We sincerely appreciate the constructive feedback provided by the reviewer, which is invaluable for enhancing the quality of our paper. Below are our
responses to the raised concerns. We also commit to accurately reflecting these points in the revised manuscript.

W1:

To address the reviewer's concern, we would like to clarify that incorporating additional new compoents did not significantly raise the training costs. (In
fact, our method significantly improved the training efficiency compared to LLaVA-Next.)

(1) The VQ-VAE model is employed solely for re-annotating the open-source dataset, which involves collecting the necessary labels for cognitive
alignment. It does not directly participate in the training process, thereby not introducing any additional computational overhead.

(2) As for SA-Perceiver, which comprising four R1024x1024 |inagr layers and one R1024x4096 |inggr layer (save 60% parameters compared with the

R1024x4096 g g R4096x4096 |ineqy layer), to integrate high-resolution image information into low-

projection module in LLaVA-Next, which consists of a
resolution image features at a lower cost. Only the low-resolution features are then utilized as input to the LLM. Given that the projection module
(including MLP, Q-former, and our SA-Perceiver) has a significantly lower parameter count and computational complexity than the LLM, the overall
system latency is predominantly dictated by the computation delay of the LLM. As SA-Perceiver enables a reduction of visual sequence length up to four-
fold, and the time complexity of LLM is O (nz) our method can theoretically achieve a maximum reduction in latency by a factor of 16. However, system
latency is also affected by factors such as the number of input text tokens, the length of the generated sentences, and other intricate system dynamics.
To more accurately assess the impact of SA-Perceiver in reducing computational overhead, we randomly select 1,000 images, remove their textual

instructions, resize them to various resolutions, and compare the latency and FLOPs of our method and LLaVA-Next during the feedforward process.

Latency of processing 1000 images (seconds):

Method 336x336 672x336 1008x336 672x672
LLaVA-Next 449 475 564 738
VLSA 373 377 385 399

FLOPs in processing 1000 images (GFLOPs):

Method 336x336 672x336 1008x336 672x672
LLaVA-Next 18798.9 274443 36462.3 45840.6
VLSA 9842.3 9884.7 10190.8 10539.3

(3) During the reconstructive training, the LDM is required to perform only a single denoising step per iteration, in contrast to the multi-step denoising
process used for image generation. Consequently, its computational overhead is much lower than the feedforward process of the LLM, and the additional
costs brought by LDM are substantially outweighed by the efficiencies gained through our compressive image encoding (SA-Perceiver). In reference to
the comparison method outlined in W1(2), we have quantified the impact of incorporating reconstructive training on both latency and FLOPs. We also
report the effects of reconstructive training on the total training time of instruction tuning stage (with our 980K dataset on 16 Nvidia A100). These results
validate that our method is indeed highly computationally efficient.

Latency of processing 1000 images (seconds):

Method 336x336 672x336 1008x336 672x672
LLaVA-Next 449 475 564 738
VLSA(w/o. Reconstruct) 373 377 385 399
VLSA(w/. Reconstruct) 391 394 408 426

FLOPs in processing 1000 images (GFLOPs):

Method 336x336 672x336 1008x336 672x672
LLaVA-Next 18798.9 274443 36462.3 45840.6
VLSA(w/o. Reconstruct) 9842.3 9884.7 10190.8 10539.3

VLSA(w/. Reconstruct) 11646.1 12118.5 12545.0 13443.8



Training time in instruction tuning stage (hours):

Method Training Time

LLaVA-Next 27.3

VLSA(w/o. Reconstruct) 14.2

VLSA(w/. Reconstruct) 16.9
W2:

Our statement in the Limitation section may have been somewhat misleading. While it is indeed the case that the suboptimal combination strategy of the
two types of loss can restrict VLSA from realizing its full potential, it is important to highlight that these two losses consistently operate synergistically,
even when using the simplest balancing method, where the ratio between the losses is not adjusted, and both losses are applied throughout all training
phases. To further illustrate this point, we have included Figure ex1, which depicts the language model loss curves before and after incorporating the
reconstruction loss in Stage 1 training of VLSA. The results demonstrate that the introduction of the reconstruction loss leads to both a faster
convergence and a more favorable final outcome for the language modeling loss. Therefore, our method does not hinder the optimization efficiency. Our
primary focus in this article is to highlight the effectiveness of the proposed method, while further optimization will be addressed in future work.

(Figure ex1) The influence of reconstructive training on language modeling loss.
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W3:

To address the reviewer's concern, we integrate VLSA with various language models and adapting it to much higher input resolution.

(1) We report the performance of VLSA with the replacement of the backbone model to Vicuna1.5-7B, Vicuna1.5-13B and Qwen1.5-72B. Additionally, we
report the performance of LLaVA-Next with these backbones as references.

Variant LLM GQA Al2D DocVQA
LLaVA-Next Vicuna1.5-7B 62.2 66.4 725
(ex2) VLSA Vicuna1.5-7B 63.6 67.5 74.6
LLaVA-Next Vicuna1.5-13B 65.4 67.0 72.7
(ex3) VLSA Vicuna1.5-13B 67.2 69.2 76.8
LLaVA-Next Qwen1.5-72B 71.2 73.4 79.9

(ex4) VLSA Qwen1.5-72B 72.6 7741 85.1



(2) We increase the maximum input resolution of VLSA from 672x672 to 4096x4096, and report the preliminary experimental results.

Variant Res. GQA Al2D DocVQA
LLaVA-Next 672x672 64.6 69.5 73.7
VLSA 672x672 65.3 71.4 75.2
LLaVA-Next 4096x4096 68.4 72.7 76.2
(ex5) VLSA 4096x4096 69.5 76.6 80.1

Q1:

In our previous submission, we explored the following types of test sets: (1) OCR comprehension, e.g., TextVQA, DocVQA; (2) Chart and diagram
understanding, e.g., ChartQA, AI2D; (3) Subject-specific question answering, e.g., ScienceQA; and (4) General question answering, e.g., MMVet,
MMBench, and MME. During the rebuttal phase, we have added (5) multi-image reasoning with questions involving visual prompts: BLINK, as well as (6)
the interleaved benchmark on generalization: DEMON. (The implementation details on new benchmarks will be included in the revised manuscript.) We
believe that this diverse and comprehensive array of tests showcases the versatility of our approach.

Comparisions on DEMON:

Visual

Multimodal Visual . Multimodal Knowledge Text-Rich Multi-image
Method i i Relation .
Dialogue Storytelling Cloze Grounded QA Image QA Reasoning
Inference
LLaMA-Adapter
V2 14.2 17.5 13.5 18.0 44.8 32.0 44.0
(ex6) LLaMA-
Adapter V2 + 16.0 17.9 15.7 19.2 44.7 36.3 45.5
VLSA
LLaVA 7.8 10.7 8.3 15.9 36.2 28.3 41.5
(ex7)LLaVA +
10.2 1.5 15.8 16.1 36.3 37.2 44 .4
VLSA
Comparisions on BLINK:
Method Validation Test
LLaVA-1.57B 371 38.0
(ex8) LLaVA-1.5 7B + VLSA 39.3 39.9
LLaVA-1.513B 42.7 40.6
(ex9) LLaVA-1.5 13B + VLSA 46.1 45.3

Q2

In our response to comment W1, we have conducted a thorough analysis demonstrating that VLSA is a highly computationally efficient method,
especially when compared to LLaVA-Next, as it significantly reduces both computational complexity and training time. To further adapt VLSA for
resource-limited environments, we propose two strategies: (ex10) substituting the LDM in the current reconstruction training with a version that has fewer
parameters, and (ex11) adjusting the three-stage training of VLSA to a standard two-stage training process. We have tested both strategies and
documented their performance. Additionally, several conventional techniques, such as (1) decreasing the batch size while correspondingly increasing the
gradient accumulation steps, and (2) implementing quantized training, will also be highly effective.

Variant GQA SQA-I DocVQA
LLaVA-Next 64.6 75.1 73.7

(ex10) Two-Stage Training 65.2 77.0 74.6



Variant GQA SQA- DocVQA
(ex11) Smaller LDM 64.8 76.8 75.1

VLSA 65.3 77.5 75.2

Q3:

It seems there has been a misunderstanding regarding our methodology. To clarify, our approach employs continuous image features provided by the
CLIP image encoder as the visual input, rather than utilizing codebook indices from VQ-VAE. The codebook indices serve solely as supplementary
textual input, acting as ground truth labels for tasks that require predicting these indices, during the instruction tuning process. Following are responses
to the remaining concerns.

(1) The name of "cognition alignment":

In VQ-VAE, the codebook functions similarly to token embeddings in a text tokenizer, serving as a repository of various high-level semantics. The code
indices produced during the encoding of an image represent the different types of high-level semantics that can be derived from that image. Additionally,
as an autoencoder, VQ-VAE's training objective is to ensure that the code indices for each image capture as much semantic information from the original
input as possible. As a result, the process through which MLLM generates codebook indices enables it to comprehensively understand high-level
semantics from images. Thus, we call this process "cognition alignment." Essentially, MLLM learns how to recognize high-level semantics of images
based on abstract visual features provided by the vision encoder from this process.

(2) The improvement of cognitive performance:

In the author's opinion, the existing methods utilizing VQ-based visual encoders experience performance limitations due to the discrete nature of VQ
encoding and the restricted size of the codebook. This combination leads to lossy information encoding. In content understanding tasks, the
consequences of this information loss are unpredictable, making it difficult to ensure that essential visual information required for executing current
commands is preserved during encoding. (In contrast, for generation tasks, the intentional omission of minor details while retaining key information
contributes to the creation of more random and diverse images, which is why VQ-type encoders are commonly employed in image generation models.)

In contrast to VQ-based methods, our model utilizes continuous image encodings produced by a CLIP encoder as input, which leads to reduced
information loss. This divergency ensures improved performance for our model. In our approach, we treat VQ indices as textualized visual semantic
labels that aid the model in comprehending high-level image semantics. Consequently, our method is not hindered by the inherent limitations of VQ-
based encoders. Moreover, we integrate a reconstructive training loss for the visual encoder, further minimizing original information loss and
subsequently enhancing overall performance.

Q4.

Our paper has already reported the results for TextVQA (Table 1), AI2D (Table 3), and ChartQA (Table 3). Regarding the performance comparison on
OCRBench, the results are as follows.

Variant OCRBench
LLaVA-Next 55.7

VLSA 58.4



