
Published as a conference paper at ICLR 2025

GS-LIDAR: GENERATING REALISTIC LIDAR POINT
CLOUDS WITH PANORAMIC GAUSSIAN SPLATTING

Junzhe Jiang, Chun Gu, Yurui Chen, Li Zhang∗
School of Data Science, Fudan University

https://github.com/fudan-zvg/GS-LiDAR

Ground Truth GS-LiDAR (11 fps)
Train: 1.5h, CD: 0.0786

3DGS (16 fps)
Train: 1.3h, CD: 2.6029

LiDAR4D (0.3 fps)
Train: 2.5h, CD: 0.0847

Figure 1: GS-LiDAR achieves superior LiDAR simulation quality for novel view synthesis while
maintaining fast training and rendering speed.

ABSTRACT

LiDAR novel view synthesis (NVS) has emerged as a novel task within LiDAR
simulation, offering valuable simulated point cloud data from novel viewpoints
to aid in autonomous driving systems. However, existing LiDAR NVS methods
typically rely on neural radiance fields (NeRF) as their 3D representation, which
incurs significant computational costs in both training and rendering. Moreover,
NeRF and its variants are designed for symmetrical scenes, making them ill-suited
for driving scenarios. To address these challenges, we propose GS-LiDAR, a novel
framework for generating realistic LiDAR point clouds with panoramic Gaussian
splatting. Our approach employs 2D Gaussian primitives with periodic vibration
properties, allowing for precise geometric reconstruction of both static and dy-
namic elements in driving scenarios. We further introduce a novel panoramic ren-
dering technique with explicit ray-splat intersection, guided by panoramic LiDAR
supervision. By incorporating intensity and ray-drop spherical harmonic (SH) co-
efficients into the Gaussian primitives, we enhance the realism of the rendered
point clouds. Extensive experiments on KITTI-360 and nuScenes demonstrate the
superiority of our method in terms of quantitative metrics, visual quality, as well
as training and rendering efficiency.

1 INTRODUCTION

Captured data in driving scenarios is critically important, as it serves to train and simulate au-
tonomous driving systems. However, the collection of driving data is both costly and inefficient.

∗Corresponding author lizhangfd@fudan.edu.cn.

1

https://github.com/fudan-zvg/GS-LiDAR

Published as a conference paper at ICLR 2025

This underscores the necessity for a LiDAR simulation algorithm capable of generating realistic Li-
DAR data more efficiently. A common approach in the field is to reconstruct 3D street scenes from
sparse data, which can then be used to generate novel view data. Most previous works (Xie et al.,
2023b; Yang et al., 2024a; Chen et al., 2023a; Yan et al., 2024) have concentrated on novel view
synthesis for cameras. These approaches use RGB images captured by vehicle-mounted cameras
as input to reconstruct 3D scenes and render images from novel perspectives. Although significant
progress has been made in camera-based novel view synthesis, the simulation of LiDAR remains
underexplored. Due to the inherent sparsity of LiDAR point clouds, the challenge lies in accurately
reconstructing 3D scenes using only LiDAR data. Furthermore, LiDAR sensors do not capture all
emitted beams, as factors such as the reflective properties of objects affect beam reception, leading
to point cloud dropout, which further increases the difficulty of 3D scene reconstruction.

Traditional LiDAR simulation methods can be broadly classified into two categories: virtual en-
vironment modeling (Dosovitskiy et al., 2017; Shah et al., 2018; Koenig & Howard, 2004) and
reconstruction-based approaches (Manivasagam et al., 2020; Li et al., 2023; Guillard et al., 2022).
The former involves creating 3D virtual worlds using physics engines and handcrafted 3D assets,
though these simulators are constrained by the limited diversity and high cost of generating 3D as-
sets. Additionally, there remains a significant domain gap between simulations and the real world. In
contrast, reconstruction-based methods aim to address these limitations by reconstructing 3D assets
from real-world captured data. However, the complexity of multi-step algorithms in this category
limits their practical application in industry.

In recent years, neural radiance field (NeRF) (Mildenhall et al., 2020) has emerged as a foundational
technique in the field of 3D reconstruction. With its effective implicit representation and high-quality
volumetric rendering, NeRF has been proposed as a novel approach for LiDAR simulation. NeRF-
LiDAR (Zhang et al., 2024) utilizes real images and LiDAR data to learn a Neural Radiance Field,
generating point clouds and rendering semantic labels. On the other hand, LiDAR-NeRF (Tao et al.,
2023) introduces a novel LiDAR view synthesis task, which uses only LiDAR data as input to recon-
struct a 3D scene. However, LiDAR-NeRF is limited to modeling static scenes, whereas dynamic
vehicles and pedestrians are common in driving scenarios. To address this, LiDAR4D (Zheng et al.,
2024) introduces a hybrid 4D representation for novel space-time LiDAR view synthesis. Although
these NeRF-based methods mark significant progress compared to traditional techniques, they suf-
fer from slow training and rendering speeds, a limitation inherent to NeRF. Furthermore, efficient
NeRF-based architectures like HashGrid (Müller et al., 2022), designed for symmetrical scenes, are
not well-suited for driving scenarios.

In this paper, we propose GS-LiDAR, a novel framework for generating realistic LiDAR point clouds
using panoramic Gaussian splatting. While 3D Gaussian splatting struggles with geometric model-
ing and tends to overfit sparse views, we leverage view-consistent 2D Gaussian primitives Huang
et al. (2024) for more accurate geometric representation. Moreover, considering the dynamic na-
ture of driving scenarios, we introduce periodic vibration properties Chen et al. (2023a) into the
Gaussian primitives, enabling the uniform representation of various objects and elements in dy-
namic environments. Focusing on the task of novel LiDAR view synthesis, we introduce a novel
panoramic rendering process to facilitate fast and efficient rendering of panoramic depth maps using
2D Gaussian primitives. Through carefully designed ray-splat intersections, the resulting panoramic
depth maps are geometrically accurate and view-consistent. Each Gaussian is assigned additional
LiDAR-specific attributes, such as view-dependent intensity and ray-drop probability, which are ag-
gregated into intensity maps and ray-drop maps through alpha-blending in the splatting process. By
using ground-truth LiDAR range maps and intensity maps for supervision, GS-LiDAR can effec-
tively simulate LiDAR point clouds. As illustrated in Figure 1, GS-LiDAR achieves superior LiDAR
simulation quality in novel LiDAR view synthesis and significantly outperforms the previous state-
of-the-art method, LiDAR4D (Zheng et al., 2024), in both training and rendering speed.

We conduct extensive experiments to evaluate the effectiveness of our method on two major bench-
marks: KITTI-360 (Liao et al., 2022) and nuScenes (Caesar et al., 2020). For static scenes, we
test our approach on the KITTI-360 dataset, achieving a substantial 10.7% reduction in the RMSE
metric compared to the leading competitor, LiDAR4D (Zheng et al., 2024). For dynamic scenes,
our method outperforms LiDAR4D, with RMSE reductions of 11.5% on KITTI-360 and 13.1% on
nuScenes. Moreover, our approach demonstrated significantly faster training and rendering times
than previous NeRF-based methods, with a speedup of 1.67 times in training and a notable increase
of 31 times in rendering LiDAR novel views compared to LiDAR4D.

2

Published as a conference paper at ICLR 2025

Our contributions are summarized as follows: (1) We propose GS-LiDAR, a novel differentiable
framework for generating realistic LiDAR point clouds. (2) We employ 2D Gaussian primitives
with periodic vibration properties, enabling precise geometric reconstruction of various objects and
elements in dynamic scenarios. (3) We introduce a novel panoramic rendering technique based
on 2D Gaussian primitives, with geometrically accurate ray-splat intersection, where the rendered
panoramic maps are supervised by the ground-truth data. (4) Extensive experiments demonstrate
the superiority of our method across quantitative metrics, visual quality, as well as training and
rendering speeds, when compared to previous approaches.

2 RELATED WORK

Novel view synthesis Novel view synthesis (NVS) is a critical and challenging aspect of 3D re-
construction. Since the advent of neural radiance fields (NeRF) (Mildenhall et al., 2020), there
have been significant advancements in 3D reconstruction and NVS. NeRF utilizes a multi-layer
perceptron (MLP) to model geometric shapes and view-dependent appearances, rendering through
volume rendering. NeRF has demonstrated that implicit radiance fields can effectively learn scene
representations and synthesize high-quality novel views. Despite its profound impact, NeRF faces
notable challenges, including slow rendering speeds and aliasing. To address these issues, various
research efforts (Barron et al., 2021; 2022; 2023; Hu et al., 2023; Reiser et al., 2021; Yu et al.,
2021; Reiser et al., 2023; Hedman et al., 2021; Yariv et al., 2023; Chen et al., 2023c; 2022; Müller
et al., 2022; Liu et al., 2020; Sun et al., 2022; Chen et al., 2023b; Fridovich-Keil et al., 2022) have
developed variants that focus on enhancing rendering quality as well as accelerating training and
rendering speeds. Recently, 3D Gaussian splatting (3DGS) (Kerbl et al., 2023) has introduced a
point-based 3D scene representation that innovatively combines high-quality alpha-blending with
rapid rasterization. 3DGS has been swiftly extended to various domains to enhance its rendering
capabilities (Xie et al., 2023a; Huang et al., 2024; Gao et al., 2024) and its potential to represent dy-
namic scenes (Yang et al., 2024b; Yan et al., 2024; Zielonka et al., 2023; Chen et al., 2023a). In this
paper, we adopt 2D Gaussian primitives with periodic vibration properties as scene representation
to characterize the accurate geometry of both static and dynamic elements.

LiDAR simulation Traditional simulators can be classified into two categories. The first type of
method (Dosovitskiy et al., 2017; Shah et al., 2018; Koenig & Howard, 2004) utilizes physics en-
gines to generate LiDAR point clouds through ray casting within handcrafted virtual environments.
However, these simulators are limited by their diversity and the high cost of 3D assets, and they
exhibit a significant domain gap when compared to real-world data. In contrast, the second type of
methods (Manivasagam et al., 2020; Li et al., 2023; Guillard et al., 2022) have sought to address
these limitations by reconstructing scenes from real data for simulation. For instance, LiDARsim
(Manivasagam et al., 2020) and PCGen (Li et al., 2023) utilize a multi-step, data-driven approach to
simulate point clouds from real data. However, the complexity of these multiple steps impacts their
applicability and scalability. More recent works (Tao et al., 2023; Zhang et al., 2024; Zheng et al.,
2024; Xue et al., 2024; Tao et al., 2024; Wu et al., 2024) have utilized NeRF for scene reconstruc-
tion and LiDAR simulation, achieving higher quality and more reliable results. However, NeRF is
time-consuming due to its implicit representation and exhaustive ray marching. Moreover, NeRF
and its variants are mostly designed for symmetrical scenes, making them ill-suited to the driving
scenarios. To this end, GS-LiDAR employs the explicit representation of Gaussian splatting, which
enables efficient and flexible LiDAR simulation.

3 METHOD

In this section, we propose GS-LiDAR, a novel framework for generating realistic LiDAR point
clouds with Gaussian splatting. We begin by introducing the necessary background on 3D Gaus-
sian splatting in Section 3.1. For geometrically accurate reconstruction and the modeling of both
static and dynamic elements, we employ 2D Gaussian primitives with periodic vibration properties
as our scene representation, as outlined in Section 3.2. To integrate LiDAR supervision, we pro-
pose an innovative panoramic rendering technique with explicit ray-splat intersection, described in
Section 3.3. Next, we detail the LiDAR modeling approach, including the rendering of depth maps,

3

Published as a conference paper at ICLR 2025

Synthesis LiDAR

U
-N

ET

GT Depth, Intensity, Ray-drop

Intensity

Ray-drop

Depth

Panoramic maps

SUPERVISION SUPERVISION

Ray-drop refinement

𝟑𝟔𝟎°

𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑛𝑔 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑜𝑝𝑎𝑐𝑖𝑡𝑦

𝒕𝑢

𝒕𝑣
𝑛𝑜𝑟𝑚𝑎𝑙

𝑑𝑒𝑝𝑡ℎ

𝑅𝑎𝑦-𝑠𝑝𝑙𝑎𝑡
𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝛼

Panoramic Gaussian splatting

𝑇𝑖𝑚𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

𝑟𝑎𝑦

𝑆𝑝𝑙𝑎𝑡𝑡𝑖𝑛𝑔 𝑑𝑒𝑡𝑎𝑖𝑙

()

()

Figure 2: Overview of the GS-LiDAR framework: GS-LiDAR is based on 2D Gaussian primitives
with periodic vibration properties, allowing for dynamic modeling of position and opacity along
with accurate geometry. At a given timestamp, Gaussians query their states and utilize the proposed
panoramic Gaussian splatting technique to render panoramic maps of depth, ray-drop, and intensity.
For each ray and Gaussian primitive, we calculate their intersection to obtain the depth and α,
ensuring more geometrically consistent renderings. The results are subsequently refined by a well-
trained U-Net to further enhance the quality of the point clouds.

intensity maps, and ray-drop probability maps, in Section 3.4. Finally, in Section 3.5, we discuss the
various functions used to optimize the scenes. An overview of our pipeline is provided in Figure 2.

3.1 PRELIMINARY: 3D GAUSSIAN SPLATTING

3D Gaussian splatting (3DGS) (Kerbl et al., 2023) employs a set of anisotropic Gaussian primitives
to represent a static 3D scene, which is subsequently rendered vis differentiable splatting. By utiliz-
ing a tile-based rasterizer, this approach facilitates the real-time rendering of novel views with high
visual fidelity. Each Gaussian primitive is characterized by a position vector µ ∈ R3, a covariance
matrix Σ ∈ R3×3, an opacity parameter o ∈ (0, 1), and color c ∈ R3 modeled by spherical harmon-
ics (SH). The influence G(x) of a given Gaussian primitive on a spatial position x is defined by an
unnormalized Gaussian function:

G(x) = exp(−1

2
(x− µ)⊤Σ−1(x− µ)). (1)

To render an image, the 3D Gaussian primitives are initially transformed into the camera coordinate
system via the view transformation matrix W . Following this transformation, each Gaussian prim-
itive is projected onto the image plane through a local affine transformation J , which maps the 3D
structure into 2D image space. The 2D covariance matrix Σ′ of the projected Gaussian primitive
in camera coordinates is computed as: Σ′ = JWΣW⊤J⊤. The final rendering process employs
alpha-blending, wherein the color c of a target pixel is obtained by aggregating the contribution G′

of each relevant projected 2D Gaussian, proceeding from front to back:

c =

K∑
k=1

ck ok G′
k

k−1∏
j=1

(1− oj G′
j), (2)

where k denotes the index of a Gaussian primitive, with K representing the total number of Gaussian
primitives in the scene.

3.2 PERIODIC VIBRATION 2D GAUSSIAN

Given the constant presence of moving vehicles and pedestrians in driving scenarios, we aim to
utilize a unified representation to model the various objects and elements within the scene. We
employ 2D Gaussian primitives (Huang et al., 2024) with periodic vibration properties (Chen et al.,
2023a) to accurately capture surface behavior across both space and time. For a 2D Gaussian defined
by its central point µ ∈ R3, an opacity parameter o ∈ [0, 1], two principal tangential vectors tu ∈ R3

and tv ∈ R3, and a scaling vector s = (su, sv) ∈ R2, we introduce additional learnable attributes
that govern the variation of its central point and opacity. These include the vibrating direction

4

Published as a conference paper at ICLR 2025

𝐻

𝑊

𝑟𝑎𝑦

𝑧

−𝑦

𝑥

𝜙

𝜃

𝑟𝑎𝑦

0.5

𝑚𝑒𝑑𝑖𝑎𝑛 𝑑𝑒𝑝𝑡ℎ

𝑚𝑒𝑎𝑛 𝑑𝑒𝑝𝑡ℎ

𝑟𝑎𝑦

𝑤𝑒𝑖𝑔ℎ𝑡 / 𝑡𝑟𝑎𝑛𝑠𝑝𝑎𝑟𝑒𝑛𝑐𝑦

Depth renderingLiDAR coordinate system

Figure 3: Our LiDAR coordinate system and two ways of depth rendering. The mean depth refers
to the weighted average of each depth using the rendering weights, while the median depth is defined
as the maximum depth with transparency, i.e.,

∏k−1
j=1 (1− oj Gj), no greater than 0.5.

v ∈ R3, life peak τ ∈ R, and time decay rate β ∈ R:

µ̃(t) = µ+
l

2π
· sin(2π(t− τ)

l
) · v, (3)

õ(t) = o · exp(−1

2
(t− τ)2β−2), (4)

where µ̃(t) represents the vibrating motion around µ and τ , and õ(t) represents the decayed opacity.
The hyper-parameter l denotes the cycle length, which serves as a prior for the scene. Each equipped
with a simple motion, the Gaussian primitives can join up to represent any complex motion of
dynamic elements in a relay manner. The influence G of each 2D Gaussian disk is defined within its
local tangent plane in world space:

G(u, v) = exp

(
−u2 + v2

2

)
, (5)

where (u, v) are the coordinates within the local tangent plane space (UV space). The transformation
from UV space to screen space is parameterized as:

x(u, v) = W (µ̃(t) + sutuu+ svtvv) = WH(u, v, 1)⊤, (6)

whereH =

[
sutu svtv µ̃(t)
0 0 1

]
∈ R4×3. (7)

Here, W ∈ R4×4 represents the view transformation matrix, and x = (x, y, z, 1)⊤ denotes the
homogeneous coordinates in sensor space.

3.3 PANORAMIC GAUSSIAN SPLATTING

LiDAR emits laser pulses and measures the time-of-flight (ToF) to determine object distances, as
well as the intensity of reflected light. Spinning LiDAR provides a 360-degree horizontal field of
view (−π, π) and a limited vertical field of view (VFOVmin,VFOVmax), allowing it to perceive
the environment with a specific angular resolution. The angular configuration within the LiDAR
coordinate system is depicted in Figure 3. Given the pixel coordinates of a point on the range image
(ξ, η), the corresponding radian angles can be computed using the following equation:(

ϕ
θ

)
=

(
(2ξ −W)πW−1

ηH−1(VFOVmax −VFOVmin) + VFOVmin

)
, (8)

where (W,H) represent the width and height of the range image, respectively. A homogeneous point
in the LiDAR coordinate system can then be determined from (ϕ, θ) as follows: x = (x, y, z, 1)⊤ =

(r sin θ sinϕ,−r cos θ, r sin θ cosϕ, 1)⊤, where r =
√

x2 + y2 + z2 denotes the distance from the
point to the center of the LiDAR.

Ray-splat intersection We define the ray as the intersection of two orthogonal homogeneous
planes, hx = (cosϕ, 0,− sinϕ, 0)⊤ and hy = (cos θ sinϕ, sin θ, cos θ cosϕ, 0)⊤, characterized
by their normal vectors. These satisfy the conditions h⊤

x x = 0 and h⊤
y x = 0. Consequently, given

5

Published as a conference paper at ICLR 2025

ray

(𝑢, 𝑣)

𝒕𝑢

𝒕𝑣

𝒏

depth

tile

tile

pixel

𝟑𝟔𝟎°
(𝜙, 𝜃)

(𝜉, 𝜂)

sort by distance

transform

(𝐚) (𝐛)

Figure 4: Panoramic Gaussian rasterization details. (a) Our method employs tile-based sorting and
rendering. For panoramic ray maps, we first transform the epipolar coordinate system into the pixel
coordinate system. The pixel map is then divided into small tiles, and within each tile, Gaussian
primitives are sorted based on their distance to the LiDAR origin. (b) During pixel rendering, the α
and depth are computed by calculating the intersection between the ray and the Gaussian primitive.

the ray angles (ϕ, θ), the ray-splat intersection (u, v) is determined by solving the following linear
equations:

[hx,hy]
⊤
WH(u, v, 1)⊤ = 0. (9)

Let [R,h] = [hx,hy]
⊤
WH , where R ∈ R2×2 and h ∈ R2, From this, we can solve for u and v

as follows: (
u
v

)
= −R−1h. (10)

3.4 LIDAR RENDERING

In the novel LiDAR view synthesis task, LiDAR point clouds, which include intensity values, can
be projected to panoramic range maps and intensity maps. To simulate LiDAR point clouds, we
assign each Gaussian a view-dependent intensity value λ and a view-dependent ray-drop probability
ρ, both of which are modeled using spherical harmonics.

Depth map Considering the ray-splat intersection within the LiDAR coordinate system, the depth
value corresponds to the distance r from the intersection point to the center of the LiDAR. Based on
Equation 7 and the conversion between (x, y, z) and (ϕ, θ), we have:

(r sin θ sinϕ,−r cos θ, r sin θ cosϕ, 1)⊤ = WH(u, v, 1)⊤. (11)

By multiplying (sin θ sinϕ,− cos θ, sin θ cosϕ, 0) on both sides, the distance r can be computed as:

r = (sin θ sinϕ,− cos θ, sin θ cosϕ, 0)WH(u, v, 1)⊤. (12)

Although we calculate the intersection of each ray with the Gaussian primitives, we still adopt
the tile-based rendering method proposed in 3D Gaussian splatting Kerbl et al. (2023) to achieve
efficient rendering. As illustrated in Figure 4, we first transform the epipolar coordinates into pixel
coordinates and sort the Gaussian primitives within each tile. For pixel rendering, the α and depth
are determined based on the intersection results.

During the training process, we utilize both the mean depth and the median depth, and supervise
them using the projected ground truth range map as follows:

Rmean =

K∑
k=1

rk ok Gk

k−1∏
j=1

(1− oj Gj), (13)

Rmedian = max

rk

∣∣∣∣∣
k−1∏
j=1

(1− oj Gj) > 0.5

 , (14)

Ld = ∥Rmean −Rgt∥1 + ∥Rmedian −Rgt∥1 . (15)

6

Published as a conference paper at ICLR 2025

Figure 5: Comparison of 3D LiDAR point cloud. GS-LiDAR produces a more cohesive LiDAR
point cloud compared to LiDAR-NeRF (Tao et al., 2023) and LiDAR4D (Zheng et al., 2024).

Table 1: State-of-the-art comparison on KITTI-360 Static Scene Sequence. We color the top
results as best and second best .

Method Point Cloud Depth Intensity
CD↓ F-score↑ RMSE↓ MedAE↓ LPIPS↓ SSIM↑ PSNR↑ RMSE↓ MedAE↓ LPIPS↓ SSIM↑ PSNR↑

LiDARsim (Manivasagam et al., 2020) 2.2249 0.8667 6.5470 0.0759 0.2289 0.7157 21.7746 0.1532 0.0506 0.2502 0.4479 16.3045
NKSR (Huang et al., 2023) 0.5780 0.8685 4.6647 0.0698 0.2295 0.7052 22.5390 0.1565 0.0536 0.2429 0.4200 16.1159

PCGen (Li et al., 2023) 0.2090 0.8597 4.8838 0.1785 0.5210 0.5062 24.3050 0.2005 0.0818 0.6100 0.1248 13.9606
LiDAR-NeRF (Tao et al., 2023) 0.0923 0.9226 3.6801 0.0667 0.3523 0.6043 26.7663 0.1557 0.0549 0.4212 0.2768 16.1683
LiDAR4D (Zheng et al., 2024) 0.0894 0.9264 3.2370 0.0507 0.1313 0.7218 27.8840 0.1343 0.0404 0.2127 0.4698 17.4529

GS-LiDAR (Ours) 0.0847 0.9236 2.8895 0.0411 0.0997 0.8454 28.8807 0.1211 0.0359 0.1630 0.5756 18.3506

Intensity map LiDAR intensity refers to the strength of the laser pulse upon its return to the re-
ceiver, which is influenced by material properties, surface characteristics, distance, and the incident
angle. Intensity data contributes to terrain analysis, facilitates the differentiation of various features,
and enhances the classification and precision of point cloud data. Similar to the rendering of mean
depth, we aggregate the intensity map I using alpha-blending: I =

∑K
k=1 λk ok Gk

∏k−1
j=1 (1−oj Gj),

which is subsequently supervised by the ground truth intensity:

Lint = ∥I − Igt∥1 . (16)

Ray-drop probability map LiDAR ray-drop refers to the phenomenon where some laser pulses
do not return to the sensor after striking surfaces, often due to obstructions, absorption by vegetation,
or unfavorable angles of incidence. Through alpha-blending, we get a ray-drop probability map from
Gaussians: Pgs =

∑K
k=1 ρk ok Gk

∏k−1
j=1 (1− oj Gj). Additionally, since the LiDAR ray-drop is also

related to the characteristics of the LiDAR itself, we introduce a learnable prior Pprior for the ray-
drop. The final ray-drop probability map is expressed as: P = Pprior + (1 − Pprior)Pgs, which is
supervised by the ground truth mask using a binary cross-entropy loss:

Ldrop = BCE (P, Pgt) . (17)

However, this modeling of ray-drop does not account for factors such as distance to the sensor,
potentially leading to unreliable results. To mitigate this issue, following NeRF-LiDAR (Zhang
et al., 2024), we utilize a U-Net (Ronneberger et al., 2015) with residual connections to globally
refine the ray-drop mask, thereby preserving consistent patterns across regions. Specifically, the U-
Net takes the rendered ray-drop probability map P , depth map Rmean, and intensity map I as inputs,
and outputs the refined ray-drop mask Punet. After training the Gaussians, we continue optimizing
the U-Net by supervising the refined ray-drop mask using the same loss function as in Equation 17.

3.5 LOSS FUNCTION

To achieve accurate geometry and align the 2D splats with surfaces, we integrate the depth distortion
loss and normal consistency loss from 2DGS Huang et al. (2024). Additionally, we employ the
chamfer distance loss (Fan et al., 2017) to minimize the disparity between our simulated LiDAR
point clouds and the ground truth data.

Depth distortion The depth distortion loss aims to reduce the distance between ray-splat intersec-
tions, encouraging the 2D Gaussian primitives to concentrate on the surface:

Ldist =
∑
i,j

ωiωj(ri − rj)
2, (18)

where ωi represents the blending weight of the i-th intersection, and ri denotes the depth of the
intersection points.

7

Published as a conference paper at ICLR 2025

Table 2: State-of-the-art comparison on KITTI-360 dataset. We color the top results as best
and second best .

Method Point Cloud Depth Intensity
CD↓ F-score↑ RMSE↓ MedAE↓ LPIPS↓ SSIM↑ PSNR↑ RMSE↓ MedAE↓ LPIPS↓ SSIM↑ PSNR↑

LiDARsim (Manivasagam et al., 2020) 3.2228 0.7157 6.9153 0.1279 0.2926 0.6342 21.4608 0.1666 0.0569 0.3276 0.3502 15.5853
NKSR (Huang et al., 2023) 1.8982 0.6855 5.8403 0.0996 0.2752 0.6409 23.0368 0.1742 0.0590 0.3337 0.3517 15.2081

PCGen (Li et al., 2023) 0.4636 0.8023 5.6583 0.2040 0.5391 0.4903 23.1675 0.1970 0.0763 0.5926 0.1351 14.1181
LiDAR-NeRF (Tao et al., 2023) 0.1438 0.9091 4.1753 0.0566 0.2797 0.6568 25.9878 0.1404 0.0443 0.3135 0.3831 17.1549
D-NeRF (Pumarola et al., 2021) 0.1442 0.9128 4.0194 0.0508 0.3061 0.6634 26.2344 0.1369 0.0440 0.3409 0.3748 17.3554
TiNeuVox-B (Fang et al., 2022) 0.1748 0.9059 4.1284 0.0502 0.3427 0.6514 26.0267 0.1363 0.0453 0.4365 0.3457 17.3535

K-Planes (Fridovich-Keil et al., 2023) 0.1302 0.9123 4.1322 0.0539 0.3457 0.6385 26.0236 0.1415 0.0498 0.4081 0.3008 17.0167
LiDAR4D (Zheng et al., 2024) 0.1089 0.9272 3.5256 0.0404 0.1051 0.7647 27.4767 0.1195 0.0327 0.1845 0.5304 18.5561

GS-LiDAR (Ours) 0.1085 0.9231 3.1212 0.0340 0.0902 0.8553 28.4381 0.1161 0.0313 0.1825 0.5914 18.7482

Table 3: State-of-the-art comparison on nuScenes dataset. The notations are consistent with the
KITTI-360 Table 2 above.

Method Point Cloud Depth Intensity
CD↓ F-score↑ RMSE↓ MedAE↓ LPIPS↓ SSIM↑ PSNR↑ RMSE↓ MedAE↓ LPIPS↓ SSIM↑ PSNR↑

LiDARsim Manivasagam et al. (2020) 12.1383 0.6512 10.5539 0.3572 0.1871 0.5653 17.7841 0.0659 0.0115 0.1160 0.5170 23.7791
NKSR Huang et al. (2023) 11.4910 0.6178 9.3731 0.5763 0.2111 0.5637 18.7774 0.0680 0.0119 0.1290 0.5031 23.4905

PCGen Li et al. (2023) 2.1998 0.6341 8.8364 0.4011 0.1792 0.5440 19.2799 0.0768 0.0147 0.1308 0.4410 22.4428
LiDAR-NeRF Tao et al. (2023) 0.3225 0.8576 7.1566 0.0338 0.0702 0.7188 21.2129 0.0467 0.0076 0.0483 0.7264 26.9927
D-NeRF Pumarola et al. (2021) 0.3296 0.8513 7.1089 0.0368 0.0789 0.7130 21.2594 0.0467 0.0080 0.0492 0.7180 26.9951
TiNeuVox-B Fang et al. (2022) 0.3920 0.8627 7.2093 0.0290 0.1549 0.6873 21.0932 0.0462 0.0080 0.1294 0.7107 26.8620

K-Planes Fridovich-Keil et al. (2023) 0.2982 0.8887 6.7960 0.0209 0.1218 0.7258 21.6203 0.0438 0.0076 0.1127 0.7364 27.4227
LiDAR4D (Zheng et al., 2024) 0.2443 0.8915 6.7831 0.0258 0.0569 0.7396 21.7189 0.0426 0.0071 0.0459 0.7498 27.7977

GS-LiDAR (Ours) 0.2382 0.9055 5.8925 0.0198 0.0708 0.8394 22.2482 0.0415 0.0067 0.0627 0.7291 27.7420

Normal consistency Since our approach is based on 2D Gaussian primitives, it is crucial to ensure
that all 2D splats are locally aligned with the actual surfaces. To achieve this, we align the rendered
normal map N with the pseudo-normal map Ñ , which is computed from the gradients of the depth
maps:

Ln = 1−N⊤Ñ . (19)

Chamfer distance loss We also incorporate chamfer distance to introduce explicit geometric con-
straints from the input LiDAR point clouds. By back-projecting both the rendered and ground truth
range images into 3D point clouds, Srender and Sgt, respectively, we minimize the distance between
the two point clouds using the chamfer distance (Fan et al., 2017):

Lch = CD(Srender,Sgt). (20)

The overall loss function is defined as:

L = λdLd + λintLint + λdropLdrop + λdistLdist + λnLn + λchLch. (21)

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Datasets We conduct extensive experiments on both dynamic and static scenes using the KITTI-
360 (Liao et al., 2022) and nuScenes (Caesar et al., 2020) datasets, with the dynamic scenes featuring
a significant number of moving vehicles. The KITTI-360 dataset employs a 64-beam LiDAR with
a vertical field of view (FOV) of 26.4 degrees and an acquisition frequency of 10Hz. Following
LiDAR4D (Zheng et al., 2024), we select 51 consecutive frames as a single scene and hold out 4
samples at 10-frame intervals for novel view synthesis (NVS) evaluation. For the nuScenes dataset,
the LiDAR system uses 32 beams with a 40-degree vertical FOV and a 20Hz acquisition frequency.
To ensure consistency with KITTI-360, we maintain a sampling frequency of 10Hz. We also provide
the results on the Waymo (Sun et al., 2020) dataset in Appendix A.2.

Competitors We evaluate our method alongside recent data-driven approaches LiDARsim (Mani-
vasagam et al., 2020) and PCGen (Li et al., 2023). Additionally, we compare our results with the per-
scene optimized reconstruction method NKSR (Huang et al., 2023), LiDAR-NeRF (Tao et al., 2023)
and the state-of-the-art method, LiDAR4D (Zheng et al., 2024). We also include competitive dy-
namic neural radiance field methods, such as D-NeRF (Pumarola et al., 2021), K-Planes (Fridovich-
Keil et al., 2023), and TiNeuVox (Fang et al., 2022), for comparison.

8

Published as a conference paper at ICLR 2025

Figure 6: Comparison of the rendered depth map with competitors.

Figure 7: Comparison of the rendered intensity map with competitors.

Metrics We employ a comprehensive set of evaluation metrics for assessing point cloud, depth,
and intensity measurements. Chamfer distance (Fan et al., 2017) is used to quantify the 3D geomet-
ric discrepancy between the generated and ground-truth point clouds based on nearest neighbors.
Additionally, we report the F-score with a 5cm error threshold. For pixel-level error analysis of
projected LiDAR range maps, we introduce Root Mean Square Error (RMSE) and Median Absolute
Error (MedAE). Furthermore, we utilize LPIPS (Zhang et al., 2018), SSIM (Wang et al., 2004), and
PSNR to assess image-level error on depth and intensity.

Implementation details We randomly sample 1× 106 LiDAR points for point initialization. For
the loss function and regularization terms, we use the following coefficients: λd = 10, λint = 0.05,
λdrop = 0.05, λdist = 0.1, λn = 0.1, and λch = 0.1. All experiments are conducted on a single
NVIDIA RTX A6000 GPU, with a total of 30,000 iterations, taking approximately 1.5 hours to
produce the final results. The rendering speed reaches up to 11 frames per second (FPS).

4.2 EVALUATION ON STATIC SCENES

Table 1 provides the quantitative results for static scenes in KITTI-360 dataset across all methods.
GS-LiDAR outperforms the competitors on most metrics. Notably, there is a 5.3% reduction in
the Chamfer distance of the simulated point cloud, a 10.7% reduction in the RMSE of simulated

9

Published as a conference paper at ICLR 2025

Table 4: Ablation studies on various components of GS-LiDAR.
Method Point Cloud Depth Intensity

CD↓ F-score↑ RMSE↓ MedAE↓ LPIPS↓ SSIM↑ PSNR↑ RMSE↓ MedAE↓ LPIPS↓ SSIM↑ PSNR↑
GS-LiDAR 0.1085 0.9231 3.1212 0.0340 0.0902 0.8553 28.4381 0.1161 0.0313 0.1825 0.5914 18.7482

w/o ray-splat intersection 3.1605 0.5091 6.6871 0.2367 0.4828 0.5754 21.5918 0.2320 0.1170 0.5166 0.1976 12.7069
w/o periodic vibration 0.1333 0.9100 3.1738 0.0359 0.0946 0.8577 28.2876 0.1162 0.0342 0.2166 0.5849 18.7288
w/o median depth loss 0.1254 0.9125 3.1414 0.0347 0.0941 0.8574 28.3567 0.1163 0.0313 0.1831 0.5902 18.7262

w/o depth distortion loss 0.1237 0.9229 3.2016 0.0341 0.0908 0.8567 28.2854 0.1176 0.0314 0.1842 0.5833 18.7078
w/o normal consistency loss 0.1158 0.9230 3.1993 0.0344 0.0908 0.8556 28.3852 0.1165 0.0314 0.1850 0.5887 18.7085
w/o chamfer distance loss 0.1152 0.9227 3.1354 0.0341 0.0907 0.8559 28.3892 0.1167 0.0341 0.1811 0.5911 18.7383
w/o ray-drop refinement 0.1121 0.9223 4.0791 0.0424 0.1952 0.7433 26.1083 0.1346 0.0384 0.2477 0.4569 17.4541

depth, and a 9.8% reduction in the RMSE of simulated intensity. As shown in Figure 5, GS-LiDAR
produces a more cohesive LiDAR point cloud, which can be attributed to the accurate range maps
generated by the proposed panoramic Gaussian splatting technique.

Figure 8: Comparison of w/ and w/o ray-splat intersection. A more detailed discussion is provided
in Appendix A.1.

4.3 EVALUATION ON DYNAMIC SCENES

To further validate the effectiveness of GS-LiDAR, we conduct LiDAR synthesis evaluations on dy-
namic scenes from the KITTI-360 and nuScenes datasets. For the KITTI-360 dataset, as shown
in Table 2, our method demonstrates superior performance, achieving a 0.3% reduction in chamfer
distance for simulated point cloud, a 11.4% reduction in RMSE for simulated depth, and a 2.8% re-
duction in RMSE for simulated intensity. As illustrated in Figure 6 and Figure 7, GS-LiDAR achieves
significantly better visual quality in simulated depth and intensity maps compared to competitors.
This improvement is primarily due to the use of 2D Gaussian primitives with periodic vibration
properties, enabling precise modeling of both static and dynamic geometries. For the nuScenes
dataset, as shown in Table 3, GS-LiDAR also showcases notable performance, with a 2.5% reduction
in chamfer distance for simulated point cloud, a 13.1% reduction in RMSE for simulated depth, and
a 2.6% reduction in RMSE for simulated intensity.

4.4 ABLATION STUDY

We provide quantitative ablation studies on various components of GS-LiDAR in Table 4. As shown
in Figure 8, we find that the use of ray-splat intersection enhances the capability of GS-LiDAR in
modeling the surface of the scene, and a more detailed discussion is provided in Appendix A.1.
For the “w/o ray-splat intersection” case, we implement a basic 3D Gaussian splatting approach
by adapting the projection calculation method specifically for panoramic maps. The integration of
periodic vibration properties further improves GS-LiDAR’s capability in handling dynamic elements.
Regularization terms, including median depth loss, depth distortion loss, and chamfer distance loss,
contribute to the improved quality of the simulated LiDAR point clouds. Additionally, the ray-drop
refinement technique improves the accuracy of the ray-drop mask, resulting in substantial gains in
the metrics for simulated depth and intensity.

5 CONCLUSION

We present GS-LiDAR, a novel framework designed to generate realistic LiDAR point clouds. To
uniformly model the accurate surface of various elements in driving scenarios, we employ 2D Gaus-
sian primitives with periodic vibration properties. Furthermore, we propose a novel panoramic
Gaussian splatting technique with explicit ray-splat intersection for fast and efficient rendering of
panoramic depth maps. By incorporating intensity and ray-drop SH coefficients into the Gaussian
primitives, we enhance the realism of the rendered point clouds, making them more closely resemble
actual LiDAR data. Our method significantly surpasses previous NeRF-based approaches in both
computational speed and simulation quality on the KITTI-360 and nuScenes datasets.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENT

This work was supported in part by National Natural Science Foundation of China (Grant No.
62376060).

REFERENCES

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P. Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In ICCV, 2021.

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In CVPR, 2022.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Zip-nerf:
Anti-aliased grid-based neural radiance fields. In ICCV, 2023.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In CVPR, 2020.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance
fields. In ECCV, 2022.

Yurui Chen, Chun Gu, Junzhe Jiang, Xiatian Zhu, and Li Zhang. Periodic vibration gaussian:
Dynamic urban scene reconstruction and real-time rendering. arXiv preprint, 2023a.

Zhang Chen, Zhong Li, Liangchen Song, Lele Chen, Jingyi Yu, Junsong Yuan, and Yi Xu. Neurbf:
A neural fields representation with adaptive radial basis functions. In ICCV, 2023b.

Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. Mobilenerf: Exploiting
the polygon rasterization pipeline for efficient neural field rendering on mobile architectures. In
CVPR, 2023c.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
open urban driving simulator. In CoRL, 2017.

Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object recon-
struction from a single image. In CVPR, 2017.

Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Matthias
Nießner, and Qi Tian. Fast dynamic radiance fields with time-aware neural voxels. In SIGGRAPH
Asia, 2022.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In CVPR, 2022.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In CVPR, 2023.

Jian Gao, Chun Gu, Youtian Lin, Hao Zhu, Xun Cao, Li Zhang, and Yao Yao. Relightable 3d
gaussian: Real-time point cloud relighting with brdf decomposition and ray tracing. In ECCV,
2024.

Benoı̂t Guillard, Sai Vemprala, Jayesh K Gupta, Ondrej Miksik, Vibhav Vineet, Pascal Fua, and
Ashish Kapoor. Learning to simulate realistic lidars. In IROS, 2022.

Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, Jonathan T Barron, and Paul Debevec. Baking
neural radiance fields for real-time view synthesis. In ICCV, 2021.

Wenbo Hu, Yuling Wang, Lin Ma, Bangbang Yang, Lin Gao, Xiao Liu, and Yuewen Ma. Tri-miprf:
Tri-mip representation for efficient anti-aliasing neural radiance fields. In ICCV, 2023.

11

Published as a conference paper at ICLR 2025

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting
for geometrically accurate radiance fields. In ACM SIGGRAPH, 2024.

Jiahui Huang, Zan Gojcic, Matan Atzmon, Or Litany, Sanja Fidler, and Francis Williams. Neural
kernel surface reconstruction. In CVPR, 2023.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM TOG, 2023.

Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source multi-
robot simulator. In IROS, 2004.

Chenqi Li, Yuan Ren, and Bingbing Liu. Pcgen: Point cloud generator for lidar simulation. In ICRA,
2023.

Yiyi Liao, Jun Xie, and Andreas Geiger. Kitti-360: A novel dataset and benchmarks for urban scene
understanding in 2d and 3d. IEEE TPAMI, 2022.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel
fields. NeurIPS, 2020.

Sivabalan Manivasagam, Shenlong Wang, Kelvin Wong, Wenyuan Zeng, Mikita Sazanovich,
Shuhan Tan, Bin Yang, Wei-Chiu Ma, and Raquel Urtasun. Lidarsim: Realistic lidar simula-
tion by leveraging the real world. In CVPR, 2020.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM TOG, 2022.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In CVPR, 2021.

Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf: Speeding up neural
radiance fields with thousands of tiny mlps. In ICCV, 2021.

Christian Reiser, Rick Szeliski, Dor Verbin, Pratul Srinivasan, Ben Mildenhall, Andreas Geiger, Jon
Barron, and Peter Hedman. Merf: Memory-efficient radiance fields for real-time view synthesis
in unbounded scenes. ACM TOG, 2023.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In MICCAI, 2015.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual and
physical simulation for autonomous vehicles. In Field and Service Robotics: Results of the 11th
International Conference, 2018.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. In CVPR, 2022.

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui,
James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan
Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi,
Yu Zhang, Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

Tang Tao, Longfei Gao, Guangrun Wang, Peng Chen, Dayang Hao, Xiaodan Liang, Mathieu Salz-
mann, and Kaicheng Yu. Lidar-nerf: Novel lidar view synthesis via neural radiance fields. arXiv
preprint, 2023.

Tang Tao, Guangrun Wang, Yixing Lao, Peng Chen, Jie Liu, Liang Lin, Kaicheng Yu, and Xiaodan
Liang. Alignmif: Geometry-aligned multimodal implicit field for lidar-camera joint synthesis. In
CVPR, 2024.

12

Published as a conference paper at ICLR 2025

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE TIP, 2004.

Hanfeng Wu, Xingxing Zuo, Stefan Leutenegger, Or Litany, Konrad Schindler, and Shengyu Huang.
Dynamic lidar re-simulation using compositional neural fields. In CVPR, 2024.

Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang. Phys-
gaussian: Physics-integrated 3d gaussians for generative dynamics. arXiv preprint, 2023a.

Ziyang Xie, Junge Zhang, Wenye Li, Feihu Zhang, and Li Zhang. S-nerf: Neural radiance fields for
street views. In ICLR, 2023b.

Weiyi Xue, Zehan Zheng, Fan Lu, Haiyun Wei, Guang Chen, and Changjun Jiang. Geonlf: Geome-
try guided pose-free neural lidar fields. arXiv preprint, 2024.

Yunzhi Yan, Haotong Lin, Chenxu Zhou, Weijie Wang, Haiyang Sun, Kun Zhan, Xianpeng Lang,
Xiaowei Zhou, and Sida Peng. Street gaussians for modeling dynamic urban scenes. In ECCV,
2024.

Jiawei Yang, Boris Ivanovic, Or Litany, Xinshuo Weng, Seung Wook Kim, Boyi Li, Tong Che,
Danfei Xu, Sanja Fidler, Marco Pavone, et al. Emernerf: Emergent spatial-temporal scene de-
composition via self-supervision. In ICLR, 2024a.

Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li Zhang. Real-time photorealistic dynamic
scene representation and rendering with 4d gaussian splatting. In ICLR, 2024b.

Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin, Pratul P. Srinivasan, Richard Szeliski,
Jonathan T. Barron, and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-time view
synthesis. arXiv preprint, 2023.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. PlenOctrees for
real-time rendering of neural radiance fields. In ICCV, 2021.

Junge Zhang, Feihu Zhang, Shaochen Kuang, and Li Zhang. Nerf-lidar: Generating realistic lidar
point clouds with neural radiance fields. In AAAI, 2024.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Zehan Zheng, Fan Lu, Weiyi Xue, Guang Chen, and Changjun Jiang. Lidar4d: Dynamic neural
fields for novel space-time view lidar synthesis. In CVPR, 2024.

Wojciech Zielonka, Timur Bagautdinov, Shunsuke Saito, Michael Zollhöfer, Justus Thies, and Javier
Romero. Drivable 3d gaussian avatars. arXiv preprint, 2023.

13

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 RAY-SPLAT INTERSECTION

Although 3DGS performs well in camera image rendering, it is not suitable for panoramic LiDAR
rendering. This limitation arises from the complexity of transforming 3D spatial points into LiDAR
range map, which makes it challenging for the Jacobian matrix of the transformation to accurately
approximate the effects of such a transformation. Given a point (x, y, z) in the camera space, its
corresponding radian angles (ϕ, θ) can be calculated as:(

ϕ
θ

)
=

(
atan2(x, z)

atan2(
√
x2 + z2,−y)

)
(22)

By combining this with Equation 8 from the paper, we can derive the projection of this point onto
the LiDAR range map, resulting in its pixel coordinates (ξ, η) as:(

ξ
η

)
=

(
W
2πatan2(x, z) +

W
2

H atan2(
√
x2+z2,−y)−VFOVmin

(VFOVmax−VFOVmin)

)
(23)

Thus, the Jacobian matrix can be computed as follows:

J =

(
W̃ z

x2+z2 0 −W̃ x
x2+z2

−H̃ xy√
x2+z2(x2+y2+z2)

H̃
√
x2+z2

(x2+y2+z2) −H̃ yz√
x2+z2(x2+y2+z2)

)
(24)

where W̃ = W
2π and H̃ = H

VFOVmax−VFOVmin
.

We tile the plane with 2D and 3D Gaussian primitives of different colors and render their color and
depth. As illustrated in Figure 9, we can observe that for 3D Gaussian primitives, due to the poor ap-
proximation of the Jacobian for the projection transformation, the originally tightly arranged points
become scattered, which also leads to the discontinuity in depth shown in Figure 8 of the paper. In
contrast, the 2D Gaussian primitives, being based on ray intersection without approximation, exhibit
the desired effect.

Figure 9: Ray-splat intersection v.s. 3D Gaussian splatting.

A.2 EXPERIMENTS ON WAYMO DATASET

We additionally conducted experiments on sequences selected by PVG (Chen et al., 2023a) from the
Waymo (Sun et al., 2020) dataset. Since methods like LiDAR4D (Zheng et al., 2024) have not been
implemented on the Waymo dataset, we only report our own results in Table 5. The experimental
results are consistent with those of KITTI-360 and nuScenes across the evaluation metrics, showing
the scalability and generalization ability of our method. We have also additionally visualized LiDAR
point clouds from the Waymo dataset in Figure 10 and Figure 11, showcasing the generalization
ability of our approach again.

14

Published as a conference paper at ICLR 2025

Table 5: Metrics on Waymo dataset.

Method Point Cloud Depth Intensity
CD↓ F-score↑ RMSE↓ MedAE↓ LPIPS↓ SSIM↑ PSNR↑ RMSE↓ MedAE↓ LPIPS↓ SSIM↑ PSNR↑

GS-LiDAR (Ours) 0.2382 0.9055 5.8925 0.0198 0.0708 0.8394 22.2482 0.0415 0.0067 0.0627 0.7291 27.7420

Figure 10: Comparison of the rendered depth and intensity map with ground truth. The first two
rows depict the depth maps, while the subsequent two rows illustrate the intensity maps.

Figure 11: The visualization of LiDAR point clouds in three-dimensional space.

15

	Introduction
	Related work
	Method
	Preliminary: 3D Gaussian splatting
	Periodic vibration 2D Gaussian
	Panoramic Gaussian splatting
	LiDAR rendering
	Loss function

	Experiment
	Experiment setup
	Evaluation on static scenes
	Evaluation on dynamic scenes
	Ablation study

	Conclusion
	Appendix
	Ray-splat intersection
	Experiments on Waymo dataset

