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Abstract
Prior probability models are a central component of many image processing problems, but density estimation is 
notoriously difficult for high-dimensional signals such as photographic images. Deep neural networks have 
provided state-of-the-art solutions for problems such as denoising, which implicitly rely on a prior probability 
model of natural images. Here, we develop a robust and general methodology for making use of this implicit prior. 
We rely on a little-known statistical result due to Miyasawa (1961), who showed that the least-squares solution for 
removing additive Gaussian noise can be written directly in terms of the gradient of the log of the noisy signal 
density. We use this fact to develop a stochastic coarse-to-fine gradient ascent procedure for drawing high-
probability samples from the implicit prior embedded within a CNN trained to perform blind (i.e., unknown noise 
level) least-squares denoising. A generalization of this algorithm to constrained sampling provides a method for 
using the implicit prior to solve any linear inverse problem, with no additional training. We demonstrate this 
general form of transfer learning in multiple applications, using the same algorithm to produce high-quality 
solutions for deblurring, super-resolution, inpainting, and compressive sensing. 
 

Drawing high-probability samples from the implicit prior Solving linear inverse problems using the implicit prior

Image priors, manifolds, and noisy observations
Visual images lie on a low-dimensional manifold, spanned by 
various natural deformations.  
 
Images on this manifold are approximately equally probable - at 
least locally. Probability of x being a natural image, p(x), is zero 
everywhere except for x drawn from the manifold. 
 
An observed image, y, contaminated with Gaussian noise, z ~ 
N(0, σ2) is drawn from an observation density, p(y), which is a 
Gaussian-blurred version of the image prior.  
 
Moreover, the family of observation densities over different noise 
variances, pσ(y), forms a Gaussian scale-space representation of 
the prior analogous to the temporal evolution of a diffusion 
process.  

Least squares denoising

Exposing the implicit prior through Empirical Bayes estimation

x̂(y) =

Z
x p(x|y) dx

= y + �2ry log p(y)

For Gaussian noise contamination, the least squares estimate may be written (exactly) as:

This is Miyasawa’s Empirical Bayes formulation (1961), which expresses the denoising operation in terms of the 
gradient of the prior predictive density, p(y). 

Algorithm in a nutshell: 

• Use denoiser-defined gradient to go uphill in probability  
• Do this iteratively 
• On each step, effect noise decreases, and effective prior becomes less blurred. Gradient step size automatically      
adapts to each noise level.  
• This coarse to fine optimization procedure converges to a point on the manifold! 

[from Freeman & Ziemba, 2011]
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x̂(y) = min
x̂

Z
kx̂� xk2 p(x|y) dx

=

Z
x p(x|y) dx

=

Z
x

p(y|x)p(x)
p(y)

dx

Noisy observation:

The least squares estimate of the true signal 
is the conditional mean of the posterior:

Schedule for noise amplitude, γt , ensures that noise drops as σt
2= (1 − βh)2σt-1

2 , where  β ∈ [0, 1]

Two-dimensional simulation/visualization: 
End of red line segments shows the least-squares optimal denoising solution xˆ(y) for each noisy signal, y.

Two sequences of images, yt, from the iterative sampling procedure, with different initializations, y0, and no 
added noise (β = 1).

More samples arising from different inializations. Left: A moderate level of noise (β = 0.5) is injected in each 
iteration. Right: A high level of injected noise (β = 0.1).

Convergence of σt for three synthesized patches with different values of β. Convergence is faster than the 
scheduled rate.

Given a set of linear measurements of an image, xc = M T x, where M is a low-rank measurement matrix, we use 
an enhanced version of our algorithm to recover the original image

Inpainting

original image corrupted image Restored examples, with different random initializations

In all the following four linear inverse applications, original image is in the top row, corrupted image is in the 
middle row, and restored image is in the bottom row.

Random missing pixels 
10% of pixels prserved.

De-blurring 
 10% of frequencies preserved.

Super-resolution 
Resolution reduced by averaging over 4x4 blocks  

(dimensionality reduction to 6.25%).

Compressive sensing 
Measurement matrix M contains  
random, orthogonal unit vectors,  

with dimensionality reduced to 10%

Two-dimensional visualization: trajectory of 
our iterative coarse-to-fine inverse algorithm 

Solving linear inverse problems using the prior implicit in a denoiser
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