We sincerely appreciate the constructive feedback provided by the reviewer NZ7M, which is invaluable for enhancing the quality of our paper.
Below are our responses to the raised concerns. We also commit to accurately reflecting these points in the revised manuscript.

W1:

Regarding the motivation and novelty of using two-scale images:

Indeed, many existing works have adopted two-scale image features, as evidenced by LLaVA-Next, which serves as a baseline for our VLSA,
concatenating features from high and low-resolution images as input to capture multi-scale information. However, they always bring
considerable computational overhead since introducing high-resolution features boosts the LLM's input sequence length. Our contribution lies in
improving the efficiency of utilizing two-scale image features. We propose to leverage low-resolution images for (1) modeling the relationships
between high-resolution sub-images and (2) compressing the length of their feature sequence, thereby improving the performance while
alleviating computational burden.

Specifically, we design SA-Perceiver, which comprising four R1024x1024 jineqr layers and one [R1024x4096 jineqy layer (save 60% parameters
compared with the projection module in LLaVA-Next, which consists of a [R1024x4096 5 g R4096x4096 |jneqr layer), to integrate high-resolution
image information into low-resolution image features at a lower cost. Only the low-resolution features are then utilized as input to the LLM.
Given that the projection module (including MLP, Q-former, and our SA-Perceiver) has a significantly lower parameter count and computational
complexity than the LLM, the overall system latency is predominantly dictated by the computation delay of the LLM. As SA-Perceiver enables a
reduction of visual sequence length up to four-fold, and the time complexity of LLM is O (nz) our method can theoretically achieve a maximum
reduction in latency by a factor of 16. However, system latency is also affected by factors such as the number of input text tokens, the length of
the generated sentences, and other intricate system dynamics. To more accurately assess the impact of SA-Perceiver in reducing
computational overhead, we randomly select 1,000 images, remove their textual instructions, resize them to various resolutions, and compare
the latency and FLOPs of our method and LLaVA-Next during the feedforward process.

Latency of processing 1000 images (seconds):

Method 336x336 672x336 1008x336 672x672
LLaVA-Next 449 475 564 738
VLSA 373 377 385 399

FLOPs in processing 1000 images (GFLOPs):

Method 336x336 672x336 1008x336 672x672
LLaVA-Next 18798.9 274443 36462.3 45840.6
VLSA 9842.3 9884.7 10190.8 10539.3

Besides, as demonstrated in the main text, our compressive image encoding coupled with reconstructive training achieves performance
comparable to or even better than other high-resolution methods. The authors believe this renders our work highly competitive compared to
related efforts.

Regarding the motivation and novelty of cognition alignment:

The work [a] mentioned by the reviewer and some related works can, to a certain extent, facilitate MLLM's cognition abilities by improving the
understanding of objectives and some pre-defined interrelations. However, these methods have some limitations. (1) Most additional fine-tuning
tasks rely on manually annotated data (or a semi-automatic annotation process with human participation). (2) Existing tasks focus on certain
attributes, making it challenging to comprehensively cover images' visual semantics. In contrast, our cognition alignment is constructed in a self-
supervised manner, eliminating the need for manual annotation and significantly enhancing the model's scalability. Furthermore, given that VQ-
VAE functions as an autoencoder, its image embeddings can preserve a broad spectrum of semantic information within the image, extending
beyond merely the semantics associated with specific human-defined categories. Utilizing the codebook indices of VQ-VAE as learning targets
can facilitate a more comprehensive understanding of visual semantics by the model.

We promise to bring more comparisons with related works in the revised manuscript.

W2:
In the revised manuscript, we will incorporate the following evaluation:

In response to the reviewer's comments regarding to SA-Perceiver:
The SA-Perceiver is designed to integrate features from high-resolution images into the features of low-resolution images. To achieve this, we



first implement a cross-attention layer that collects information from high-resolution images. As these high-resolution images are divided into
multiple sub-images during preprocessing, we have subsequently incorporated a self-attention layer to enhance the modeling of
interrelationships among the sub-image information. To ensure parameter efficiency, we have omitted certain projection layers typically found in
the standard attention mechanism. To demonstrate the effectiveness of these design choices, we conducted the following ablation experiments
on SA-Perceiver: (ex1) removing the self-attention layer and (ex2) retaining all linear projections in cross and self-attention (including those for
key, query, value, and output).

Variant GQA SQA-I DocVQA
(ex1) w/o. self-attn 65.1 76.9 724
(ex2) full projections 65.0 77.3 75.3
VLSA 65.3 77.5 75.2

In response to the reviewer's comments regarding the use of LDMs:
We previously outlined two intuitive reasons in Line260 for adopting LDMs instead of conventional AEs (AutoEncoder) for image reconstruction:

(1) Employing pretrained text-to-image LDMs can mitigate information loss during image encoding while facilitating the alignment of visual and
textual representations.
(2) Pretrained text-to-image LDMs excel at accomplishing reconstructive tasks from a semantic perspective, thus assisting in the extraction of

rich visual semantics during image encoding.

A further explanation for (2): This is attributed to the pretraining objectives of LDMs, which equip them with the capability to generate images
from abstract, high-level semantics, whereas traditional AEs are not explicitly constrained to extract or comprehend such high-level visual
semantics.

To further substantiate the necessity of using LDMs, we have conducted new ablations where we implemented reconstruction training using
pretrained VAE (ex3) and VQ-VAE (ex4) models. The revised manuscript will include detailed information on these two AE encoders.

Variant GQA SQA-I DocVQA
(ex3) Reconstruction by VAE 64.7 75.0 74.4
(ex4) Reconstruction by VQ-VAE 65.2 74.2 69.39
VLSA 65.3 77.5 75.2

In response to the reviewer's comments regarding VQ-VAE code indices:

We acknowledge that the task of Predicting Objects indeed facilitates the model's understanding of object-specific attributes. However, utilizing
codebook indices promotes a more comprehensive semantic alignment, which could be more advantageous for improving performance across
various downstream tasks. This advantage arises from the fact that codebook indices encapsulate a greater amount of information, as it
enables a visual decoder to reconstruct most details in images from them. To further support this viewpoint, we report the performances of
predicting codebook indices and predicting the bounding boxes provided by grounding DINO during fine-tuning. The implemental details will be
included in the revised manuscript.

Wa3:

(1) VLSA's generality:
We have applied VLSA to Qwen-VL[1] and LLaMA-Adapter V2[2], and reported the preliminary experimental results. More results and
implementation details will be included in the revised manuscript.

Variant GQA ChartQA DocVQA SEED-Bench MME COCO Cap
Qwen-VL 59.3 65.7 65.1 56.3 - -
(ex5) Qwen-VL + VLSA 62.1 66.4 65.4 62.0 - -
LLaMA-Adapter V2 - - - 32.7 1221 122.2
(ex6) LLaMA-Adapter V2 + VLSA - - - 41.3 1475 143.1

[1] Qwen-vI: A versatile vision-language model for understanding, localization, text reading, and beyond
[2] LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model



(2) Fairness in comparisions:

Since our model is developed based on the LLaVA-Next, we directly reference the models it has compared and strive to ensure a fair
comparison with LLaVA-Next. To clarify, all the results for LLaVA-Next presented in our tables were reproduced using the same CLIP encoder
and batch size as VLSA, guaranteeing a completely equitable comparison. To further address the reviewer's concerns, we provide the
performance of VLSA using SigLIP as the encoder.

Variant Vision Encoder Batchsize Al2D MMB DocVQA
LLaVA-Next (Reported) SigLIP 512 71.6 721 78.2
(ex7) LLaVA-Next (Reproduced) SigLIP 128 71.4 7.7 78.3
(ex8) VLSA SigLIP 128 73.1 72.9 80.1

Indeed, achieving a completely fair comparison with other methods is quite challenging. To the best of our effort, we have included the
performance of VLSA without the OCR training dataset (LLaVAR) and with the replacement of the backbone model to LLaMA2-7B and
Vicuna1.5-7B as references.

Variant LLM OCR Data GQA Al2D DocVQA
(ex9) VLSA LLaMA2-7B v 63.0 68.4 73.2
(ex10) VLSA Vicuna1.5-7B v 63.6 67.5 74.6
(ex11) VLSA LLaMA3-8B X 65.1 69.7 73.9
VLSA LLaMA3-8B v 65.3 71.4 75.2

(3) Mixed results in Table 3:

Our earlier interpretation of Table 3 may have been somewhat misleading. A comparison of experiments (2) and (3) reveals that compressive
image encoding significantly alleviates the perception performance degradation associated with lowering the actual input resolution.
Furthermore, experiment (4) demonstrates that, with reconstructive training, low-resolution inputs can achieve perception performance that
even surpasses that of high-resolution inputs in experiment (1), leading to substantial improvements across most tasks. The performance drop
observed in AI2D in the experiment (4) suggests that when providing LLMs with richer visual semantic information, they may struggle to
comprehend it accurately, potentially resulting in negative outcomes. This highlights the need for our proposed perception alignment to work in
conjunction with cognition alignment. Therefore, the experimental results presented in the table are still in line with our expectations.

(3)Missing Ablations:

In our previous responses, we have provided ablations regarding the structure of SA-Perceiver (ex1, ex2), the vision backbone (ex8), the
language model (ex9, ex10), and the type of image generation model used in reconstructive training (ex3, ex4). Here, we report the ablation
study on the two tasks of fine-tuning: (ex12) predicting Codebook indices and (ex13) predicting RGB pixel values.

Variant Predict RGB Predict Codebook indices Al2D SQA-I ChartQA
w/o. Cognition Alignment X X 68.2 741 67.4
(ex12) w/o. RGB X v 69.8 77.2 67.7
(ex13) w/o. Codebook v X 68.4 71.6 67.5
VLSA v v 71.4 77.5 67.9

By comparing the results without cognition alignment to (ex9) and (ex10), we observe that predicting RGB values alone enhances the model's
fine-grained cognitive capabilities, benefiting document understanding tasks. However, it may overly emphasize low-level semantics,
detrimentally affecting the understanding of high-level semantics and leading to a significant performance drop on SQA. In contrast, predicting
codebook indices alone consistently improves performance across various tasks. This might be attributed to VQ-VAE, as an autoencoder, being
able to balance semantics at different levels. Furthermore, combining both tasks yields further improvements.



