We sincerely appreciate the constructive feedback provided by the reviewer, which is invaluable for enhancing the quality of our paper. Below are our
responses to the raised concerns. We also commit to accurately reflecting these points in the revised manuscript.

W1:

Our statement in the Limitation section may have been somewhat misleading. While it is indeed the case that the suboptimal combination strategy of the
two types of loss can restrict VLSA from realizing its full potential, it is important to highlight that these two losses consistently operate synergistically, even
when using the simplest balancing method, where the ratio between the losses is not adjusted, and both losses are applied throughout all training phases.
To further illustrate this point, we have included Figure ex1, which depicts the language model loss curves before and after incorporating the
reconstruction loss in Stage 1 training of VLSA. The results demonstrate that the introduction of the reconstruction loss leads to both a faster convergence
and a more favorable final outcome for the language modeling loss. Therefore, our method does not hinder the optimization efficiency. Our primary focus
in this article is to highlight the effectiveness of the proposed method, while further optimization will be addressed in future work.

(Figure ex1) The influence of reconstructive training on language modeling loss.
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To address the reviewer's concern, we would like to (a) clarify that incorporating additional pre-trained models as well as two types of alignments did not
significantly raise the training costs. (In fact, our method significantly improved the training efficiency compared to LLaVA-Next.) We will also demonstrate

(b) the generality and scalability of VLSA by integrating it with various language models and different types of MLLMs, and adapting it to much higher input
resolution.

(a):

(1) In cognition alignment, the VQ-VAE model is utilized exclusively for re-annotating the open-source dataset, which involves gathering the necessary
labels for deep visual semantics without the involvement of human effort. It does not directly participate in the training process, thereby not introducing any
additional computational overhead. Furthermore, cognition alignment is carried out concurrently with the standard instruction tuning process of MLLMs,

without introducing any substantial new training phases. Therefore, cognition alignment has excellent scalability and is highly adaptable to other MLLM
frameworks.

(2) In perception alignment, the LDM is required to perform only a single denoising step per iteration, in contrast to the multi-step denoising process used
for image generation. Consequently, its computational overhead is much lower than the feedforward process of the LLM, and the additional costs brought
by LDM are substantially outweighed by the efficiencies gained through our compressive image encoding (SA-Perceiver). We will first show that SA-

Perceiver can significantly reduce computational overhead and enhance efficiency. Then, we will compare the computational efficiency of our VLSA (with
LDM incorporated) with LLaVA-Next.

SA-Perceiver comprising four R1024x1024 |jngar layers and one R1024x409% |jngar layer (save 60% parameters compared with the projection module in
LLaVA-Next, which consists of a R1024x4096 5y g RA096x4096 |inegr layer), to integrate high-resolution image information into low-resolution image
features at a lower cost. Only the low-resolution features are then utilized as input to the LLM. Given that the projection module (including MLP, Q-former,
and our SA-Perceiver) has a significantly lower parameter count and computational complexity than the LLM, the overall system latency is predominantly
dictated by the computation delay of the LLM. As SA-Perceiver enables a reduction of visual sequence length up to four-fold, and the time complexity of
LLMis O (nz) our method can theoretically achieve a maximum reduction in latency by a factor of 16. However, system latency is also affected by
factors such as the number of input text tokens, the length of the generated sentences, and other intricate system dynamics. To more accurately assess



the impact of SA-Perceiver in reducing computational overhead, we randomly select 1,000 images, remove their textual instructions, resize them to
various resolutions, and compare the latency and FLOPs of our method and LLaVA-Next during the feedforward process. In the same way, we have
quantified the impact of incorporating reconstructive training on both latency and FLOPs. All these results are included in the following table.

Latency of processing 1000 images (seconds):

Method 336x336 672x336 1008x336 672x672
LLaVA-Next 449 475 564 738
VLSA(w/o. Reconstruct) 373 377 385 399
VLSA(w/. Reconstruct) 391 394 408 426

FLOPs in processing 1000 images (GFLOPs):

Method 336x336 672x336 1008x336 672x672
LLaVA-Next 18798.9 274443 36462.3 45840.6
VLSA(w/o. Reconstruct) 9842.3 9884.7 10190.8 10539.3
VLSA(w/. Reconstruct) 11646.1 12118.5 12545.0 13443.8

We also report the effects of reconstructive training on the total training time of instruction tuning stage (with our 980K dataset on 16 Nvidia A100). These
results demonstrate that our method maintains both generality and scalability.

Training time in instruction tuning stage (hours):

Method Training Time
LLaVA-Next 27.3
VLSA(w/o. Reconstruct) 14.2
VLSA(W/. Reconstruct) 16.9

(b):

We report the performance of VLSA with the replacement of the backbone model to LLaMA2-7B, Vicuna1.5-7B, and Vicuna1.5-13B. Additionally, we
report the performance of LLaVA-Next with these backbones as references.

Variant LLM GQA Al2D DocVQA
LLaVA-Next LLaMA2-7B 62.1 66.7 71.8
(ex2) VLSA LLaMA2-7B 63.0 68.4 73.2
LLaVA-Next Vicuna1.5-7B 62.2 66.4 725
(ex3) VLSA Vicuna1.5-7B 63.6 67.5 74.6
LLaVA-Next Vicuna1.5-13B 65.4 67.0 72.7
(ex4) VLSA Vicuna1.5-13B 67.2 69.2 76.8

We also apply VLSA to Qwen-VL[1] and LLaMA-Adapter V2[2] to demonstrate generality, and reported the preliminary experimental results. More results
and implementation details will be included in the revised manuscript.

Variant GQA ChartQA DocVQA SEED-Bench MME COCO Cap
Qwen-VL 59.3 65.7 65.1 56.3 - -
(ex5) Qwen-VL + VLSA 62.1 66.4 65.4 62.0 - -
LLaMA-Adapter V2 - - - 32.7 1221 122.2
(ex6) LLaMA-Adapter V2 + VLSA - - - 41.3 1475 143.1

[1] Qwen-vl: A versatile vision-language model for understanding, localization, text reading, and beyond
[2] LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model



Finally, we increase the maximum input resolution of VLSA from 672x672 to 4096x4096, and report the preliminary experimental results.

Variant Res. GQA Al2D DocVQA

LLaVA-Next 672x672 64.6 69.5 73.7

VLSA 672x672 65.3 71.4 75.2

LLaVA-Next 4096x4096 68.4 72.7 76.2

(ex7) VLSA 4096x4096 69.5 76.6 80.1
W3:

In response to the reviewer's suggestions, we have supplemented the preliminary results on the BLINK dataset, which involves visual prompts as inputs,
and the interleaved benchmarks DEMON to further demonstrate the generalization capability of our method. Specifically, for the BLINK dataset, we
integrated VLSA with both the 7B and 13B versions of LLaVA 1.5, comparing our outcomes against the officially reported results. For the DEMON
benchmarks, we combined VLSA with LLaMA-Adapter V2 and LLAVA V1.0, once again contrasting our findings with the official benchmarks. Detailed
implementation specifics will be included in the revised manuscript. The experimental results consistently demonstrate performance improvements
achieved by our method, thereby validating its versatility.

Comparisions on DEMON:

Visual

Multimodal Visual i Multimodal Knowledge Text-Rich Multi-image
Method . . Relation .
Dialogue Storytelling Cloze Grounded QA Image QA Reasoning
Inference
LLaMA-Adapter
Vo 14.2 175 13.5 18.0 44.8 32.0 440
(ex8) LLaMA-
Adapter V2 + 16.0 17.9 15.7 19.2 44.7 36.3 45.5
VLSA
LLaVA 7.8 10.7 8.3 15.9 36.2 28.3 41.5
(ex9)LLaVA + 10.2 11.5 15.8 16.1 36.3 37.2 44 4
VLSA . . . . . . .
Comparisions on BLINK:
Method Validation Test
LLaVA-1.57B 371 38.0
(ex10) LLaVA-1.5 7B + VLSA 39.3 39.9
LLaVA-1.5 13B 42.7 40.6

(ex11) LLaVA-1.5 13B + VLSA 46.1 45.3



