We are genuinely grateful for the reviewer's thorough and insightful comments, which have contributed significantly to improving the quality of our
paper. In our efforts to share our insights and the notably effective design with the research community, we have significantly enhanced the overall
quality of the manuscript over the past month. Additionally, we are committed to addressing the concerns raised by the reviewer in the upcoming
revised version.

W1:

(a) We agree with the reviewer that several other factors affect the performance of MLLMs, such as the capability of the language model, the
temperature parameter used during generation, and so forth. However, our primary focus is on examining the critical factors involved in augmenting
LLMs with visual perception and cognition abilities to develop MLLMs. Specifically, we believe that (1) the alignment of vision-language
representations and (2) the alignment of the LLM's comprehension with visual semantics encompass the core process of establishing the visual
perception and cognitive skills of MLLMs. Therefore, we assume that other influencing factors, apart from the visual component, remain constant.
We will include this clarification in the revised manuscript in hopes of addressing the reviewer’s concerns.

(b) We apologize for any confusion caused by the phrasing in the current version. Our intended meaning is as follows: Images contain rich visual
semantic information, including but not limited to object attributes, spatial relationships between objects, sizes, and colors. Capturing all of these
visual semantics through textual descriptions is challenging, and doing so may lead to the loss of valuable visual information. Therefore, the
primary aim of vision-language alignment should focus on distributional alignment, which enhances the processing of visual representations by
LLMs, rather than on semantic alignment, which attempts to translate visual semantics into textual semantics. Additionally, many existing
approaches utilize relatively simple projection layers (such as MLPs or linear layers) for achieving vision-language alignment, which, given their
capabilities, are better suited for distributional alignment than semantic alignment.

In response to the reviewer’s suggestions, we have included two sets of visual analyses. The first set (ex1) presents a comparison of visual token
distributions before and after projection with text token distributions, while the second set (ex2) examines the semantic similarity between the
projected visual tokens and both the visual tokens before projection and the text tokens. Specifically, we randomly selected 100 images and
generated corresponding textual captions using a well-trained LLaVA-Next model. For experiment (ex1), we utilized PCA to reduce all token
embeddings to 2D and visualize their distributions. In experiment (ex2), to evaluate the semantic similarity between a projected visual token and its
counterpart before projection, we defined the attribute vector of a visual token as its cosine similarity to all visual tokens derived from the same
image. Subsequently, the semantic similarity between visual tokens is calculated by computing the cosine similarity of their attribute vectors. Here
is the formal mathematical definition:

1. Defining the Attribute Vector:
Suppose we have a visual token v; from image I, and there are N visual tokens in total from image I, denoted as {vl, V... ,vN}. Then
the attribute vector a; of v; can be represented as:

a; = [cos(0;1), cos(0i2), . .., cos(6;n)]

Where cos(6;;) is the cosine similarity between visual tokens v; and v;, calculated as:
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2. Calculating Semantic Similarity between Visual Tokens:
The semantic similarity between two visual tokens v; and v; is obtained by computing the cosine similarity of their attribute vectors.
Suppose a; and a; are the attribute vectors of v; and v; respectively, then the semantic similarity S(v,-, vj) between them can be expressed
as:
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Furthermore, we define the semantic similarity between the projected visual tokens and textual tokens as the maximum cosine similarity between
the visual token and all textual tokens in the caption of its source image.

3. Calculating Semantic Similarity between Visual and Textual Tokens:
Suppose we have a visual token v; from image I, and there I has a caption with IV textual tokens {tl, to, ... ,tn}. The semantic similarity
S (v, {t1, 2, . .., t,}) between the visual token v; and textual tokens is:
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We report the visualized results of (ex1) and (ex2):

(Figure ex1) Comparison of visual token distributions before and after projection with text token distributions:
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(Figure ex2) Comparison of semantic similarities between the projected visual tokens and both the visual tokens before projection and the text
tokens.
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Our findings from Experiment 1 indicate that, although not yet perfect, the current visual-language pre-alignment training effectively maps the
distribution of visual tokens into a space similar to that of textual tokens. Furthermore, Experiment 2 demonstrates that the projected visual tokens
maintain a high degree of semantic similarity with their counterparts before projection, but they do not establish a direct semantic correspondence
with the textual tokens.

W2:

(a) Specifically, we design SA-Perceiver, which comprising four R1024x1024 jinegy layers and one R1024x4096 jinegr layer (save 60% parameters
compared with the projection module in LLaVA-Next, which consists of a R1024x4096 5 g R4096x4096 jineqy layer), to integrate high-resolution
image information into low-resolution image features at a lower cost. Only the low-resolution features are then utilized as input to the LLM. Given
that the projection module (including MLP, Q-former, and our SA-Perceiver) has a significantly lower parameter count and computational complexity



than the LLM, the overall system latency is predominantly dictated by the computation delay of the LLM. As SA-Perceiver enables a reduction of
visual sequence length up to four-fold, and the time complexity of LLM is O (nz) our method can theoretically achieve a maximum reduction in
latency by a factor of 16. However, system latency is also affected by factors such as the number of input text tokens, the length of the generated
sentences, and other intricate system dynamics. To more accurately assess the impact of SA-Perceiver in reducing computational overhead, we
randomly select 1,000 images, remove their textual instructions, resize them to various resolutions, and compare the latency and FLOPs of our
method and LLaVA-Next during the feedforward process.

Latency of processing 1000 images (seconds):

Method 336x336 672x336 1008x336 672x672
LLaVA-Next 449 475 564 738
VLSA 373 377 385 399

FLOPs in processing 1000 images (GFLOPs):

Method 336x336 672x336 1008x336 672x672
LLaVA-Next 18798.9 274443 36462.3 45840.6
VLSA 9842.3 9884.7 10190.8 10539.3

(b) To comprehensively address the concerns about the architecture of SA-Perciever, we first supplement the justification and ablations about the
current design and then report the performances on additional ablations provided by the reviewer.

The SA-Perceiver is designed to integrate features from high-resolution images into the features of low-resolution images. To achieve this, we first
implement a cross-attention layer that collects information from high-resolution images. As these high-resolution images are divided into multiple
sub-images during preprocessing, we have subsequently incorporated a self-attention layer to enhance the modeling of interrelationships among
the sub-image information. To ensure parameter efficiency, we have omitted certain projection layers typically found in the standard attention
mechanism. To demonstrate the effectiveness of these design choices, we conducted the following ablation experiments on SA-Perceiver: (ex3)
removing the self-attention layer and (ex4) retaining all linear projections in cross and self-attention (including those for key, query, value, and
output).

Variant GQA SQA-I DocVQA
(ex3) w/o. self-attn 65.1 76.9 724
(ex4) full projections 65.0 77.3 75.3
VLSA 65.3 77.5 75.2

Our rationale for introducing the learnable parameter P stems from the requirement of the text-to-image model, stable diffusion 3-medium, utilized
in our reconstruction training, which necessitates a pooled embedding as input to encapsulate global semantic information (this was implicitly
mentioned in line 250, but we will clarify it further). To better substantiate the efficacy of learnable parameter P, we have included an ablation study
employing global pooling on the aligned visual tokens to generate the pooled embedding.

Variant GQA SQA- DocVQA
(ex5) Global Pooling 64.9 76.2 73.3
Learnable Parameter 65.3 77.5 75.2

In response to the reviewer's suggestion regarding the three ablation studies, we employed global average pooling to compute the pooled
embedding and subsequently report on their performance.

Variant GQA SQA-I DocVQA
(ex6) High-Res. Only 62.1 701 73.9
(ex7) High-Res. + Self-Attn 62.3 69.6 74.1
(ex8) [High-Res., Low-Res.] + Self-Attn 65.5 76.9 69.8
LLaVA-Next ([High-Res., Low-Res.]) 64.6 75.1 73.7

VLSA 65.3 77.5 75.2



Before delving into the analysis of these ablation results, it is essential to highlight that none of the variants effectively address the surge in
computational costs associated with high-resolution inputs, which serves as a key motivation for our sa-perceiver. By comparing (ex6), (ex7), and
other findings, we observe that the lack of low-resolution inputs adversely impacts the performance of MLLM on general VQA tasks. Alongside the
experimental results presented in the main text, we hypothesize that low-resolution inputs enhance MLLM's capacity to perceive global semantics,
while high-resolution inputs augment its ability to discern fine-grained semantics. Notably, we find that employing self-attention in (ex8) to enhance
the interaction between high and low-resolution features improves global semantic perception, yet significantly hinders performance on tasks
necessitating fine-grained perception, such as document understanding. In contrast, our VLSA approach provides a balanced enhancement of
various capabilities while conserving computational resources.

(C) Following the constructive suggestions, we have conducted ablations on the two tasks within cognition alignment and provided some
observational conclusions.

Ablation study on the two tasks of fine-tuning: (ex9) predicting Codebook indices and (ex10) predicting RGB pixel values.

Variant Predict RGB Predict Codebook indices Al2D SQA-I ChartQA
w/o. Cognition Alignment X X 68.2 74.1 67.4
(ex9) w/o. RGB X v 69.8 77.2 67.7
(ex10) w/o. Codebook v X 68.4 71.6 67.5
VLSA v v 71.4 77.5 67.9

By comparing the results without cognition alignment to (ex9) and (ex10), we observe that predicting RGB values alone enhances the model's fine-
grained cognitive capabilities, benefiting document understanding tasks. However, it may overly emphasize low-level semantics, detrimentally
affecting the understanding of high-level semantics and leading to a significant performance drop on SQA. In contrast, predicting codebook indices
alone consistently improves performance across various tasks. This might be attributed to VQ-VAE, as an autoencoder, being able to balance
semantics at different levels. Furthermore, combining both tasks yields further improvements.

(d)
We report the performance of VLSA with the replacement of the backbone model to LLaMA2-7B, Vicuna1.5-7B, and Vicuna1.5-13B. Additionally,
we report the performance of LLaVA-Next with these backbones as references.

Variant LLM GQA Al2D DocVQA
LLaVA-Next LLaMA2-7B 62.1 66.7 71.8
(ex11) VLSA LLaMA2-7B 63.0 68.4 73.2
LLaVA-Next Vicuna1.5-7B 62.2 66.4 72.5
(ex12) VLSA Vicuna1.5-7B 63.6 67.5 74.6
LLaVA-Next Vicuna1.5-13B 65.4 67.0 727
(ex13) VLSA Vicuna1.5-13B 67.2 69.2 76.8

We also apply VLSA to Qwen-VL[1] and LLaMA-Adapter V2[2] to demonstrate generality, and reported the preliminary experimental results. More
results and implementation details will be included in the revised manuscript.

Variant GQA ChartQA DocVQA SEED-Bench MME COCO Cap
Qwen-VL 59.3 65.7 65.1 56.3 - -
(ex14) Qwen-VL + VLSA 62.1 66.4 65.4 62.0 - -
LLaMA-Adapter V2 - - - 32.7 1221 122.2
(ex15) LLaMA-Adapter V2 + VLSA - - - 413 1475 143.1

[1] Qwen-vl: A versatile vision-language model for understanding, localization, text reading, and beyond
[2] LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model

W3:

To address the reviewer's concern, we would like to clarify that incorporating additional pre-trained models did not significantly increase the training
costs. Specifically:



(1) The VQ-VAE model is employed solely for re-annotating the open-source dataset, which involves collecting the necessary labels for cognitive
alignment. It does not directly participate in the training process, thereby not introducing any additional computational overhead.

(2) When training the VLSA, the LDM is required to perform only a single denoising step per iteration, in contrast to the multi-step denoising
process used for image generation. Consequently, its computational overhead is much lower than the feedforward process of the LLM, and the
additional costs brought by LDM are substantially outweighed by the efficiencies gained through our compressive image encoding (SA-Perceiver).
In reference to the comparison method outlined in W2(a), we have quantified the impact of incorporating reconstructive training on both latency and
FLOPs. We also report the effects of reconstructive training on the total training time of instruction tuning stage (with our 980K dataset on 16 Nvidia
A100). These results demonstrate that our method maintains both generality and scalability.

Latency of processing 1000 images (seconds):

Method 336x336 672x336 1008x336 672x672
LLaVA-Next 449 475 564 738
VLSA(w/o. Reconstruct) 373 377 385 399
VLSA(w/. Reconstruct) 391 394 408 426

FLOPs in processing 1000 images (GFLOPs):

Method 336x336 672x336 1008x336 672x672
LLaVA-Next 18798.9 274443 36462.3 45840.6
VLSA(w/o. Reconstruct) 9842.3 9884.7 10190.8 10539.3
VLSA(w/. Reconstruct) 11646.1 12118.5 12545.0 13443.8

Training time in instruction tuning stage (hours):

Method Training Time
LLaVA-Next 27.3
VLSA(w/o. Reconstruct) 14.2
VLSA(w/. Reconstruct) 16.9

Furthermore, following the reviewer's suggestion, we conducted ablation experiments to evaluate the performance of VLSA using standard two-
stage training (we drop our stage 2 training for VLSA) and a smaller LDM(using Stable Diffusion 1.5). The results demonstrate that our method still
significantly improves performance. (The impact of removing reconstructive training or cognition alignment has already been included in Table 3.)

Variant GQA SQA-I DocVQA
LLaVA-Next 64.6 751 73.7
(ex16) Two-Stage Training 65.2 77.0 74.6
(ex17) Smaller LDM 64.8 76.8 75.1
VLSA 65.3 77.5 75.2
W4:
Fixed!

Q1:

Our aim is to support MLLMs in achieving a comprehensive understanding of images while eliminating reliance on additional manual annotations.
We initially explored using RGB values as labels, as this method provides a straightforward way for self-supervised semantic annotation. However,
this approach does not consistently improve performance across various downstream tasks. We hypothesize that this limitation arises from RGB
values only capturing superficial semantics, which may impede the grasp of deeper semantic concepts.

Consequently, we began investigating methods for annotating deep image semantics in a self-supervised manner. Then, pre-trained VQ-VAE
emerged as an ideal solution. It provides discretized semantic labels that are compatible with textual input. Moreover, as an autoencoder, it
effectively encodes and preserves original image information, aligning well with our objectives. Although VQ-VAE achieved good results, we found



that integrating these two approaches further improves performances. The underlying reason for this improvement may stem from relying
exclusively on deep semantics such as codebook indices to comprehend shallow information is not straightforward, thereby necessitating a larger
dataset for effective training. However, introducing the RGB value prediction task mitigates this issue.

Q2:

We had not previously attempted this approach, but it remains a highly intriguing endeavor. Our preliminary experiments indicate that this method
enhances the convergence speed of the reconstruction loss during the initial training phase, although it does not seem to improve the final
convergence performance. We believe that incorporating caption embeddings could alleviate the learning difficulties associated with epigone
embeddings, as they would only need to capture the residuals between the caption embeddings and the original image semantics. However,
acquiring image captions during inference still poses a significant challenge. (The authors intend to continue refining the implementation of this
approach and will provide feedback to the reviewer if new results emerge during the rebuttal period.)



