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In this supplementary, we extended our experiment to incorporate more annotation comparisons
with existing datasets in Sec. G. The detailed generation settings and more quantitative analysis are
discussed in Sec. H. We also include more visual cases in Sec. I to demonstrate the capacity of our
framework to maintain both fidelity and diversity.

A EXTENDED SYNTHETIC DATA EXPERIMENTS

We extended our experiments to further demonstrate the effectiveness of the usage of the synthetic
data by incorporating 3 more baselines: DeepLabv3+, Mask2Former, and Mit-B0. Results in Table 1
show a large performance increase in both MVTec and Cotton datasets, the increase is comparatively
smaller in the VISION dataset, however, such increase is demonstrated in each of the sub-classes.

Table 1: Performance (mIoU) comparison between models trained with and without synthetic data.
The bolded text indicates results with synthetic data.

MVTec VISION Cotton
DeepLabV3+ 51.58/55.55 52.33/53.46 48.73/58.58
Mask2Former 45.70/50.16 54.12/55.47 64.09/65.39

MiT-B0 46.45/56.21 49.62/50.75 50.52/55.86

B INCREASING RATIO OF SYNTHETIC DATA

mIoU Improvement with different proportion of synthetic data

(a) (b)

Figure 1: Improvement in mIoU with different proportions of synthetic Data. This experiment is
done on Defect Spectrum (MVTec) with DeeplabV3+ and MiT-B0 shown as (a) and (b) respectively.

We further increase the synthetic data ratio to test the impact it has on model performance. Figure 1
shows the performance improvement over different quantities of synthetic data using DeepLabV3+
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and Mit-B0. When using synthetic data that is 200% of the size of the original training set, there is
an enhancement in the performance, but results in greater variance. Additionally, the performance
starts to decrease after reaching the 300%.

Table 2: Uniform Upsampling strategy
DeepLabV3+ MiT-B0

Baseline 51.58 46.45
With Synthetic 54.87 56.21

C SAMPLING STRATEGY

We employ a new sampling strategy that uniformly up-scales all training sets to 150 images. So
those with limited data gain more synthetic data and vice versa. As shown in Table 2, with this
sampling strategy, MiT-B0 models show a great leap in performance, from 46.45 to 56.21, and it
even surpasses the original SOTA DeepLabV3+.

D COMPARISON BETWEEN REFINED AND BASELINE DATASET

As shown in Figure 3, we compared the segmentation model trained on the baseline dataset and our
refined dataset. The results with our annotation demonstrate a better granularity while having rich
semantics (different defective classes).

Trained with 
Refined Annotation

Trained with
Source Annotation

Figure 2: Qualitative comparison between the segmentation model trained on our refined dataset and
the base dataset. We show our method can exhibit diversity while maintaining high quality. Best
viewed in color.
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E COMPARISON BETWEEN UNSUPERVISED AD AND OURS

PaDiM PaDiMOurs Ours

Figure 3: Qualitative comparison between the unsupervised AD baseline PaDiM and ours. Ours
is trained on refined MVTec using MiT-B0. The segmentation results using our refined dataset
highlighted different defective types with superior granularity. Best viewed in color.

F INCORPORATING NORMAL DATA

We conducted additional experiments on refined-MVTec to analyze the impact of integrating normal
data. Our findings indicate that adding normal data indeed improves the mIoU, addressing the issue
of over-penalizing non-defective areas.

Table 3: Combining different percentage of normal(defect-free) data. The source indicates the re-
fined MVTec training set without any normal data.

Source +20% normal +100% normal +200% normal +300% normal
Mean 51.58 53.87 53.06 53.38 53.04

G ANNOTATION COMPARISION

In this section, we present a visual comparison between ours (the last row) and the original datasets’
annotation. Figure 4, 5, 6 shows the comparison of the MVTec dataset, we re-classify the defects
based on their type and enabled more semantic abundance. As for Figure 7 of VISION dataset,
we refined the original annotation for more granularity. The original DAGM and Cotton datasets
contained no pixel-level annotation, thus we provide our annotation as shown in Figure 8, 9.
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Figure 4: The annotation comparison of the “cable” and “capsule” class in MVTec dataset. The
first row shows the defect image. Row 2 and 3 shows the original annotation and our improved
annotation. Best viewed in color.

Figure 5: The annotation comparison of the “toothbrush” and “hazelnut” class in MVTec dataset.
The first row shows the defect image. Row 2 and 3 shows the original annotation and our improved
annotation. Best viewed in color.
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Figure 6: The annotation comparison of the “wood” and “pill” class in MVTec dataset. The first row
shows the defect image. Row 2 and 3 shows the original annotation and our improved annotation.
Best viewed in color.

Figure 7: The annotation comparison of the “capacitor” and “ring” class in VISION dataset. The
first row shows the defect image. Row 2 and 3 shows the original annotation and our improved
annotation. Best viewed in color.

Figure 8: The annotation comparison of the “cotton fabric” class in the COTTON dataset. The first
row shows the defect image. Row 2 shows our improved annotation. Best viewed in color.
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Figure 9: The annotation comparison of the “texture surface” in DAGM dataset. The first row shows
the defect image. Row 2 shows our improved annotation. Best viewed in color.

H DEFECT GENERATION

H.0.1 IMPLEMENTATION DETAILS

In this section, we will first elaborate on the architecture of Defect-Gen. Then we will go over the
dataset and training settings of our model. Lastly, we quantitatively compared it with other methods
to demonstrate the superiority of our method.

Experimental Settings Since there was no train-test split in MVTec AD dataset, to train both
large and small diffusion models, we employed 5 images for each defective type per object, which is
the same as our segmentation training setting. For VISION, DAGM2007, and Cotton-Fabric, we use
the pre-split training set. Table 4 to 7 show the architectures of the large and small-receptive-field
models. The training of diffusion models is performed on four 3090 GPUs, with a batch size of 2, a
learning rate of 1e − 4, and a training iteration number of 150,000. We utilize the Adam optimizer
with a weight decay of 2e− 3.

Table 4: Upsampling Block

Layer Type Input size Output size Norm Activation
ResBlock × 2 H ×W × C H ×W × C GN SiLU
Interpolation H ×W × C 2H × 2W × C

2 None None

Table 5: Downsampling Block

Layer Type Input size Output size Norm Activation
ResBlock × 2 H ×W × C H ×W × C GN SiLU

Avg pool 2× 2 H ×W × C H
2 × W

2 × 2C None None

Parameter analysis As we discuss in Sec.3.4.2, our model has two key hyperparameters: the
switch timestep u and the receptive field of the small model. Both of them can control the trade-
off between fidelity and diversity. We use FID to measure the generation fidelity. Since there is
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Table 6: Architecture for Large receptive fields model.

Layer Type Resolution # of Channels Norm Activation
InConv 256 4 GN SiLU

DownSampleBlock 256 192 None None
DownSampleBlock 128 384 None None
DownSampleBlock 64 768 None None
DownSampleBlock 16 1536 None None

UpSampleBlock 16 768 None None
UpSampleBlock 64 384 None None
UpSampleBlock 128 192 None None
UpSampleBlock 256 96 None None

OutConv 256 4 GN SiLU

Table 7: Architecture for Small receptive fields model.

Layer Type Resolution # of Channels Norm Activation
InConv 256 4 GN SiLU

DownSampleBlock 256 192 None None
DownSampleBlock 128 384 None None

UpSampleBlock 128 192 None None
UpSampleBlock 256 96 None None

OutConv 256 4 GN SiLU

no existing metric to effectively measure the generation diversity, we used LPIPS score to indicate
such. A higher LPIPS score with a similar FID score demonstrated a higher diversity in the dataset.
Table 8 shows the FID and LPIPS for different u and receptive fields. As shown, when u increases,
fidelity increases while diversity decreases. Similarly, when the receptive field switches from small
to large, the same trend occurs. Empirically, we use u=50 and the medium receptive field to achieve
a good trade-off between FID and LPIPS.

Table 8: The table shows the trade-off between diversity and image quality of the capsule class.
The column represents 3 different receptive field sizes, large, medium, and small, and the respective
down-sampling blocks are 6, 3, 2. The row represents the timesteps(v) used for the small receptive
field model.

u 25 50 75 100 400 700
Small FID ↓ 115.2754 93.2839 80.8040 79.6411 82.5127 78.4115

LPIPS ↑ 0.3981 0.3666 0.3537 0.3523 0.3467 0.3460
Medium FID ↓ 69.9419 57.5374 57.3961 57.8977 57.426 57.006

LPIPS ↑ 0.3473 0.3458 0.3450 0.3417 0.3392 0.3381
Large FID ↓ 59.085 56.6246 56.7247 56.2493 55.7226 54.0529

LPIPS ↑ 0.2914 0.2870 0.2866 0.2853 0.2832 0.2814
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H.0.2 QUANTITATIVE EVALUATION

We have compared the segmentation performance boost across different methods on the original
MVTec dataset. GAN-based methods were excluded since they hardly generate realistic images,
further disrupting the original data distribution. Results for defect segmentation are shown in Ta-
ble. 9. The first column shows the defect segmentation mIoU score with only the original training
data. The rest of each column presents defect segmentation performance with original training data
pairs and the augmented pairs generated by different synthesis methods. SinDiffusion dropped the
mIoU score, due to the incorrectly structured output images and mislabeled masks. However, it can
slightly improve the segmentation performance for certain classes like “Carpet”, “Grid”, “Leather”,
“Tile” and “Wood”. Since those classes do not contain any industrial parts and thus do not require
any global structure information during synthesizing. DDPM-generated samples can boost the per-
formance score, however, due to the lack of diversity during generation, the increase in performance
is limited.

Table 9: Quantitative comparison on segmentation performance between sinDiffusion, DDPM, and
our method. To demonstrate the effectiveness of our method on other dataset besides Defect Spec-
trum, the comparison was made on the original MVTec dataset

w/o any AUG sinDiffusion DDPM Ours
capsule 75.47 76.25 79.21 82.20
bottle 67.54 70.52 67.32 73.75
carpet 67.33 72.89 68.94 74.27
screw 53.12 49.66 60.12 58.78
grid 59.68 61.59 60.68 62.14
cable 46.28 41.75 48.28 49.14

hazelnut 69.25 65.65 69.25 71.46
leather 66.39 66.91 66.39 66.80

metal nut 69.56 63.5 68.57 74.4
pill 69.71 66.75 70.14 73.19
tile 70.33 72.43 71.23 73.58

toothbrush 68.26 64.26 68.09 70.14
transistor 44.31 47.16 44.37 47.47

wood 65.33 70.25 64.93 68.55
zipper 67.62 63.12 68.61 70.48
mean 64.01 63.51 65.07 67.76

H.0.3 DEMONSTRATION OF PATCH-LEVEL MODELING

Figure 10 demonstrates the effectiveness of this strategy. Overall, the generated sample is different
from the training samples, while at the patch level, we can find some connections in between.

I VISUAL GENERATION RESULTS

We have included more defect generation results along with their masks as shown in Figure 11 to 16
below.
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Figure 10: The property of patch-level modeling. The right image is generated from the small-
receptive-field model, and the two left images are the two most similar images from the training set.

Figure 11: The generated images and masks of the “bottle” and “capsule” class. Best viewed in
color.

Figure 12: The generated images and masks of the “carpet” and “grid” class. Best viewed in color.
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Figure 13: The generated images and masks of the “pill” and “ring” class. Best viewed in color.

Figure 14: The generated images and masks of the “screw” and “tile” class. Best viewed in color.

Figure 15: The generated images and masks of the “wood” and “toothbrush” class. Best viewed in
color.
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Figure 16: The generated images and masks of the “wood-surface” and “zipper” class. Best viewed
in color.
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