
Due to additional references introduced in this appendix, we attach the entire reference list at the end.472

Errata/Typos in the main text473

First we’d like to point out some typos in the main text. None of them affects the core results474

presented in this work.475

Major Typo. There is one important typo in the main text. One term is missing in Eq. 9/Left476

and Eq. 12/Left (there should be “+wz ⊙ ẑ(t)” inside diag). We provide the correct/complete477

equations below (Eq. 36 and Eq. 21/Left, respectively). Please note that this is a pure printing mistake.478

The actual implementation is based on the correct equation, which is well tested by comparing479

the gradients computed through our RTRL algorithm against those computed by BPTT (using the480

common PyTorch reverse-mode automatic differentiation).481

Minor Typos. There are also a few typos in the main text related to the range of indices that uses482

N (hidden dimension) where it should be D (input dimension). These are also not critical for the483

core description of our algorithms.484

• Line 140, instead of “
∂c(t)

∂F
,
∂c(t)

∂Z
∈ RN×N×N”, the dimension should be RN×N×D485

• Line 143, "For example for
∂c(t)

∂F
, we have, for i, j, k ∈ {1, ..., N}, " the range of j here is486

wrong, it should be "j ∈ {1, ..., D}"487

We will fix them all in the final version.488

A Derivations489

A.1 RTRL for LSTM with Element-wise Recurrence490

In Sec. 3.1, we only show RTRL equations (Eqs. 12) for one weight matrix of eLSTM (F in Eq. 5).491

Here we provide complete equations and their derivations for all other parameters.492

First of all, the exact eLSTM architecture used in all our experiments use biases bf , bz ∈ RN , i.e.,493

Eqs. 5 are replaced by:494

f(t) = σ(Fx(t) +wf ⊙ c(t− 1) + bf ) ; z(t) = tanh(Zx(t) +wz ⊙ c(t− 1) + bz) (17)

Therefore, in addition to
∂c(t)

∂F
,
∂c(t)

∂Z
∈ RN×N×D, and

∂c(t)

∂wf
,
∂c(t)

∂wz
∈ RN×N , we also have495

∂c(t)

∂bf
,
∂c(t)

∂bz
∈ RN×N as the sensitivity matrices to be computed/stored for RTRL. Note that adding496

these biases do not change the RTRL equations for F presented in Eq. 5/Sec. 3.1.497

We recall that we define e(t) ∈ RN with ei(t) =
∂L(t)
∂ci(t)

∈ R for i ∈ {1, ..., N} in Sec. 3.1, which498

can be computed using standard backpropagation (as we assume that we have no recurrent layer499

between c(t) and L(t)).500

For convenience, we also introduce three following intermediate variables f̂(t), ẑ(t), ĉ(t) ∈ RN501

which appear in several equations.502

f̂(t) = (c(t− 1)− z(t))⊙ f(t)⊙ (1− f(t)) (18)

ẑ(t) = (1− f(t))⊙ (1− z(t)2) (19)

ĉ(t) = f(t) +wf ⊙ f̂(t) +wz ⊙ ẑ(t) (20)

The complete list of our RTRL equations is as follows.503
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Equations for F . We define F̂ (t) ∈ RN×D with F̂i,j(t) =
∂ci(t)

∂Fi,j
∈ R.504

F̂ (t) = diag(ĉ(t))F̂ (t− 1) + f̂(t)⊗ x(t) ;
∂L(t)
∂F

= diag(e(t))F̂ (t) (21)

Equations for Z. We define Ẑ(t) ∈ RN×D with Ẑi,j(t) =
∂ci(t)

∂Zi,j
∈ R.505

Ẑ(t) = diag(ĉ(t))Ẑ(t− 1) + ẑ(t)⊗ x(t) ;
∂L(t)
∂Z

= diag(e(t))Ẑ(t) (22)

Equations for wf . We define ŵf (t) ∈ RN with ŵf
i (t) =

∂ci(t)

∂wf
i

∈ R.506

ŵf (t) = f̂(t)⊙ c(t− 1) + ĉ(t)⊙ ŵf (t− 1) ;
∂L(t)
∂wf

= e(t)⊙ ŵf (t) (23)

Equations for wz . We define ŵz(t) ∈ RN with ŵz
i (t) =

∂ci(t)

∂wz
i

∈ R.507

ŵz(t) = ẑ(t)⊙ c(t− 1) + ĉ(t)⊙ ŵz(t− 1) ;
∂L(t)
∂wz

= e(t)⊙ ŵz(t) (24)

Equations for bf . We define b̂f (t) ∈ RN with b̂fi (t) =
∂ci(t)

∂bfi
∈ R.508

b̂f (t) = f̂(t) + ĉ(t)⊙ b̂f (t− 1) ;
∂L(t)
∂bf

= e(t)⊙ b̂f (t) (25)

Equations for bz . We define b̂z(t) ∈ RN with b̂zi (t) =
∂ci(t)

∂bzi
∈ R.509

b̂z(t) = ẑ(t) + ĉ(t)⊙ b̂z(t− 1) ;
∂L(t)
∂bz

= e(t)⊙ b̂z(t) (26)

Now we provide the corresponding derivations. Let i, k ∈ {1, ..., N} and j ∈ {1, ..., D}.510

Derivation for F . Common to all cases, the goal is to compute the gradients of the loss w.r.t. the511

corresponding model parameter. Since we assume there is no recurrent layer after this layer (see our512

settings of Sec. 2), we can express the corresponding gradient as:513

∂L(t)
∂Fi,j

=

N∑
k=1

∂L(t)
∂ck(t)

× ∂ck(t)

∂Fi,j
(27)

As we assume we can compute the first factor
∂L(t)
∂ck(t)

= ek(t) using standard backpropagation, what514

remains to be computed is the second factor
∂ck(t)

∂Fi,j
. The direct differentiation of Eq. 6 yields:515

∂ck(t)

∂Fi,j
= (ck(t− 1)− zk(t))

∂fk(t)

∂Fi,j
+ fk(t)

∂ck(t− 1)

∂Fi,j
+ (1− fk(t))

∂zk(t)

∂Fi,j
(28)

Now, we explicitly compute
∂fk(t)

∂Fi,j
and

∂zk(t)

∂Fi,j
as:516

∂fk(t)

∂Fi,j
= f ′

k(t)

(
xj(t)1k=i +wf

k

∂ck(t− 1)

∂Fi,j

)
;
∂zk(t)

∂Fi,j
= z′

k(t)w
z
k

∂ck(t− 1)

∂Fi,j
(29)
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where f ′(t), z′(t) ∈ RN are the “derivatives” of f(t) (sigmoid) and z(t) (tanh), i.e.,517

f ′(t) = f(t)⊙ (1− f(t)) ; z′(t) = 1− z(t)2 (30)

Now by substituting Eqs. 29 in Eq. 28, we obtain the following forward recursion equation:518

∂ck(t)

∂Fi,j
= (ck(t− 1)− zk(t))f

′
k(t)xj(t)1k=i (31)

+
(
fk(t) + (ck(t− 1)− zk(t))f

′
k(t)w

f
k + (1− fk(t))z

′
k(t)w

z
k

) ∂ck(t− 1)

∂Fi,j
(32)

Since the sensitivities are initialised by zero, i.e.,
∂ck(0)

∂Fi,j
= 0, and the additive term in Eq. 31 is non519

zero if and only if k = i, it follows that, for any t,520

∂ck(t)

∂Fi,j
= 0 if k ̸= i. (33)

The other entries (the case where k = i) can be compactly represented using intermediate variables521

introduced above (f̂(t), ẑ(t), ĉ(t) ; Eqs. 18-20), as follows:522

∂ci(t)

∂Fi,j
= (ci(t− 1)− zi(t))f

′
i(t)xj(t)

+
(
fi(t) + (ci(t− 1)− zi(t))f

′
i(t)w

f
i + (1− fi(t))z

′
i(t)w

z
i

) ∂ci(t− 1)

∂Fi,j
(34)

= f̂i(t)xj(t) +
(
fi(t) + f̂i(t)w

f
i + ẑi(t)w

z
i

) ∂ci(t− 1)

∂Fi,j
(35)

= f̂i(t)xj(t) + ĉi(t)
∂ci(t− 1)

∂Fi,j
(36)

Finally, by introducing the notation F̂ (t) ∈ RN×D with F̂i,j(t) =
∂ci(t)

∂Fi,j
∈ R, we arrive at523

Eq. 21/Left. Eq. 21/Right for the loss gradients is obtained by simplifying Eq. 27 through Eq. 33 (the524

sum reduces to one term).525

The derivation is similar for Z. We now show the derivation for wf .526

Derivation for wf . Starting over, the goal is to compute the following gradient:527

∂L(t)
∂wf

i

=

N∑
k=1

∂L(t)
∂ck(t)

× ∂ck(t)

∂wf
i

=

N∑
k=1

ek(t)
∂ck(t)

∂wf
i

(37)

The direct differentiation through Eq. 6 yields:528

∂ck(t)

∂wf
i

= (ck(t− 1)− zk(t))
∂fk(t)

∂wf
i

+ fk(t)
∂ck(t− 1)

∂wf
i

+ (1− fk(t))
∂zk(t)

∂wf
i

(38)

Now, we explicitly compute
∂fk(t)

∂wf
i

and
∂zk(t)

∂wf
i

, which yields:529

∂fk(t)

∂wf
i

= f ′
k(t)

(
ck(t− 1)1k=i +wf

k

∂ck(t− 1)

∂wf
i

)
;
∂zk(t)

∂wf
i

= z′
k(t)w

z
k

∂ck(t− 1)

∂wf
i

(39)

Now by substituting Eqs. 39 in Eq. 38, we obtain the following forward recursion equation:530

∂ck(t)

∂wf
i

= (ck(t− 1)− zk(t))f
′
k(t)ck(t− 1)1k=i (40)

+
(
fk(t) + (ck(t− 1)− zk(t))f

′
k(t)w

f
k + (1− fk(t))z

′
k(t)w

z
k

) ∂ck(t− 1)

∂wf
i

(41)
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Similar to the derivation for F , as the sensitivities are initially zero, i.e.,
∂ck(t− 1)

∂wf
i

= 0, and non-531

zero terms are added only to the entries where k = i, it follows that for any t,
∂ck(t)

∂wf
i

= 0 if k ̸= i,532

and the non-zero entries are:533

∂ci(t)

∂wf
i

= f̂i(t)ci(t− 1) + ĉi(t)
∂ci(t− 1)

∂wf
i

(42)

which finally yields Eq. 23.534

The derivation is almost the same for bf , except that, instead of ck(t− 1)1k=i in Eq. 39, we obtain535

1k=i. Finally, the derivations are also similar for wz and bz .536

A.2 Tractable RTRL for Certain Linear Transformers/Fast Weight Programmers537

While the main focus of this work is to evaluate tractable RTRL using eLSTM, we also discuss that538

there are several neural architectures with tractable RTRL in the one-layer case. Here we show that539

RTRL is also tractable for a certain “simple” one-layer Linear Transformers/Fast Weight Programmers540

(FWPs; [15, 16, 17]).541

The FWP in question transforms an input x(t) ∈ RN to an output y(t) ∈ RN at each time step t, as542

follows:543

[k(t),v(t), q(t)] = [Kx(t),V x(t),Qx(t)] (43)
W (t) = W (t− 1) + v(t)⊗ k(t) (44)
y(t) = W (t)σ(q(t)) (45)

where k(t) ∈ RN , v(t) ∈ RN , q(t) ∈ RN , W (t) ∈ RN×N , with trainable parameters K ∈ RN×N ,544

V ∈ RN×N , and Q ∈ RN×N (we use the same dimension N everywhere for simplicity, but the545

following derivation remains valid for the general case where x(t) is of dimension D; the only546

requirement is that k(t) and q(t) are of the same dimension).547

Let i, j ∈ {1, .., N}. Using the same definition of the loss L(t) defined in Sec. 2, the goal is548

to compute
∂L(t)
∂Qi,j

,
∂L(t)
∂Ki,j

,
∂L(t)
∂Vi,j

. Since q(t) is not involved in the recurrent loop (here we549

are again under the one-layer assumption), the gradients
∂L(t)
∂Qi,j

can be computed using standard550

backpropagation. Hence, we focus on
∂L(t)
∂Ki,j

and
∂L(t)
∂Vi,j

. Here we provide the RTRL derivation551

for
∂L(t)
∂Ki,j

(the derivation for
∂L(t)
∂Vi,j

is analogous). Let l,m, i and j denote positive integers. As in552

Sec. 2, it is practical to write down each element Wl,m(t) ∈ R of W (t) ∈ RN×N , as well as each553

element km(t) ∈ R of k(t) ∈ RN , for all l,m ∈ {1, ..., N}:554

Wl,m(t) = Wl,m(t− 1) + vl(t)km(t) (46)

km(t) =

N∑
n=1

Km,nxn(t) (47)

The goal is to compute the following gradient:555

∂L(t)
∂Ki,j

=

N∑
l=1

N∑
m=1

∂L(t)
∂Wl,m(t)

× ∂Wl,m(t)

∂Ki,j
(48)

The first factor
∂L(t)

∂Wl,m(t)
can be computed using standard backpropagation (no recurrence involved).556

We derive a forward recursion formula for the second factor by differentiating Eq. 46:557

∂Wl,m(t)

∂Ki,j
=

∂Wl,m(t− 1)

∂Ki,j
+ vl(t)

∂km(t)

∂Ki,j
(49)
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Now, differentiating Eq. 47 yields:558

∂km(t)

∂Ki,j
=

0 if m ̸= i
∂ki(t)

∂Ki,j
= xj(t) Otherwise

(50)

This last equation is a source of complexity reduction: in the 3-dimentional tensor
∂km(t)

∂Ki,j
, many559

terms are zero, and non-zero component only depends on j. Eq. 49 becomes:560

∂Wl,m(t)

∂Ki,j
=

0 if m ̸= i
∂Wl,i(t− 1)

∂Ki,j
+ vl(t)xj(t) Otherwise

(51)

Since the term added at each step, vl(t)xj(t), only depends on l and j, by introducing a matrix561

K̂(t) ∈ RN×N such that, for all l, j ∈ {1, ..., N}, K̂l,j(t) =
∂Wl,i(t)

∂Ki,j
for all i ∈ {1, ..., N}, we562

can compactly express the 4-dimensional sensitivity tensor with elements
∂Wl,m(t)

∂Ki,j
using the 2-563

dimensional sensitivity matrix with elements K̂l,j(t) through sparsity and parameter-sharing obtained564

as directly consequences of the forward computation of the FWP defined above. Hence, the space565

complexity of RTRL is reduced to O(N2). Now Eq. 48 also greatly simplifies:566

∂L(t)
∂Ki,j

=

N∑
l=1

N∑
m=1

∂L(t)
∂Wl,m(t)

× ∂Wl,m(t)

∂Ki,j
=

N∑
l=1

∂L(t)
∂Wl,i(t)

× ∂Wl,i(t)

∂Ki,j
(52)

By defining a matrix E(t) ∈ RN×N such that El,i(t) =
∂L(t)

∂Wl,i(t)
, Eq. 52 can be computed through567

one simple matrix multiplication; and Eq. 51 yields a simple forward recursion formula for K̂(t):568

∂L(t)
∂K

= E(t)⊺K̂(t) ; K̂(t) = K̂(t− 1) + v(t)⊗ x(t) (53)

The time complexity of Eq. 53/Left (for one update) is O(N3) which is tractable. The batch version569

of Eq. 53/Left can be implemented as a batch matrix-matrix multiplication in standard deep learning570

libraries.571

The derivation is analogous for V (by analogously defining V̂ (t)) which yields:572

∂L(t)
∂V

= E(t)V̂ (t) ; V̂ (t) = V̂ (t− 1) + k(t)⊗ x(t) (54)

In summary, RTRL for this simple FWP is tractable with the time/space complexities of O(N3) and573

O(N2). As for eLSTM (Sec. 5), this result is only valid for the one-layer case. Also note that the574

standard FWP (see e.g., [44]) applies softmax on both key and query vectors; here we need to remove575

such an activation function applied to the key (see Eq. 44) to make RTRL tractable.576

A memory system view. The resulting system (consisting of the neural architecture, plus the RTRL577

learning algorithm) forms an interesting type of memory “organism.” The system maintains two578

kinds of “synaptic” memories in an online fashion: the fast weight matrix W (t) is a short-term579

memory where the system stores information required to solve the task at hand (memory based on580

input observations; Eq. 44), while sensitivity matrices K̂(t) and V̂ (t) (paired to the model’s weight581

matrices K(t) and V (t)) store another memory required for learning (memory based on external582

feedback to model outputs; Eqs. 53 and 54/Right).583

Remarks. Strictly speaking, RTRL is the name of the learning algorithm when forward-mode584

automatic differentiation (AD) is applied to RNNs. Here we refer to RTRL as a generic name referring585

to the forward AD applied to any sequence models including linear Transformers. Regarding the586

standard Transformer: we note that a Transformer anyway needs to store all past activations even587

for its forward pass, and we are not aware of any straightforward “real-time learning algorithm” that588

leads to complexity reduction of any form.589
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A.3 Backpropagation Through Time (BPTT)590

In Sec. 2, we review RTRL. For the sake of completeness, here we review BPTT using the same591

notations and settings described in Sec. 2.592

BPTT can be obtained by directly summing derivatives of the total loss Ltotal(1, T ) w.r.t. all interme-593

diate variables sk(t) for all k ∈ {1, ..., N} and t ∈ {1, ..., T}:594

∂Ltotal(1, T )

∂Wi,j
=

T∑
t=1

N∑
k=1

∂Ltotal(1, T )

∂sk(t)
× ∂sk(t)

∂Wi,j(t)
(55)

where we introduce the notation
∂sk(t)

∂Wi,j(t)
denoting the derivative of sk(t) w.r.t. the variable595

representing the weight Wi,j at time t, Wi,j(t) (meaning that sk(t−1) is a constant w.r.t Wi,j(t) and596

thus,
∂sk(t)

∂Wi,j(t)
is only the first term of

∂sk(t)

∂Wi,j
in Eq. 4, i.e.,

∂sk(t)

∂Wi,j(t)
= xj(t)1k=i). This allows597

us to write gradients w.r.t. the weights at a specific time step, e.g.,
∂Ltotal(1, T )

∂Wi,j
=

T∑
τ=1

∂Ltotal(1, T )

∂Wi,j(τ)
.598

By introducing the classic notation δ(t) ∈ RN with δk(t) =
∂Ltotal(1, T )

∂sk(t)
∈ R for all k ∈ {1, ..., N},599

δk(t) =

T∑
τ=1

∂L(τ)
∂sk(t)

=

T∑
τ=t

∂L(τ)
∂sk(t)

=
∂L(t)
∂sk(t)

+

T∑
τ=t+1

∂L(τ)
∂sk(t)

(56)

=
∂L(t)
∂sk(t)

+

N∑
n=1

T∑
τ=t+1

∂L(τ)
∂sn(t+ 1)

× ∂sn(t+ 1)

∂sk(t)
(57)

Since
T∑

τ=t+1

∂L(τ)
∂sn(t+ 1)

= δn(t+ 1) in Eq. 57, we obtain the backward recursion formula for δ(t):600

δk(t) =
∂L(t)
∂sk(t)

+

N∑
n=1

δn(t+ 1)× ∂sn(t+ 1)

∂sk(t)
=

∂L(t)
∂sk(t)

+

N∑
n=1

δn(t+ 1)Rn,kσ
′(sk(t)) (58)

∂Ltotal(1, T )

∂Wi,j
=

T∑
t=1

N∑
k=1

δk(t)×
∂sk(t)

∂Wi,j(t)
=

T∑
t=1

δi(t)xj(t) (59)

In the end, all quantities involved in these equations can be expressed as matrix-matrix/vector601

multiplications, element-wise vector multiplications ⊙, or outer products between two vectors ⊗:602

δ(t) =
∂L(t)
∂s(t)

+ (R⊺δ(t+ 1))⊙ σ′(s(t)) ;
∂Ltotal(1, T )

∂W
=

T∑
t=1

δ(t)⊗ x(t) (60)

The formula for
∂Ltotal(1, T )

∂R
can be derived analogously. This is the derivation which is obtained as a603

“natural” extension of the standard backpropagation algorithm for feedforward networks, by unfolding604

the RNN over time. BPTT requires to store intermediate activations s(t) ∈ RN (and inputs x(t) ∈605

RD) for all t ∈ {1, .., T}, resulting in the space complexity of O(T (N+D)) ∼ O(TN). We can only606

compute the gradients
∂Ltotal(1, T )

∂W
after going through the entire sequence (because of the backward607

recursion to compute δ(t); Eq. 60/Left). The corresponding (per-update) time complexity is O(TN2).608

Technically speaking, one could also adopt BPTT for online learning (by applying BPTT at each time609

step; real-time BPTT [47]). However, that would result in many redundant computations, with a time610

complexity of order of O(T 2N2) which is intractable in practice, and more expensive than RTRL’s611

O(N4) for long sequences with T > N .612
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B Experimental Details and Extra Results613

B.1 Diagnostic Tasks614

Copy task. Here we provide details of the experiments on the copy task presented in Sec. 4.1. Let615

ℓ be a positive integer. Sequences in the copy task have a length 2ℓ where the ℓ first symbols are616

either 0 or 1, and all others are #. The task is to sequentially read symbols in such a sequence, and to617

output the binary pattern presented in the first part of the sequence when reading the sequence of #618

in the second part. We conduct experiments with ℓ = {50, 500}. Unlike prior work (see, e.g., [10]),619

we do not introduce any curriculum learning; we train models from scratch on the entire dataset620

containing sequences of length ranging from 2 to 2ℓ. Note that we do not conduct much of a hyper-621

parameter search; we find that for this task, trying a few values is enough to find configurations622

that achieve 100% accuracy. The corresponding hyper-parameters are as follows. Respectively for623

ℓ = (50, 500), we use a learning rate of (1e−4, 3e−5), a batch size of (512, 128), and a hidden layer624

size of (1024, 2048). We apply a gradient norm clipping of 1.0, and use the Adam optimiser. The625

model has no input embedding layer; one-hot representations of the input symbols are directly fed to626

the recurrent eLSTM layer (Sec. 3.1).627

Remarks on computational capabilities of eLSTM. As noted in the introduction, eLSTM has628

certain limitations in terms of computational capabilities. In fact, certain theoretical results/limitations629

known for one-layer Quasi-RNN [48] directly apply to eLSTM (and other element-wise recurrent630

NNs). While we do not observe any empirical limitations on the main tasks of this work (Sec. 4),631

we find one algorithmic task on which eLSTM is not successful (at least we failed to find successful632

configurations), which is the code execution task [49, 44]. While we refer to the corresponding papers633

for the task description, this task requires the model to maintain dynamically changing values of a634

certain number of variables. We are not successful at finding any configuration of our eLSTM that635

achieves 100% sequence-level accuracy on this task, while this is straightforward with the standard636

fully recurrent LSTM.637

Remarks on language modelling. Another popular “diagnostic” task used in recent RTRL research638

is small-scale language modelling (see, e.g., [10]). However, as we already discuss in Sec. 5, in639

practice, language modelling may not be the best target application of RTRL in modern deep learning640

(apart from test-time online adaptation, i.e., dynamic evaluation [50, 51], maybe). While we also641

conduct brief language modelling experiments using the Penn Treebank dataset (as in [10]) in our642

preliminary studies, we do not find any interesting result (beyond tiny perplexity improvements) that643

is worth being reported here.644

B.2 DMLab645

Here we provide details of our DMLab experiments. We use two memory tasks646

rooms_select_nonmatching_object and rooms_watermaze in Sec. 4.2, and one reactive task647

room_keys_doors_puzzle in Sec. 4.3. For the corresponding task descriptions and examples648

of game screenshots, we refer to https://github.com/deepmind/lab/blob/master/game_649

scripts/levels/contributed/dmlab30/README.md#select-non-matching-object. We650

use observations based on DMLab’s RGB_INTERLEAVED. Our base model architecture is IMPALA’s651

deep variant [31]. Action space discretisation is also based on IMPALA [31]. Note that, unlike our652

work, some prior work (e.g., R2D2 [32]) use some “improved” versions of the action space discreti-653

sation [52]. Regarding the reward clipping, no sophisticated asymmetric clipping [31] is used but the654

simple [−1, 1] clipping. Training hyper-parameters/configurations are listed in Table 3. For the mem-655

ory tasks, pre-training (Sec. 4.2) is done using TBPTT with M = 100. Our implementation is based656

on torchbeast [53]. We run three main training runs. Each run requires about a day of training on657

a V100 GPU (this is also the case with ProcGen and Atari). Also note that DMLab is CPU intensive.658

For evaluation, we first evaluate the final model checkpoint on three sets of 100 test episodes each;659

resulting in three mean test scores for each training run. We average these scores to obtain a single660

mean score for each training run. The final number we report is the mean and standard deviation of661

these scores across three training runs.662
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Table 3: Hyper-parameters for RL experiments. Parameters at the bottom are common to all settings
(which are essentially taken from the Atari configuration of Espeholt et al. [31]).

Parameters DMLab Atari Procgen

Input image dimension 3x96x72 1x84x84 3x64x64
4-frame stack No Yes No
Action repeat 4 4 No

RNN dimension 512 256 256

Number of IMPALA actors 48
Discount 0.99

Learning rate 0.0006
Batch size 32

Gradient clipping 40
Loss scaling factors (baseline, entropy) (0.5, 0.01)
RMSProp (alpha, epsilon, momentum) (0.99, 0.01, 0)

B.3 ProcGen663

All our experimental settings in ProcGen enviroments are the same as for DMLab described above,664

except that no action repeat is used (see Table 3 for a comprehensible overview). Following [29], we665

use 500 levels for training. As we note in the main text, Chaser is the only ProcGen environment where666

we observe clear benefits of recurrent policies. In our preliminary studies, we also test Caveflyer/hard,667

Caveflyer/memory, Dodgeball/memory, Jumper/hard, Jumper/memory, and Maze/memory. However,668

in our settings, we do not observe any notable benefits of LSTM-based policies in these environments669

over the feedforward baseline, except some improvements in Dodgeball/memory mode: 10.1± 0.4670

(feedforward) vs. 12.7± 0.6 (LSTM) on the training set.671

B.4 Atari672

All our experimental settings in the Atari environments are the same as for DMLab described above,673

except that 4-frame stacking is used (see also Table 3), and that we use 5 sets of 30 episodes each674

for evaluation. As stated in the main text, our selection of five environments follows Kapturowski675

et al. [32]. Regarding other tasks, we also consider Solaris from Atari, as Kapturowski et al. [32] find676

longer BPTT spans useful for this task. However, they achieve such improvements by training for677

10 B environment frames, which are beyond our compute budget (800 M frames is our reasonable678

number); we tried up to 4 B steps, but without observing benefits of RTRL. Similarly, no real benefit679

of RTRL is observed on Skiing within this number of steps (except that RTRL and Feedforward680

agents immediately achieve a score around −8987 but remain stuck there forever, while the score of681

TBPTT-based agents gradually increases but only until circa −17418).682
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