
Appendix A Expanded Related Work
Traditional formulations of imitation learning [8, 1, 9] assume access to a corpus of expert demonstration
data which includes both state and action trajectories of the expert policy. In the context of third-person
imitation learning, including when learning from expert agents with different embodiments, obtaining
access to ground-truth actions is difficult or impossible.

Inferring expert actions. To address this issue, several approaches either try to infer expert actions
[10, 11, 12, 32] – for example by training an inverse dynamics model on agent interaction data [10] – or
employ forward prediction on the next state to imitate the expert without direct action supervision [13]. In
the case of [33], a video-based action classifier trained on a large-scale human activity dataset is leveraged
to provide rewards for single-task RL policies, which are then used to provide expert state-action pairs
for multi-task behavior cloning. While these methods successfully address learning from observation-only
demonstrations, they either do not support skill transfer to different policy embodiments at all, or they
cannot take advantage of multiple embodiments in order to improve generalization to unseen policy
configurations. We explicitly address these problems in this work.

Imitation via learned reward functions. In contrast to imitation via supervised methods, such as
BCO [10], a recent body of work [4, 5, 14, 6, 15, 34] has focused on learning reward functions from expert
video data and then training RL policies to maximize this reward. In [4], the authors combine ImageNet
pre-trained visual features with an L2-norm distance reward to match policy and expert observations
in a latent feature space. In their follow-up work [5], the reward is computed in a viewpoint-invariant
representation that is self-supervised on video data. While both these methods are compelling in their
use of cheap unlabeled data to learn invariant rewards, the use of a time index as a heuristic for defining
weak correspondence is a constraining limitation for tasks that need to be executed at different speeds,
or are not strictly monotonic (e.g., have ambiguous sub-task ordering). In [14] a dense reward is learned
via unsupervised learning on YouTube data and the authors make no assumption about time alignment.
However, in their work, the expert and learned policy are executed in the same domain and embodiment,
an assumption we relax in our work. Framed in a multi-task learning setting, [16] propose training policies
with morphologically different embodiments first on a similar set of proxy tasks, in order to learn a latent
space to map between domains, and then sharing skills on a held-out task from one policy to another. A
time-index heuristic is used to define a metric reward when performing RL training of the new task. In
our work, the learned embedding finds correspondences in a fully-unsupervised fashion, without the need
for such strict time alignment. In [17], a small sub-set of states is human labeled for goal success and a
convolutional network is then trained to detect successful task completion from image observations, where
on-policy samples are used as negatives for the classifier. By contrast, our learned embedding encodes
task progress in its latent representation without the use of expensive human labels.

Imitation via domain adaptation. An additional category of approaches to third-person imitation learning
are those that perform domain adaptation of expert observations [18, 19, 20, 21]. For instance, in [18]
a CycleGAN [22] architecture is used to perform pixel-level image-to-image translation between policy
domains, which is then used to construct a reward function for a model-based RL algorithm. A similar
model-free approach is proposed in [19]. In [20], a generative model is used to predict robot high-level
sub-goals conditioned on a third-person demonstration video, and a lower-level control policy is trained in
a task-agnostic manner. Similarly, [21] uses high level task conditioning from zero-shot transfer of expert
demonstrations, but they use KL matching to perform both high and low-level imitation. In contrast to these
methods, the unsupervised TCC alignment in this work avoids performing explicit domain adaptation or
pixel-level image translation by instead learning a robust and invariant feature space in a fully offline fashion.

Inspired by maximum entropy inverse RL [35, 36] and generative adversarial networks [37], the seminal
GAIL algorithm [38] performs distribution matching between the expert and policy’s state-action occupancy
via an adversarial formulation; a discriminator is trained with on-policy samples, which is then used as a
reward in an RL framework. Many recent works [39, 40, 41, 42, 43] build upon GAIL in order to perform
observation-only imitation learning using state-only occupancy matching [39], domain adaptation via
domain confusion [40, 41], and state-alignment using a variational autoencoder next-state predictor [42].
Likewise, the algorithm proposed in [15] combines a metric learning loss that uses temporal video co-
herence to learn a robust skill representation with an entropy-regularized adversarial skill transfer loss.
Finally, the authors of [44] propose an adversarial formulation for learning across domains with dynamics,
embodiment and viewpoint mismatch. In contrast to these methods, our unsupervised reward is robust to
domain shift without requiring online fine-tuning or the additional complexity of dynamic reward learning.

Reinforcement learning with demonstrations. Recent work in offline-reinforcement learning [6]
explicitly tackles the problem of policy embodiment and domain shift. Their method, Reinforcement
Learning from Videos (RLV), uses a labelled collection of expert-policy state pairs in conjunction with

11



adversarial training to learn an inverse dynamics model jointly optimized with the policy. In contrast, we
avoid the limitation of collecting human-labeled dense state correspondences by using a self-supervised
algorithm (i.e., TCC [7]) which uses cycle-consistency to automatically learn the correspondence between
states of two domains. We also show that this formulation improves generalization to unseen embodiments.
Since the problem setup is similar to ours, we also compare to their method as a baseline.

Appendix B X-MAGICAL Benchmark Details
In this section, we provide more information about our X-MAGICAL benchmark, including a description
of the task, an overview of the different embodiments and details regarding horizons, the success metric
and the environment reward. We encourage the reader to read [24] for an in-depth description of the base
MAGICAL benchmark.

B.1 Action and Observation Space

Figure 8. A stack of three image observations for the gripper embodiment.

We use a continuous action space for our Sweeping task. All embodiments have a 2D action space with the
exception of the gripper agent which has an additional degree of freedom to open and close its arms. The
first degree of freedom is for longitudinal movement (forward/backward), the second degree of freedom
is for angular movement (left and right rotation) and the third degree of freedom, if applicable, is a gripping
action (push fingers closed/allow fingers to open).

x-MAGICAL provides both state and image-based observations. The state observations are used as input
to the RL policies whereas the pixel observations are used by the pretrained encoder to generate rewards.
The state vector contains the (x,y) position of the agent, (cos✓,sin✓) where ✓ is the agent’s 2D orientation,
and for each of the three debris: its (x,y) position, its distance to the agent and its distance to the goal
zone. For the RGB image, we employ an allocentric, top-down perspective (Figure 8) with full view of
the workspace. Similar to MAGICAL, we use an 8Hz control rate, thus with a frame stacking value of
3, this corresponds to roughly 0.3 seconds of interaction.

B.2 Detailed Task and Embodiment Description
In the Sweeping task, the robotic agent must push 3 debris blocks to the pink zone at the top of the workspace.
The agent’s position is constrained to always spawn below the debris. Both the agent’s position and the
debris positions are randomized at every environment reset. Specifically, we sample the same y-coordinate
for all three debris, then randomly space them out from each other (different x-coordinate). The horizon for
the longstick agent is H=50 time steps since it can solve the task much faster than the other embodiments
thanks to its morphology. The horizon for all other embodiments isH=100. The ground-truth environment
reward is defined as 1

3 ·
P3

i=1 {di2G}, i.e., the fraction of total debris present inside the goal zone G.

In Figure 9, we provide a film strip demonstration of each embodiment solving the Sweeping task with
a plot of the environment reward as a function of time. For this visualization specifically, we manually
teleoperate each agent and disable the environment horizon limit.

B.3 Demonstration Data
To collect demonstration data for each embodiment, we train an oracle policy with SAC using the
ground-truth environment reward. We then rollout the policy in the environment, discarding any potentially
unsuccessful demonstrations, until we are left with 1000 demonstrations per embodiment. A comprehensive
overview of the hyperparameters used for reinforcement learning are detailed in Table 7 in Appendix G.2.

Appendix C X-REAL: A Real-World Cross-Embodiment Dataset
To test reward learning in the real world on more challenging manipulation tasks, we collect a real-world
dataset named X-REAL (Cross-embodiment Real-world demonstrations), which contains 93 demonstration
videos of different embodiments (manifested as different manipulator end-effectors) solving the same
manipulation task in the real-world: transferring five pens to two cups consecutively. This is a multi-step

12



Figure 9. A film strip of the gripper, longstick, mediumstick and shortstick embodiments (vertical order) solving the Sweeping task with a corresponding
visualization of the ground-truth environment reward.

Embodiment Demo Length Stats
(seconds)

1 Hand 5 Fingers 10.8±1.8
2 Hands 2 Fingers 11.8±1.2
1 Hand 2 Fingers 14.9±1.4
Ski Gloves 20.0±3.9
Kitchen Tongs 21.1±3.1
Lobster Hands (costume) 21.3±3.8
Tweezers 27.8±2.3
RMS Grabber Reacher 29.9±3.2
Irwin Quick-Grip Clamps 38.1±9.2

Table 2. Mean ± Std. Dev. of Demonstrations Lengths for Different X-REAL Embodiments

13



manipulation task where the pens on the table need to be lifted to one cup and then moved again to a
separate cup. The different end-effectors consist in a human hand as well as six tools purchased from
Amazon and displayed in Figure 10. In contrast to the dataset used in Section 5.3, there is visual diversity
among the different end-effectors in X-REAL, and there is also significant variation in how the task is
solved and how long it takes to solve the task. Some end-effectors (e.g., tweezers) can only move one
pen at a time, while others (e.g., human hand with five fingers) can move all pens at once. Additionally,
the demonstrations are not collected in a constrained fashion that tries to mimic the robot. We report the
mean and standard deviation of demonstration lengths for each embodiment in Table 2. Note the variation
in demo lengths across different embodiments.

1 Hand 5 Fingers 1 Hand 2 Fingers 2 Hands 2 Fingers Ski Gloves Kitchen Tongs Lobster Hands Tweezers Irwin Clamps RMS Reacher

Figure 10. Embodiments in the X-REAL dataset, ordered by their appearance in Table 2.

C.1 Data Collection & Hardware Setup
The hardware and data collection setup is shown in Figure 11. We use a GoPro Hero8 mounted on a tripod
to record the demonstrations and use voice commands to efficiently start and stop the video recordings.
The Hero8 records RGB images with a resolution of 1920⇥1080 at 30 frames per second.

C.2 Reward Learning from Real-world Multi-Cross-Embodiment Demonstrations

a

b

c

Figure 11. Hardware setup. a) Tripod-mounted Go-
Pro Hero8, b) Cup, Mug and Pens from Task c) Ex-
ample end-effectors used.

In this section, we learn reward functions from videos in X-REAL,
and demonstrate that our method is capable of handling the visual
complexities of the real world without requiring annotations of
end-effectors, objects, or their states. We train the encoder on
all embodiments in the training set and present examples of the
learned XIRL rewards on video demonstrations from the validation
set in Figure 12. Specifically, we visualize two embodiments: the
RMS Grabber Reacher (top row) and the human 1 Hand 5 Fingers
(bottom row) and for each embodiment, we show both a successful
and unsuccessful trajectory.

In the top row, both the successful and unsuccessful demonstrations
follow a similar trajectory at the start of the task execution. The
successful one nets a high reward for placing the pens consecutively
into the mug then into the glass cup, while the unsuccessful one
obtains a low reward because it drops the pens outside the glass cup
towards the end of the execution. In the bottom row, for the 1 Hand
5 Fingers embodiment, we observe that not completing the task
and more specifically, leaving the pens in the first cup, generates
a reward that is roughly half (image row 2, plot orange curve) the
one achieved by a successful execution (image row 1, plot blue
curve). These results are encouraging – they show that our learned encoder can represent fine-grained
visual differences relevant to the task. Additionally, the training process for this visual reward did not
require any additional environment instrumentation (apart from a camera), a desirable property for scaling
to more complex, multi-step manipulation tasks.

Appendix D Additional Experimental Details
Our codebase is implemented in PyTorch [45]. Experiments were performed on a desktop machine with an
AMD Ryzen 7 2700X CPU (8 Cores/16 Threads, 3.7GHz base clock), 32GB RAM, and a single NVIDIA
GeForce RTX 2080 Ti GPU.

D.1 Representation Learning
Each representation learning run – specifically training and evaluating a representation and computing the
final goal embedding vector – took an average of 25-30 minutes of wall clock time.

14



pens outside cup

empty cup

Figure 12. X-REAL “move pens to mug then cup” task: Visualizing our learned XIRL reward function on successful and unsuccessful demonstrations
for the RMS Grabber Reacher (top) and 1 Hand 5 Fingers (bottom) embodiments.

D.1.1 Additional Baseline Details

In this section, we provide a comprehensive overview of the baselines briefly described in Section 4.2.

ImageNet: We use an ImageNet pre-trained ResNet-18 with no additional training, i.e., we load the
pre-trained weights, discard the classification head, and use the 512-dimensional embedding space from
the penultimate layer.

Parameter Setting

Total train iterations 6k
Number of frames 15
Batch size 4
Embedding size 32
Unit normalize embeddings False
Negative window size 5

Table 3. Hyperparameters used for the Goal Classifier
baseline.

Goal Classifier: A common strategy for using a learned visual
reward function is to train a goal frame classifier [27] on
a binary classification task where the last frame of all the
demonstrations is considered positive and all the others are
considered negatives. Since demonstration sequences do not

15



necessarily end exactly when the task is solved, we randomly
sample the negatives from frames that are at least 5 indices
away from the final frame. This was chosen heuristically by
examining the dataset. Note that unlike [27], we do not have
access to any unsuccessful trajectories in the dataset.

Parameter Setting
Total train iterations 8k
Number of frames 15
Batch size 4
Embedding size 32
Unit normalize embeddings True
Embedding temperature 0.1

Table 4. Hyperparameters used for the LIFS baseline.

LIFS: We re-implement the approach from [16], which learns
a feature space that is invariant to different embodiments using
a loss function that encourages corresponding pairs of embodi-
ment states across demonstrations to be close in the embedding
space. We use the time-based alignment method described in
their paper to find these corresponding pairs which assumes
each embodiment performs the task at the same rate. To pre-
vent the embeddings from collapsing to a constant value, they
use an additional reconstruction loss to encourage the network
decoders to preserve as much domain-invariant information as possible. We found early stopping to be
crucial in preventing LIFS from collapsing to trivial embeddings. For this baseline, we also randomly
sample N evenly-spaced frames from a video to construct each mini-batch.

Parameter Setting

Total train iterations 4k
Number of frames 20
Batch size 4
Embedding size 32
Unit normalize embeddings True
Embedding temperature learned
Positive window 1
Negative Window 4

Table 5. Hyperparameters used for the TCN baseline.

TCN: We re-implement the single-view variant of Time-
Contrastive Network (TCN) [5] with positive and negative
frame windows of 1 and 4 respectively. Different from [5], we
do not use a time-indexed reward which is not applicable to
agents with different embodiments. Like XIRL, we use the
negative distance to the average goal embedding as the reward.
For this baseline, we sample a contiguous chunk of N frames
from a video to construct a mini-batch.

D.1.2 Data Augmentation & Preprocessing

We apply data augmentation during training using the Albu-
mentations library [46]. Concretely, this involves the following transformations:

• RandomResizedCrop: This transformation takes a random crop from the original image, then
resizes it to a final output height and width. The lower and upper bounds for the random crop
area are set to [0.6,1.0], the lower and upper bounds for the random aspect ratio of the crop are
set to [0.75,1.33] and the final output size is set to 224⇥224. We apply this transformation with
a probability of 1.0 and denote it by C.

• ColorJitter: This transformation varies the brightness, contrast, saturation and hue of an input
image. Our parameters for these respective changes are 0.4, 0.4, 0.1 and 0.1. We apply it with a
probability of 0.8 and denote it by J.

• ToGray: This transformation converts an RGB image into a grayscale one. We apply it with a
probability of 0.2 and denote it by G.

• GaussianBlur: This transformation blurs the input image with a Gaussian filter. We use a fixed
kernel size of 13 and a standard deviation randomly sampled from the range [1.0,2.0]. We apply
it with a probability of 0.2 and denote it by B.

• Normalize: Lastly, we divide the pixel values by 255 to scale their range to [0,1]. We apply it
with a probability of 1.0 and denote it by N .

We apply the same randomly sampled transformations to all the sampled frames from the same video.
However, independently sampled transformations are applied for each such frame stack in the mini-
batch. Note that the order of transformation matters, i.e., we apply the following composed transform:
N�B�G�J�C.

D.1.3 Training and Evaluation

All our representations are trained using an ADAM optimizer with �1=0.99, �2=0.999 and weight decay
of 10�5. While the representations are evaluated on the downstream policy learning performance, we
also compute the following quantitative metrics and qualitative results on the train and validation sets to
diagnose our representations:

• Kendall’s Tau: A metric ranging from [�1,1] that measures how well-aligned two sequences
are in time. We refer the reader to [7] for a more in-depth explanation.

16

https://albumentations.ai/docs/api_reference/augmentations/crops/transforms/#albumentations.augmentations.crops.transforms.RandomResizedCrop
https://albumentations.ai/docs/api_reference/augmentations/transforms/#albumentations.augmentations.transforms.ColorJitter
https://albumentations.ai/docs/api_reference/augmentations/transforms/#albumentations.augmentations.transforms.ToGray
https://albumentations.ai/docs/api_reference/augmentations/transforms/#albumentations.augmentations.transforms.GaussianBlur
https://albumentations.ai/docs/api_reference/pytorch/transforms/#albumentations.pytorch.transforms.ToTensor


• Nearest-Neighbor Alignment Video: We randomly select one demonstration as a reference
video. We use nearest-neighbor in the embedding space to align a test video with the reference
video. See Appendix F and the supplemental video for example visualizations for both same and
cross-embodiment settings. These videos highlight how well the embedding space encodes the
task progress across different embodiments.

D.1.4 Other Hyperparameters

For a comprehensive list of hyperparameters used for representation learning on the X-MAGICAL
environment, the Puck Pushing environment, and X-REAL (Appendix C), see Appendix G.1.

D.2 Policy Learning
The SAC [30] implementation we use is based off of [47]. Each run on the X-MAGICAL benchmark,
i.e., the training and evaluation of a specific reward learning method on a specific embodiment with a
single seed, took an average of 00h27m, 01h42m, 03h56m and 03h56m wall clock times for long-stick,
medium-stick, short-stick and gripper, respectively. Note the difference in run times is due to the fact that
each embodiment is trained for a different number of total training steps since each converges at different
rates: 75k, 225k, 500k and 500k for long-stick, medium-stick, short-stick and gripper respectively. For the
Puck Pushing experiments in Section 5.3, each run took an average wall clock time of 01h25m for 200k
timesteps. Note that run times for both the above environments are recorded while performing up to 5 seed
runs in parallel.

D.2.1 Soft-Actor Critic Architecture

We use clipped double Q-learning [48, 49] for the critic, where each Q-function is parameterized by
a 3-layer multi-layer perceptron (MLP) with ReLU activations. The actor is implemented as a tanh-
diagonal-Gaussian, and is also parameterized by a 3-layer MLP which outputs mean and covariance.
Both actor and critic MLPs have a hidden size of 1024 – the weights are initialized with orthogonal [50]
initialization, while the biases are initialized to zero.

D.3 Policy Input
As mentioned in Section 4.1 and Appendix B.1, we construct our observational inputs by stacking 3
consecutive state vectors. The input to the policy is thus a flattened vector in R48. For the Puck Pushing
environment described in Section 5.3, we construct the observational input by stacking 3 consecutive state
vectors containing the 3D Cartesian coordinates of the robot end-effector and the planar 2D coordinates of
the puck. The input to the policy is thus a flattened vector in R15.

D.3.1 Training and Evaluation Setup

We first collect 5000 seed observations with a uniform random policy, after which we sample actions using
the SAC policy. We then perform one gradient update every time we receive a new environment observation.
When evaluating our agent every 5000 steps, we take the mean policy output (i.e., no sampling) and average
the final success rate over 50 evaluation episodes.

D.4 Other Hyperparameters
For a comprehensive list of hyperparameters used for policy learning on the X-MAGICAL and Puck
Pushing environments, see Appendix G.2.

Appendix E Additional Experiments
E.1 XIRL vs. Ground-truth Environment Reward
In this section, we compare the performance of our method XIRL against the ground-truth environment
reward on the same-embodiment experiment from Section 5.1 and the cross-embodiment experiment from
Section 5.2. We observe that in both same-embodiment (Figure 13, top) and cross-embodiment (Figure 13,
bottom) settings across multiple embodiments, XIRL is either more or just as sample-efficient as the
environment reward. This highlights XIRL’s ability to provide denser reward information via encoding task
progress, as opposed to the sparser ground-truth environment reward, which was shown in Figure 6(a).

E.2 XIRL vs. SimCLR
In this section, we compare the performance of XIRL against SimCLR [51], a constrative pretraining
technique that has exhibited SOTA self-supervised performance on ImageNet. We implement two Sim-

17



Figure 13. Comparison of XIRL with the ground-truth environment reward in the same-embodiment setting (top) and the cross-embodiment setting
(bottom

CLR baselines: (a) SimCLR is a ResNet18 trained on the x-MAGICAL demonstration dataset with the
constrastive pretraining pipeline described in [51], and (b) SimCLR ImageNet is a ResNet18 pretrained on
ImageNet with SimCLR, with no further pretraining on x-MAGICAL. Below, we present results for the
longstick and mediumstick embodiments of the x-MAGICAL benchmark:

Figure 14. Comparison of XIRL & SimCLR in the same-embodiment setting.

Figure 15. Comparison of XIRL & SimCLR in the cross-embodiment setting.

We find that the SimCLR objective performs poorly when trained solely on the x-MAGICAL dataset,
whereas the SimCLR baseline pertained on ImageNet (without finetuning on x-MAGICAL) does much
better on the longstick embodiment (which is easier to solve). For the mediumstick embodiment, both
perform poorly. XIRL, shown in blue, performs significantly better. This highlights that overall, both visual
pretraining on cross-embodiment demonstrations and the inductive biases offered by the TCC loss are
required to obtain good performance on downstream RL tasks.

18



Appendix F Qualitative Results
F.1 t-SNE Visualizations
To better understand and compare our learned representations, we visualize the t-SNE projection of the
learned XIRL and Goal Classifier embedding spaces for 4 video demonstrations of the shortstick agent in
Figure 16. We observe that:

• Trajectories for different demonstrations overlap and are well-aligned in the XIRL embedding
space. In contrast, there is significantly less structure in the Goal Classifier space.

• Distances to the goal (top left corner in the top figure) correlate well to task progress.

XIRL embedding space

Goal Classifier
embedding space

Figure 16. t-SNE 2D projection of the learned embedding space for XIRL (top) and Goal Classifier (bottom), where 4 video demonstrations are
embedded and displayed for the shortstick agent from the X-MAGICAL benchmark.

We also provide video visualizations of the t-SNE embeddings in the supplementary video, which highlight
some more properties.

F.2 Nearest-Neighbor Retrieval
We provide nearest-neighbor alignment videos in the supplementary video.

F.3 Other Visualizations
Please see the supplemental video for videos showing trained policy rollouts on the Sweeping and Puck
Pushing tasks for the cross-embodiment setting, as well as interactive visualizations of the learned reward
for the above environments and X-REAL.

19



Appendix G Hyperparameters
In this section, we give a comprehensive overview of the hyperparameters used for representation learning
and policy learning on the Sweeping task from X-MAGICAL, the Puck Pushing task from [6], and
X-REAL.

G.1 Representation Learning
We used mostly the same hyperparameters to train the XIRL encoder across all environments. The main
parameters that vary are the embedding dimension and the number of sampled frames.

Hyperparameter Value Range Considered
Loss

Type regression (mse) {mse, huber, x-ent}
Stochastic matching False -
Normalize time indices True -
Variance-aware False -
Distance metric L2 {cosine, L2}

Optimizer
Type ADAM -
Initial learning rate 10�6 10�5 to 10�3

Final learning rate 0 -
�1 0.99 -
�2 0.999 -
Weight decay 10�5 10�6 to 5·10�4

Misc.
Total train iters. 8·103 2·103 to 30·103
Batch size 4 4 to 8
Normalize embeddings False {True, False}
Temperature 0.1 -
Learnable temperature False {True, False}
Augmentations color jit, rand. crop, togray, gauss. blur -
Frame Sampler uniform
Number of frames

X-MAGICAL 40 5 to 50
Puck Pushing 40 5 to 50
X-REAL 30 5 to 50

Embedding size
Sweeping 32 32 to 128
Puck Pushing 64 32 to 128
X-REAL 64 32 to 128

Table 6. Hyperparameters for all XIRL representation learning experiments.

G.2 Policy Learning
Most hyperparameters used for downstream reinforcement learning are identical across X-MAGICAL
and Puck Pushing. What changes is the total number of training steps for each embodiment, since some
converge much faster than others.

20



Hyperparameter Value
Total train steps

Gripper 500K
Shortstick 500K
Mediumstick 225K
Longstick 75K
Sawyer arm (RLV env) 200K

Optimizer
Type ADAM
Learning rate 10�4

�1 0.9
�2 0.999

Q-network
Hidden units 1024
Hidden layers 2
Non-linearity ReLU

Actor
Hidden units 1024
Hidden layers 2
Non-linearity ReLU

Misc.
Frames stacked 3
Action repetitions 1
Discount factor 0.99
Minibatch size 1024
Replay period every 1 step
Eval period every 5000 step
Number of eval episodes 50
Replay buffer capacity 106

Seed steps 5000
Critic target update frequency 2
Actor update frequency 2
Critic target EMA momentum (⌧Q) 0.005
Actor log std dev. bounds [�5,2]
Entropy temperature 0.1
Learnable temperature True

Table 7. Hyperparameters for all RL experiments.

21


