
ment of diffusion models, (Hoogeboom et al., 2023) adopted the ddpm architecture, using a neural
autoencoder as a baseline compressor. Building upon this, (Yang & Mandt, 2024; Kuang et al.,
2024) replaced the compressor with a VAE structure with a hyperprior and jointly trained a de-
noising network and compressor, none of them consider the use of additional bits for transmitting
semantic information. (Lei et al., 2023) utilized a text-to-image latent diffusion model, engaging
in time-consuming image captioning through prompt inversion iterations and adding image sketch
assistance in decoding, enabling image compression at extremely low bit rates. (Careil et al., 2024)
employed a fully trained LDM, achieving better performance gains at a high training cost. (Li et al.,
2024b) leveraged a pre-trained diffusion model prior but overlooked high-level semantics and bitrate
allocation at the encoding end, resulting in suboptimal performance.
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Diffusion Model The diffusion model utilizes priors from non-equilibrium statistical physics to
transform the data distribution z0 to a known distribution zT (typically a Gaussian distribution)
through a Markov chain. The forward process of this Markov chain q (zt | zt−1) is defined as
gradually adding manually designed noise and then fitting the reverse sampling process p (zt−1 | zt)
through a neural network Mθ(·). Specifically, the forward and reverse processes are defined as:

q (zt | zt−1) = N
(
zt |

√
1− βtzt−1, βtI

)
, (2)

pθ (zt−1 | zt) = N (zt−1 | Mθ (zt, t) ,Σθ (zt, t)) . (3)

(Ho et al., 2020) improved upon the original diffusion probabilistic model and demonstrated that
optimizing the Evidence Lower Bound (ELBO) of the data distribution is equivalent to optimizing
the following objective:

LDiff = Ez0,t,ϵ

∥∥ϵ−DN θ

(√
ᾱtz0 +

√
1− ᾱtϵ, t

)∥∥2 , (4)

where DN θ(·) stands for denoising network. (Ho & Salimans, 2022) devised a framework for con-
ditional diffusion models, outperforming GANs in image generation. By employing large-scale text
encoder networks, conditional diffusion models can generate high-realism images from natural lan-
guage prompts (Rombach et al., 2022). The Latent Diffusion Model (LDM) utilizes autoencoders to
confine the denoising process within the low-dimensional embeddings of the data, significantly re-
ducing complexity. Building upon the LDM framework, Stable Diffusion (Rombach et al., 2022) es-
tablished a large-scale text-to-image latent diffusion model capable of receiving multimodal control
inputs and consistently producing high-fidelity images. Stable Diffusion (SD) employs a pre-trained
encoder E to encode an image x into a latent variable z0 = E(x). Subsequently, SD performs a
noise addition and denoising process similar to 3 in the latent space. Similar to 4, the optimization
objective for Stable Diffusion is:

Lsd = Ez0,c,s,t,ϵ

[∥∥ϵ−DN θ

(√
ᾱtz0 +

√
1− ᾱtϵ, c, s, t

)∥∥2
2

]
. (5)

Here, c and s respectively refer to low-level image controls (e.g., image contours, image degrada-
tion), and high-level semantic controls (e.g., textual descriptions of images, category label). Our
work is built upon the framework of Stable Diffusion, leveraging the robust priors of large-scale
LDM on natural images and their semantic fusion capabilities.

3 METHODOLOGY

3.1 OVERALL FRAMEWORK

Our DiffPC framework is illustrated as Figure 2 and the pseudocode for the algorithm can be found
in Appendix A.2. During training, the model can be delineated into two stages: the initial stage
involves training the compressor and incorporating image branch controls, while the subsequent
stage entails training the semantic pre-embedding module and integrating mixed semantic branch
controls. During inference, the process can be dichotomized into image compression and image
reconstruction. Within the image compression process, the input image x is initially passed through
the pre-trained encoder E to obtain z0 = E(x). Simultaneously, intermediate features f1 and f2 are
extracted. These outputs are then fed into the multi-feature compressor Mϕ(·), yielding distorted
image-level control ĉ:

y = Me
ϕ(z0, f1, f2), ŷ = Q(y), ĉ = Md

ϕ(ŷ). (6)

Me
ϕ and Md

ϕ represent the encoder and decoder of the compressor Mϕ, respectively, with Q denot-
ing the quantization operation. Simultaneously, the textual description textx derived from image-
captioning for x undergoes lossless encoding and is transmitted alongside ĉ to the decoding end.
Notably, the transmission of textx occupies a minimal number of bits (≤ 0.0001bpp).

During the image reconstruction phase, ĉ is initially decoded by the entropy decoder and then input
into the Stable-Diffusion’s decoder D to obtain a degraded representation ĉx of x. Subsequently, ĉx
and textx are jointly fed into the Q-Former (QF(·, ·)) to yield a mixed semantic output sx:

ĉx = D(ĉ), sx = QF(Eimg(ĉx), textx), (7)
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Figure 2: Illustration of the proposed Diffusion-based High Perceptual Fidelity Image Compression
with Semantic Refinement (DiffPC). (a) In the first stage, DiffPC employs a variational compressor
that receives multi-scale features to generate distorted image control branches. These low-level
conditions are used to govern the pre-trained latent diffusion model through IC-ControNet (ICCN)
(Section 3.2). (b) In the second stage, DiffPC utilizes a pre-embedding module to efficiently inject
a blend of textual and visual semantics (Section 3.3).

where Eimg(·) stands for pre-trained image encoder. The semantic control flow sx and the image
control flow ĉ will individually exert control over the conditional diffusion model through cross-
attention layers and the IC-ControlNet. Subsequently, after sampling and decoding, the reconstruc-
tion image x̂ is obtained:

ẑ0 = Sampler (zt,DN θ (·, ĉ, sx, t) , T ) , x̂ = D(ẑ0). (8)

Here, T represents the number of sampling steps.

3.2 STAGE I: LEARNING COMPRESSOR AND LOW-LEVEL CONDITIONS

Multi-feature Compressor To simultaneously reduce the redundancy of latent z0 and prevent infor-
mation loss caused by downsampling in the encoder E , we have devised a variational multi-feature
compressor Mϕ(·), as depicted in the Figure 3(a). This compressor leverages residual extraction
modules and cross-attention to fuse multi-scale features f1 and f2. We have adopted the SCCTX
from paper (He et al., 2022) as the foundational entropy model. Diverging from neural compressors
in the image domain, Mϕ(·) reconstructs the control terms of the conditional diffusion model. To
ensure that the results of conditional generation align with expectations, we aim to minimize the
following Kullback-Leibler divergence:

DKL(p(z0|x), p(z0|ĉ)) = DKL(p(z0|x), p(z0|Mϕ(z0, f1, f2))). (9)

The encoder E of the pre-trained VAE used in Stable Diffusion explicitly models p(z0|x) 2. How-
ever, obtaining p(z0|ĉ) during training comes at a high cost, requiring numerous samples to be taken
during the diffusion process. Fortunately, we have demonstrated that optimizing the above objective
does not necessitate frequent sampling during retraining:
Theorem 3.1. Given the input image x, the VAE-based encoder E , the VAE-based compressor Mϕ,
where z0 = E(x), ĉ = Mϕ(z0). We have:

DKL(p(z0|x), p(z0|ĉ)) ≤ DKL(p(z0|x), pγ(ĉ|z0)). (10)

Proof. See Appendix A.1.
2Here, z0 refers to the population of the sample vector z0, and so forth.
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(a）Architecture of multi-feature compressor (b）Illustration of Condition Leakage and Time-Aware Decoupling

��

Figure 3: Illustration of each module in the first stage. (a) The multi-feature compressor we propose
takes multiple inputs z0, f1, and f2. s-Attn and c-Attn denote self-attention and cross-attention,
respectively. (b) During the baseline denoising process, Conditional Image Leakage (CIL) occurred,
causing the output image (CIL Output) to mimic distortions and artifacts from conditional images.
Our proposed solution circumvents this phenomenon.

Furthermore, assuming both distributions are parameterized normal distributions with equal vari-
ance, we have p(z0|x) = N (z;µz0

,Σ) and pγ(ĉ|z0) = N (ĉ;µĉ,Σ), where the covariance matrix
Σ = σ2

z0
I. In this scenario, the optimization objective transforms into a variance-weighted MSE:

argmin
γ

DKL(p(z0|x), pγ(ĉ|z0)) = argmin
γ

1

2σ2
z0

[
∥µz0

− µĉ∥22
]
. (11)

In fact, σz0 models the importance of the image latent. Significant high-frequency regions (such as
textures and edges) are modeled by E with lower variances, while less crucial flat regions (like large
areas of uniform color) are modeled with higher variances. Following this intuitive observation, we
set the variance as a trainable hyperparameter w, initialized to σ2

z0
:

Limp (µz0
,µĉ) =

1

w
Lmse (µz0

,µĉ) . (12)

We refer to this optimization objective as Importance-Weighted MSE. The importance-weighted
loss assigns more bits to texture details, enabling a more precise reconstruction of these features.
We showcase visualizations of the bit rate allocation in Appendix A.7.3 to substantiate this point. In
practice, the mean of z0, c are often reduced to their samples z0, ĉ.

IC-ControlNet and Time-aware Decoupling In compression tasks, ControlNet provides robust
non-semantic control for conditional diffusion models; however, it falls short in precision control,
resulting in a significant decline in fidelity, as illustrated in Figure 8. To address this challenge, we
propose the IC-ControlNet framework. During the input stage, we utilize convolutional modulation
layers to effectively accommodate distorted conditions ĉ. These conditions are then integrated with
noise zt and processed through residual blocks before entering the main network. IC-ControlNet
enhances the control intensity of ĉ, reducing uncertainties during the generation process.

Nevertheless, an excessively stringent control at low bitrates harbors drawbacks: aggressive quan-
tization may induce pathological degradation in ĉ, escalating the challenge of predicting z0 for the
denoising model. This tendency may incline the denoising model to forsake forecasting the true data
distribution and instead produce samples akin to the conditioned ĉ; this phenomenon is termed as
condition leakage (Zhao et al., 2024). Within the compression framework, this phenomenon mani-
fests as the denoising model forfeiting its denoising efficacy, consequently reconstructing distorted
images, as illustrated in Figure 3(b)(1). To address this issue, we propose the Time-Aware Decou-
pling (TAD) module. The details of TAD can be found in the Appendix A.4. TAD endeavors to
disentangle the control factor ĉ from IC-ControlNet, thereby transforming the noise prediction of
the diffusion model into residual noise prediction:

ϵ̂ = DN θ

(√
ᾱtz0 +

√
1− ᾱtϵ, ĉ, t

)
+TADη(ĉ, t). (13)

η represents the optimizable parameter of TAD. The incorporation of TAD and residual structures
ensures the stability and reliability of the denoising process, as illustrated in Figure 3(b)(2). For
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further experimental results, please refer to Section 4.3. In essence, the initial phase is supervised
by:

Lstage 1 = λ1Limp (z0, ĉ) + λ2Lrate + LCSD, (14)

LCSD = Ez0,ĉ,,t,ϵ

[∥∥ϵ−DN θ

(√
ᾱtz0 +

√
1− ᾱtϵ, ĉ, t

)
− TADη(ĉ, t)

∥∥2
2

]
. (15)

Here, Lrate denotes the learned quantized latent representation by the compressor along with the
hyperprior compression rate. The parameters λ1 and λ2 are utilized to achieve a trade-off between
rate and distortion.

3.3 STAGE II: LEARNING SEMANTIC EMBEDDING AND HIGH-LEVEL CONDITIONS

Our experiments demonstrate that relying solely on low-level image control branches fails to achieve
satisfactory realism. Additionally, the direct integration of high-level textual semantics through
the stable diffusion interface proves ineffective. To overcome this challenge and avoid the costly
iterative learning of semantic representations as highlighted in (Lei et al., 2023), we have developed a
semantic pre-embedding module. As depicted in Figure 2, the decoding process begins by acquiring
a degraded representation ĉx. Although ĉx lacks significant texture and detail compared to x, it
retains essential low-frequency information, such as object shapes and colors—elements that are
often absent in textual semantics. The visual semantics from ĉx and the textual semantics textx
derived from image captioning are then jointly integrated into a pre-trained Q-Former, resulting in a
blended semantic output sx.

During this phase, we keep the parameters of the compressor Mϕ frozen. To enable the frozen
conditional denoising network to adapt to the new semantic input, we have introduced a linear pro-
jection layer to modulate the blended semantic sx and unfreeze all cross-attention layers integrating
semantic fusion within the denoising diffusion network for fine-tuning. Experimental results demon-
strate a notable enhancement in the perceptual quality of decoded images through the fine-tuning of
attention layers and semantic pre-embedding.

The loss in the second phase is solely diffusion loss:

Lstage 2 = Ez0,ĉ,sx,t,ϵ

[∥∥ϵ−DN θ

(√
ᾱtz0 +

√
1− ᾱtϵ, ĉ, sx, t

)
− TADη(ĉ, t)

∥∥2
2

]
. (16)

To address the color shift issue caused by the diffusion model (Choi et al., 2022), we were inspired by
(Wang et al., 2024) to perform color correction on the decoded image x̂. Interestingly, we observed
that the colors in degraded representation ĉx retain accuracy even as it lose a substantial amount of
high-frequency components. Consequently, we normalize the color of the decoded image x̂ to align
its mean and variance with ĉx. Further, we have found that color correction can be achieved through
a learnable decoder that enhances certain perceptual metrics. For more details, please refer to the
Appendix A.4.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Metrics. Our statistical metrics can be categorized into the following three groups. (1) Reference-
based distortion-based metrics: PSNR and MS-SSIM (Wang et al., 2003). These metrics offer pixel-
level distortions but have been shown to be ineffective at providing a valid measure of perceptual
realism at low bit rates. (2) Reference-based perceptual metrics: LPIPS (Zhang et al., 2018), DISTS
(Ding et al., 2020). These metrics are widely utilized for assessing the perceptual quality of images
and have been demonstrated to be more correlated with human judgment. (3) No-reference percep-
tual metrics: FID (Heusel et al., 2017), KID (Bińkowski et al., 2018), CLIP-IQA (Wang et al., 2023).
Among these, FID and KID measure the distribution difference between compressed and original
images, capturing the statistical fidelity of the compression scheme. CLIP-IQA is an image quality
assessment metric that utilizes a cross-modal model to score the realism and perceptual quality of
images. Baseline. We compared DiffPC with several state-of-the-art neural compression schemes.
This includes ELIC (He et al., 2022), a model based on VAE and rate-distortion optimization, HiFiC
(Mentzer et al., 2020) based on GAN architecture and perceptual loss, and its enhanced version, MS-
ILLM (Muckley et al., 2023). Furthermore, we also compared our approach with VQGAN based

7



Published as a conference paper at ICLR 2025

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Bits per pixel

22

23

24

25

26

27

FI
D

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Bits per pixel

2 12

2 10

2 8

2 6

2 4

KI
D

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Bits per pixel

15

20

25

30

35

PS
NR

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Bits per pixel

0.70

0.75

0.80

0.85

0.90

0.95

M
S-

SS
IM

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Bits per pixel

0.2

0.3

0.4

0.5

LP
IP

S

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Bits per pixel

0.05

0.10

0.15

0.20

0.25

DI
ST

S

BPG ELIC HIFIC MS-ILLM CDC DiffEIC TACO VQGAN Proposed

Figure 4: Comparisons of methods across various metrics for the CLIC 2020 test set.

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Bits per pixel

24

25

26

27

FI
D

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Bits per pixel

2 12

2 10

2 8

2 6

2 4

KI
D

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Bits per pixel

15

20

25

30

35

PS
NR

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Bits per pixel

0.6

0.7

0.8

0.9

M
S-

SS
IM

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Bits per pixel

0.2

0.3

0.4

0.5

LP
IP

S

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Bits per pixel

0.05

0.10

0.15

0.20

0.25

DI
ST

S

BPG ELIC HIFIC MS-ILLM CDC DiffEIC TACO VQGAN Proposed

Figure 5: Comparisons of methods across various metrics for the DIV2K validation set.

(Mao et al., 2024) methods and the solution TACO (Lee et al., 2024) that incorporates textual seman-
tic priors. For the diffusion model-based compression baseline, we conducted our main experiments
comparing against CDC (Yang & Mandt, 2024) and DiffEIC Li et al. (2024b). To ensure a fair
comparison, we retraced and retrained these baselines on the LSDIR dataset using their open-source
code and default settings, resulting in training outcomes closely aligned with the original results. It
is worth noting that for VQGAN (Mao et al., 2024), we utilized the official checkpoint trained on
the ImageNet (Deng et al., 2009) dataset, which is 14 times larger than the LSDIR dataset.

In the case of HiFiC and CDC, we not only utilized their reported lowest bit rates but also ex-
tended the comparison to even lower bit rates. Additionally, we contrasted these approaches with
the traditional compression format BPG (Bellard), which is the image compression component of
HEVC. It is noteworthy that due to some diffusion-based baselines (Hoogeboom et al., 2023; Careil
et al., 2024) lacking sufficient validation results and experimental details, we only present DiffPC’s
superior statistical fidelity in the Appendix A.8.

Datasets. For validation, we referenced (Muckley et al., 2023) and employed three widely recog-
nized image compression benchmark datasets: CLIC2020 (George Toderici, 2020), DIV2K (Timo-
fte et al., 2017), and Kodak (Company). CLIC2020 comprises 428 high-definition images, DIV2K
includes 100 2K resolution high-definition images, and Kodak consists of 24 natural images with a
resolution of 768× 512. Due to computational constraints, except for the Kodak dataset, we center-
cropped the original images to 1024 × 1024 resolution. As Kodak lacks extensive validation, we
present the experimental results in the Appendix A.8.

Furthermore, following the approaches of (Hoogeboom et al., 2023; Careil et al., 2024), we validated
the model’s statistical fidelity using COCO30K (Lin et al., 2014) and present the results in the
Appendix A.8.
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BPP / LPIPS↓/ DISITS↓ 0.0457/0.5359/0.2453 0.0468/0.3850/0.1155 0.0527/0.3436/0.0882 0.0669/0.3133/0.1040 0.0513/0.3124/0.0766

HIFIC

BPP / LPIPS↓/ DISITS↓

MS-ILLMELICOriginal

0.0654/0.4197/0.2039

CDC Proposed

0.0575/0.3544/0.1208 0.0622/0.3007/0.0933 0.0680/0.2792/0.1019 0.0583/0.2569/0.0864

Figure 6: Qualitative illustrations of various methods on Kodak and CLIC2020 datasets. DiffPC
reconstructs images without any artifacts and delicately restores intricate and complex textures.

4.2 MAIN RESULTS
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Figure 7: Comparing visual quality using CLIP-IQA.

Quantitative comparisons.

Figures 4 and 5 shows the performance
across different bit rates. ELIC, based on
rate-distortion optimization, exhibits sig-
nificant shortcomings across all percep-
tual metrics, failing to outperform even
the hand-craft image compression stan-
dard BPG. HiFiC maintains excellent per-
formance at higher bit rates; however, it
shows poorer performance at lower bit
rates (≤ 0.1 bpp). MS-ILLM demon-
strates a satisfactory performance im-
provement over HiFiC at lower bit rates,
approaching CDC’s performance. Never-
theless, our proposed DiffPC consistently outperforms all baseline solutions in perceptual quality
across all bit rates. Additionally, DiffPC achieves significantly better performance in the FID and
KID metrics compared to other baselines, indicating that our approach maintains excellent statisti-
cal fidelity even at low bitrates. Compared to TACO, which also utilizes textual semantics, DiffPC
achieved significantly higher perceptual fidelity and statistical fidelity in low bitrate scenarios. In
contrast to DiffEIC, which employs a pre-trained diffusion model prior, DiffPC attained superior
statistical fidelity through the fusion of mixed semantics. Additionally, due to improved bitrate
allocation, our approach exhibits lower distortion and enhanced perceptual fidelity compared to Dif-
fEIC. Further, we observe that the generalization performance of VQ-GAN in terms of bitrates is
concerning: it exhibits an anomalous situation where the rate-distortion curve shows a monotonous
increase at boundary bitrates. In contrast, DiffPC demonstrates stronger bitrate generalization capa-
bilities and the ability to adapt to various fidelity requirements. Besides, we compared pixel-level
distortions, although they are proven to have limited reference value at lower bitrates (Careil et al.,
2024). DiffPC demonstrates better fidelity in distortion metrics compared to the diffusion-based
CDC and competes with HiFiC in performance.

Qualitative comparisons. We compared the visual quality of image reconstruction between DiffPC
and baseline methods at ultra-low bit rates (≤ 0.08 bpp) using CLIP-IQA, as shown in Figure 7.
Across three datasets, DiffPC reconstructed images at the lowest bit rate that significantly surpassed
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(b）Quantitative ablation experiments on the DIV2K datase

(a）Qualitative ablation experiments on the Kodak dataset

t

Figure 8: Ablation study of the modules in DiffPC.

other neural codecs in realism. In Figures 1 and 6, we presented visualizations of the reconstructed
images. At ultra-low bit rates, while ELIC’s reconstructed images exhibit minimal distortion, their
visual quality is dismal. HiFiC and MS-ILLM’s optimization relies on a single perceptual metric,
leading to varying degrees of artifacts and noise at low bit rates. CDC, constrained by the DDPM
structure, exhibits certain color shifts and detail distortions during image decoding. Conversely,
DiffPC’s generated results at low bit rates demonstrate remarkably superior visual quality and re-
alism. Whether capturing intricate textures (such as hair in Figure 6 and foliage in Figure 1) or
finer details (like eyelashes in Figure 6), DiffPC excels in capturing and reliably reconstructing with
minimal bitrates.

4.3 ABLATION STUDY

In this section, we conducted ablation studies on various modules of DiffPC, and the quantitative
and qualitative results are depicted in Figure 8.

(1) W/O Importance-Weighted MSE: By substituting Limp with a standard MSE, as shown in Fig-
ure 8(b), the model fails to achieve the perceptual quality of the original design even with increased
bit rates. (2) w/o TAD: Removing the TAD module significantly impairs the model’s performance
at extremely low bit rates and alters the object morphology in the generated images, as illustrated
in Figure 8(a)(b). (3) w/o ICCN: Directly replacing IC-ControlNet with ControlNet, as seen in
Figure 8(a), results in almost ineffective control within the diffusion framework. (4) w/o Pre-
embedding: By omitting Q-Former and solely relying on textual descriptions for semantic con-
trol, there is a notable decrease in visual quality. Injecting simple text semantics in a conventional
manner leads to a similar outcome as injecting noise. (5) w/o Attn-finetune: By not fine-tuning
the cross-attention layers in the second training stage, the difficulty of integrating semantic control
branches into the denoising network increases, directly causing performance degradation. (6) w/o
multi-feature: The removal of the multiscale feature structure from the compressor resulted in the
loss of high-frequency information. This leads to a significant performance drop at ultra-low bit
rates. (7) w/o text semantics: We substituted the text prompts in the pre-embedding module with
empty strings. Due to the lack of textual cues aiding global semantics and stability, performance
shows a noticeable decline at ultra-low bit rates.

5 CONCLUSION

We introduce a novel neural compression framework, DiffPC, which leverages the priors from a
pre-trained latent diffusion model to reconstruct images with high realism and visual quality in low
bitrate scenarios. Unlike other generative model-based compression schemes, DiffPC achieves pre-
cise bit-rate allocation through a multi-feature compressor and incorporates a pre-embedding module
for efficient semantic information injection into the conditional diffusion model. Extensive experi-
ments demonstrate that our proposed approach faithfully reconstructs images even at extremely low
bit rates while preserving high perceptual quality textures.
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David Minnen, Johannes Ballé, and George D Toderici. Joint autoregressive and hierarchical priors
for learned image compression. Advances in neural information processing systems, 31, 2018.

Matthew J Muckley, Alaaeldin El-Nouby, Karen Ullrich, Hervé Jégou, and Jakob Verbeek. Im-
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A APPENDIX

A.1 PROOFS

Theorem A.1. Given the input image x, the VAE-based encoder E , the VAE-based compressor Mϕ,
and the compressor’s encoder Me

ϕ,the compressor’s decoder Me
ϕ, Quantization operation Q, where

z0 = E(x), y = Me
ϕ(z0), ŷ = Q(y), ĉ = Md

ϕ(ŷ). We have:

DKL(p(z0|x), p(z0|ĉ)) ≤ DKL(p(z0|x), pγ(ĉ|z0)). (17)

Proof. According to the definition of KL divergence, we have:

DKL(p(z0|x), p(z0|ĉ)) =

∫
p(z0|x) log

p(z0|x)p(ĉ)
pγ(ĉ|z0)p(z0)

dz0 (18)

= DKL(p(z0|x), pγ(ĉ|z0)) +
∫

p(z0|x) log
p(ĉ)

p(z0)
dz0. (19)

Since Mϕ is VAE-based and ĉ = Mϕ(z0). According to (Kingma, 2013), ĉ is generated by Md
ϕ(ŷ).

Due to the distortion caused by quantization Q, Md
ϕ(ŷ) actually estimates the distribution p(z0|ŷ).

Therefore, we have:

DKL(p(z0|x), p(z0|ĉ)) = DKL(p(z0|x), pγ(ĉ|z0)) +
∫

p(z0|x) log
p(z0|ŷ)
p(z0)

dz0 (20)

= DKL(p(z0|x), pγ(ĉ|z0)) +
∫

p(z0|x) log
p(z0|ŷ)∫
p(z0|ŷ)dŷ

dz0 (21)

< DKL(p(z0|x), pγ(ĉ|z0)). (22)

When Q is the identity function (meaning there is no quantization distortion), in this case, Md
ϕ(ŷ) =

Md
ϕ(y) fits the input distribution p(z0), so we have:

DKL(p(z0|x), pγ(ĉ|z0)) +
∫

p(z0|x) log
p(ĉ)

p(z0)
dz0 = DKL(p(z0|x), pγ(ĉ|z0)). (23)

Above all:

DKL(p(z0|x), p(z0|ĉ)) ≤ DKL(p(z0|x), pγ(ĉ|z0)). (24)

A.2 MORE DETAILS OF ALGORITHM PROCEDURE

In this section, we supplement the explanation of the encoding and decoding processes of DiffPC
through pseudocode. The detailed encoding and decoding processes are shown below.

A.3 FURTHER EXPERIMENTAL DETAILS

A.3.1 DETAILS OF THE MODEL TRAINING

Our model was trained on the LSDIR dataset (Li et al., 2023b), which comprises 84,991 high-
definition natural images. During training, these images were randomly cropped to a resolution of
512 × 512. Our foundational conditional diffusion model leverages Stable Diffusion 2.1-base3..
Throughout all training stages, we employed AdamW (Loshchilov, 2017) as the optimizer, with
learning rates set at 1× 10−4 for the initial phase and 5× 10−5 for the subsequent phase. The batch
size was consistently maintained at 2.

In the initial training phase, we employed an entropy estimator SCCTX (He et al., 2022) with a group
number of 3. To achieve compression at different bit rates, we set the parameter λ2 in Section 3.2 to
0.2 and then adjusted λ1 ∈ {4, 16, 64, 128}. At this stage, we will train with 80000 steps.

3https://huggingface.co/stabilityai/stable-diffusion-2-1-base
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Algorithm 1 Encoding Process

1: Given input data x, compressor encoder Me
ϕ(·), stable diffusion’s encoder E(·), quantization

operation Q
2: z0, f1, f2 = E(x)
3: y = Me

ϕ(z0, f1, f2)

4: ŷ = Q(y)
5: textx = Image captioning(x)
6: Encode ŷ, textx to binary file
7: Output encoded data

Algorithm 2 Decoding Process

1: Given compressor decoder Md
ϕ(·), stable diffusion’s decoder D(·), pre-embedding module

QF(·), Denosing network DN θ, diffusion steps T
2: Decode ŷ, textx from binary file
3: ĉ = Md

ϕ(ŷ)

4: ĉx = D(ĉ)
5: sx = QF(ĉx, textx)
6: zT ∼ N (0, I)
7: for t ∈ [T, · · · , 1] do
8: zt−1 = Sampler (DN θ (zt, ĉ, sx, t) , t)
9: end for

10: x̂ = D(z0)
11: xrec = Color correction(x̂, ĉx)
12: Output xrec

In the second training phase, the parameters of the compressor were frozen. We utilized BLIP-2 (Li
et al., 2023a) for extracting textual semantic descriptions of images and employed the pre-trained
Q-Former and image-encoder from BLIP-diffusion (Li et al., 2024a). Finally, for color correction in
the decoded output, we applied wavelet-color correction (Wang et al., 2024). At this stage, we will
train with 60000 steps.

We did not apply warm-up in the first stage but utilized a LambdaLinearScheduler with parameters
warm up steps=10000 and f start=1e-6 in the second stage. For sampling, we utilized IDDPM
(Nichol & Dhariwal, 2021) as the sampler with a uniform setting of 50 sampling steps, as reported
to be optimal in the original paper. Additionally, all experiments were conducted on an Nvidia
A6000 GPU. Code is released at https://github.com/Darc8-sun/DIFFPC.

A.3.2 DETAILS OF THE MODEL TESTING

Implementation of the baseline approach All the baseline approaches we utilized employed their
respective official open-source codes 4 5 6. To ensure result alignment, these baselines were retrained
on LSDIR. The results we reproduced closely match the original papers, with the retrained HiFiC
even outperforming the performance of the official checkpoint during testing.

Evaluation metrics for testing For LPIPS, we utilized the lpips library, while DISTS was imple-
mented using DISTS pytorch. FID and KID metrics were calculated using functions provided by
torchmetrics.image, with a feature size of 2048. Following the approach in (Mentzer et al., 2020),
during FID and KID testing, images were partitioned. Specifically, from each H × W image, we
initially extracted ⌊H/f⌋ · ⌊W/f⌋ non-overlapping f × f crops. Subsequently, the extraction origin
was shifted by f/2 in both dimensions to obtain another (⌊H/f⌋ − 1) · (⌊W/f⌋ − 1) patches. A
fixed value of f = 256 was used for all evaluations.

4CDC: https://github.com/buggyyang/CDC compression
5HiFiC: https://github.com/Justin-Tan/high-fidelity-generative-compression
6MS-ILLM: https://github.com/facebookresearch/NeuralCompression
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Figure 10: Architecture of different modules.

A.4 ARCHITECTURES OF MODULES

We intricately illustrated the structure of the control module IC-ControlNet and the architecture of
the Time-aware decoupling designed in the first stage, as depicted in Figure 9 and Figure 10(b),
respectively. The concept behind ICCN’s design was inspired by (Lin et al., 2023), while the time-
aware task router in the Time-aware decoupling was adapted from (Park et al., 2023). We treated
each time step as an independent task, generating tasks to integrate temporal information.

As mentioned in Section 3.3, ĉ possesses comprehensive color information, prompting us to devise
a trainable fusion decoder for integration, as illustrated in Figure 10(a). This module comprises
a feature fusion module and a trainable SD decoder D. Since training this module occurs after the
second-stage training, we term it the 3rd-stage training. During the training of this decoder, all other
parameters of the backbone network are frozen, and the LPIPS between the decoded image and the
original image is employed as the loss for optimization. Our experiments indicate that this boosts
perceptual metrics further during testing; however, conversely, statistical fidelity may marginally de-
crease, as shown in the Figure 12. Furthermore, akin to HiFiC and ILLM, we observed that optimiz-
ing with LPIPS inevitably introduces subtle grid-like artifacts. These artifacts primarily concentrate
in intricate texture regions, as depicted in Figure 11. While this approach shows enhancements in
some metrics, we believe it compromises the realism of the images, so it is presented solely as an
optional additional component.
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Figure 11: Qualitative ablation study of trainable fusion decoder.
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Figure 12: Quantitative ablation study of trainable fusion decoder.

A.5 COMPLEXITY COMPARISONS

We compared the encoding and decoding latency of our models with the baseline in a GPU environ-
ment and included various performance comparisons on the rightmost side of the table, as shown
in the Table 1. In the table, ’steps’ represent the number of sampling steps required for decoding,
with a default of 50 steps in our work. Our BD-rate is calculated with DiffPC as the baseline, where
a higher value indicates a larger performance gap compared to DiffPC. It is important to note that,
except for Perco, all tests were conducted on the same Nvidia 3080ti GPU. Due to high VRAM
usage during inference, Perco was tested on an A6000 GPU, which has superior GFLOPS. In the
table, we use the symbol ”≥” to indicate that in the same GPU environment, Perco’s encoding and
decoding speeds exceed the values we provide.

It can be observed that by encoding only the latent code at the encoding end, DiffPC achieves
satisfactory encoding speed: it outperforms most diffusion baselines in encoding speed and has
a similar encoding latency to GAN-based methods Mentzer et al. (2020); Muckley et al. (2023).
At the decoding end, we can actually reduce the number of sampling steps to decrease decoding
latency. Even when reducing the sampling steps to 5, DiffPC maintains superior performance with
considerable decoding speed. Even with 50 sampling steps, DiffEIC’s decoding speed surpasses
Perco, which is also based on a diffusion structure, and is comparable to the decoding speed of
Cheng20, a neural compressor based on a sequence autoregressive entropy model.
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Model Encoding (s) Decoding (s) BD-rate(%)

ELIC He et al. (2022) 0.009 0.008 4254.39
Cheng20 Cheng et al. (2020) 3.081 6.678 -

HiFiC Mentzer et al. (2020) 0.013 3× 10−5 289.26
MS-ILLM Muckley et al. (2023) 0.069 0.068 79.83

CDC Yang & Mandt (2024) 0.007 3.080 143.54
VQGAN based Mao et al. (2024) 0.011 0.011 -

TACO Lee et al. (2024) 0.120 0.144 62.96
DiffEIC Li et al. (2024b) 0.430 6.619 10.45
Perco Careil et al. (2024) ≥0.767 ≥15.261 -

DiffPC (steps=50) 0.089 7.325 0.00
DiffPC (steps=20) 0.089 3.378 6.25
DiffPC (steps=5) 0.089 0.886 14.59

Table 1: Encoding and decoding time (seconds) on Kodak dataset. BD-rate (%) is calculated on
CLIC2020 dataset, with FID as the metric.

A.6 SPECIAL SCENARIO DISCUSSION

In this section, we conducted a qualitative visual analysis of images containing ’text’ and images
containing ’faces’. Initially, we categorized ’text’ and ’faces’ into three classes based on their pro-
portions within the entire frame - large, medium, and small - and discussed them separately, as
shown in Figures 13 and 14.

In instances of small text (Figure 13), it is evident that even the most cutting-edge neural compres-
sor ELIC based on traditional rate-distortion optimization cannot restore discernible text. Similarly,
Gan-based methods also fall short. Given the premise of semantic loss in decoding, our proposed
DiffPC decoding yields sharper edges and enhanced perceptual quality in the images. In the medium
text category, all generative compression schemes exhibit some degree of text distortion. However,
notably, compared to GAN-based methods which show more pronounced artifacts and structural
deficiencies, DiffPC maintains the semantic consistency of text to the maximum extent while pre-
serving details and textures in other parts. In the case of large text, all approaches can reconstruct
high-fidelity textual information.

Regarding images containing faces (Figure 14), in the large and medium categories, DiffPC main-
tains remarkable structural consistency without distortions. Conversely, Gan-based solutions exhibit
structural distortions, while ELIC shows severe blurring, making facial recognition challenging. In
the small face category, both Gan-based methods and ELIC display significant distortions and struc-
tural chaos. In contrast, DiffPC sacrifices a certain level of semantic consistency to enhance overall
structural coherence and texture details.

In conclusion, we believe that the proposed DiffPC achieves an optimal triple balance between real-
ism, distortion, and bit rate at low encoding rates. Nonetheless, our approach still has shortcomings
in maintaining semantic consistency for extremely small faces and text, which we aim to improve in
future endeavors.

A.7 FURTHER ABLATION EXPERIMENT

A.7.1 NUMBER OF TIMESTEPS

In Figure 15, we show how DISTS, LPIPS, MS-SSIM and FID vary when we change the number
of denoising steps. We do the evaluation for four different bitrates, ranging from 0.0043 to 0.1811
bpp. It is evident that at higher bit rates, reducing the number of samples has a minimal impact on
performance degradation. This implies that in high bit rate scenarios, we can decrease sampling
to accelerate decoding speed. At lower bit rates, perceptual metrics exhibit a more noticeable de-
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(a) Original (b) ELIC (c) HiFiC (d)MS-ILLM (e) Ours

BPP=0.055 BPP=0.038BPP=0.058BPP=0.041

BPP=0.048 BPP=0.032BPP=0.046BPP=0.038

BPP=0.055 BPP=0.045BPP=0.053BPP=0.043
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Large
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Figure 13: An image containing text. The image is from the CLIC2020 dataset, and the upper left
corner of the image is the bit rate (BPP) of the image.

(a) Original (b) ELIC (c) HiFiC (d)MS-ILLM (e) Ours
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Face size 

Medium

Face size 

Small

Face size 

BPP=0.055 BPP=0.056BPP=0.054BPP=0.046

BPP=0.053 BPP=0.055BPP=0.051BPP=0.048

BPP=0.037 BPP=0.038BPP=0.037BPP=0.031

Figure 14: An image containing human face. The image is from the CLIC2020 dataset, and the
upper left corner of the image is the bit rate (BPP) of the image.

cline with a reduction in the number of samples. However, overall, the statistical fidelity is not
significantly affected by the number of samples.

A.7.2 TEXT ROBUSTNESS

We employed four different approaches for textual descriptions: (1) BLIP2 (5 ≤word count ≤ 10):
Forcing the word count output of BLIP2 to be within 10 words. (2) OFA-tiny: Using OFA (Wang
et al., 2022) as an image-captioning model to obtain textual prompts for the images. (3) Default
text: All images uniformly utilized the default text description: ’high quality, extreme detail.’ (4)
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Figure 15: Quantitative comparisons of different number of denoising steps. Evaluation on DIV2K
datasets.

Text type LPIPS DISTS PSNR

BLIP2 (5≤words count≤10) 1.686 1.579 0.891
OFA-tiny 1.742 -0.311 0.320

Default text 4.502 5.455 0.447
Random string 19.577 35.816 82.989

BLIP2 (10≤words count≤30) 0 0 0

Table 2: Text robustness evaluation. Tested on Kodak with a BD-rate (%) based on DiffPC (Ours).
The bold sections represent the textual prompt acquisition approach used by DiffPC.

Random string: Employing random strings of equal length (20 characters). The result is shown in
Appendix A.7.2. It is worth noting that the approach utilized by DiffPC falls under BLIP2 (10≤word
count≤20), which serves as the baseline for our BD-rate calculations. It can be observed that as
long as the textual description aligns with the semantic content of the image, it generally does not
compromise the model’s reconstruction performance. Even when default text prompts are used, the
model can still derive benefits from the text.

A.7.3 VISUALIZATION OF BIT ALLOCATION MAP

As mentioned in the Section 3.2, we employed importance-weighted loss to achieve improved bit
rate allocation. We visualized partial latent representation bit rate allocation diagrams on the Kodak
dataset, as depicted in Figure 16.

It is quite evident that the importance-weighted loss we employed effectively prevents the excessive
allocation of bits in flat regions (such as the sky in the image) and instead allocates more bits to
areas with intricate textures, which aligns with our expectations.

A.8 FURTHER EXPERIMENTAL RESULTS

Figure 18: FID tested on COCO 30K.

Further Quantitative Results: We present
the results of all baseline methods along with
DiffPC on the Kodak dataset, as shown in
Figure 17. Due to the limited size of the
Kodak dataset, which contains only 24 im-
ages, reliable FID and KID scores could
not be calculated. Therefore, we only dis-
play the remaining metrics. It can be ob-
served that DiffPC maintains outstanding per-
formance on the Kodak dataset as well. Fur-
thermore, for a more comprehensive valida-
tion, we evaluated the statistical fidelity of
various methods on the COCO 30K dataset
following the settings in (Hoogeboom et al.,
2023), as shown in Figure 18. Although the
COCO 30K dataset is not a commonly accepted benchmark for image compression tasks, its ca-
pability to assess the statistical fidelity of models has been validated by numerous works, such as
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(a) Original (b) W/o Importance-weighted MSE (c) Proposed (d) Comparison

Figure 16: The bit rate allocation visualization, where darker colors represent a fewer allocation
of bits. To enhance clarity, we interpolated the lower-level features to match the original image
dimensions.
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Figure 17: Comparisons of methods across various metrics for the Kodak dataset.

(Reddy et al., 2021). Following the experimental setup in (Hoogeboom et al., 2023; Careil et al.,
2024), we partitioned the images into 256×256 patches. Note that it is challenging to extract mean-
ingful textual descriptions from such small patches, so we used Null Character as a placeholder for
textual semantics. Despite this, our model still demonstrated superior statistical fidelity, indicating
that DiffPCis not highly dependent on textual semantic information in images.

Further Qualitative Results: We showcase additional visual results of DiffPC, HiFiC, and ILLM
on three baseline datasets, as illustrated from Figure 19 to Figure 30. Our approach reconstructs
details with superior realism using the least number of bits and avoids artifacts that typically arise
when reconstructing fine textures.
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Figure 19: Orignal image (Kodak).

Figure 20: DiffPC(Ours) 0.065 bpp, 0.252 LPIPS
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Figure 21: MS-ILLM 0.085 bpp, 0.271 LPIPS

Figure 22: HiFic 0.080 bpp, 0.353 LPIPS
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Figure 23: Orignal image (CLIC2020).

Figure 24: DiffPC(Ours) 0.039 bpp, 0.249 LPIPS
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Figure 25: MS-ILLM 0.037 bpp, 0.263 LPIPS

Figure 26: HiFic 0.037 bpp, 0.363 LPIPS
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Figure 27: Orignal image (DIV2K).

Figure 28: DiffPC(Ours) 0.079 bpp, 0.368 LPIPS
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Figure 29: MS-ILLM 0.104 bpp, 0.369 LPIPS

Figure 30: HiFic 0.101 bpp, 0.410 LPIPS
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