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Abstract
Machine learning models play a key role for ser-
vice providers looking to gain market share in
consumer markets. However, traditional learn-
ing approaches do not take into account the exis-
tence of additional providers, who compete with
each other for consumers. Our work aims to
study learning in this market setting, as it affects
providers, consumers, and the market itself. We
begin by analyzing such markets through the lens
of the learning objective, and show that accuracy
cannot be the only consideration. We then pro-
pose a method for classification under competi-
tion, so that a learner can maximize market share
in the presence of competitors. We show that our
approach benefits the providers as well as the con-
sumers, and find that the timing of market entry
and model updates can be crucial. We display the
effectiveness of our approach across a range of do-
mains, from simple distributions to noisy datasets,
and show that the market as a whole remains sta-
ble by converging quickly to an equilibrium.

1. Introduction
Machine learning models play an essential role in consumer
markets of today. Across many domains, firms that offer
products and services can significantly gain by attaining
better predictions about their users, or providing better pre-
dictions for them. In a sense, this has made accuracy itself
a commodity which consumers pursue; consider how user
choices have come to depend on the quality of personalized
predictions in recommendation systems, media platforms,
online marketplaces, or health analytics services. The in-
creasing demand for accurate predictions incentivizes firms
to improve their predictions, which in turn creates a ‘supply’
of accuracy—a process which results in the formation of
what we refer to as accuracy markets.
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In accuracy markets, firms seek to maximize their market
share by competing with other firms over who provides
more users with accurate predictions. This paper aims to
study such markets from three perspectives, namely of: (i)
the firms (or ‘learners’) that compete in the market, (ii) the
population of potential users, and (iii) the market itself. We
follow the market model proposed by Ben-Porat & Tennen-
holtz (2017; 2019), but focus on classification (rather than
regression), which we argue is more natural for this setting.
The main idea is that users choose a firm if it provides them
with accurate predictions; if multiple such firms exist, then
ties are broken randomly. When there is only one firm in
the market (a monopoly), then maximal market share can
be attained by maximizing accuracy directly—which is also
optimal for users. However, once there is competition, each
firm must take into account the predictions of all other firms,
as it depends on their choice of classifiers. This dependence
forms an oligopoly market in which the interests of the firms
no longer necessarily align with user welfare, defined as the
ratio of users for whom at least one firm is accurate.

The main result of Ben-Porat & Tennenholtz (2019) is that
if firms in such markets can successfully compute a best (or
better) response (i.e., find a model that maximizes market
share conditioned on all other models remaining fixed), then
dynamics will converge to a pure Nash equilibrium. This
is insightful, but leaves many questions unanswered: When
can best-response classifiers be found efficiently, and how?1

What kind of equilibria can be reached, and what will
happen on the way there? How will the market be shared
by the different firms? And will outcomes be beneficial for
users? Our goal is to shed light on these issues and others,
using theoretical analysis and empirical evaluation, and as
they relate to the learning firms, the users, and the market.

From the perspective of the learner, our results show that
finding the best-response classifier is as hard—but also not
harder than—solving a standard classification problem. In
fact, given the predictions (or classifiers) of all other players,
maximizing market share corresponds to maximizing a
particular weighted accuracy objective. This means that
although solving this exactly is hard, standard learning tech-
niques (e.g., using proxy losses) can be highly effective in

1Ben-Porat & Tennenholtz (2019) give an algorithm that applies
to linear regression and relies on integer linear programming.
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practice. It also provides the learner flexibility in choosing
the model class to work with, as it sees fit under standard
considerations (e.g., data size, compute capacity). Interest-
ingly, however, we see that the choice of when to respond
bears significant implications on outcomes for the learner.
This brings to focus questions regarding the pioneering of a
new market, entering an existing one, and maintaining user
loyalty (or its harmful counterpart of user lock-in practices).

From the perspective of the market, our analysis suggests
that most markets will exhibit strong anti-coordination (the
other alternative being the existence of a single dominant
strategy, which is possible but rare). In particular, mar-
ket forces push firms to secure exclusive access to certain
user sectors, and firms compete over who secures the larger
sectors. Notably, gaining access first does not guarantee ex-
clusivity; in fact, for simple markets with two firms we show
that firms engage in a chicken-like game, where moving first
is disadvantageous. Our analysis reveals that, despite com-
petition, firms are in a sense cooperating: when one firms
acts to increase its market share, this also serves to increase
the market shares of the other. Empirically, we observe that
for larger markets with more firms outcomes are more nu-
anced, although the order of play remains highly significant.

From the perspective of users, a direct result of the market is
that competition improves welfare. What may be surprising
is how efficient the market is: Empirically, we observe that
welfare increases quickly and attains the maximum possible
value with only a few firms, and after one round of updates.
For the latter, we give theoretical grounding for why this can
happen. One reason is that our model for the market enables
efficient outcomes to materialize—as long as information
flows freely. This has policy implications: a social planner
that seeks to maximize welfare should incentive firms (or
introduce regulation) to make their models public. Thus,
transparency becomes an operational consideration which,
in a utilitarian sense, works in favor of both firms and users.

We end with a series of experiments using synthetic and real
data that demonstrate the underlying mechanics of accuracy
markets and how they operate. Our results demonstrate that
learning in such markets can be feasible, that competition
converges quickly, and that the market is typically highly
efficient and favorable to users. Results also highlight
the importance of adjusting the objective to account for
competition, and show how lacking to do so (and optimizing
accuracy naïvely) can be detrimental to both firms and
users. For the market, we present analysis revealing how
it decomposes across firms, and measure concentration
and market power. We also show the importance of timing
market entry and model updates, the relation between
performance and model class capacity, and the constructive
role of information sharing. These results underscore the
dynamics of accuracy markets and showcase the importance

of adapting to competition.

2. Related work
Studying the dynamics of machine learning models com-
peting for market share has been a budding line of research.
Ben-Porat & Tennenholtz (2017; 2019) present a regression
learning task where providers wish to maximize their market
share of users by reducing prediction errors to below a given
threshold. Their focus is on the equilibrium dynamics in
the induced game between the providers. Employing a simi-
lar setting, Jagadeesan et al. (2024) focus on the effects of
competition dynamics on social welfare, showing that better
data representation does not necessarily translate to better
welfare; some of our results echo theirs. Feng et al. (2022)
study the bias-variance tradeoff in competitive settings. Yao
et al. (2023; 2024a;b) introduce a competition setting for
content creation and study welfare, equilibrium behaviors,
and best-response dynamics. Ginart et al. (2021), Dean
et al. (2024), and Su & Dean (2024) study how competitors
specialize when user choices influence the observable data
of each competitor. Our work puts emphasis on the learning
task itself, and studies its effects on market dynamics and
outcomes.

More generally, our research relates to the growing literature
on strategic learning. The majority of work in this field mod-
els users as strategic agents that can manipulate their fea-
tures (e.g., Hardt et al., 2016; Levanon & Rosenfeld, 2021).
In contrast, we model users as choosing among alternatives,
and put emphasis on the strategic role that learning must
assume to contend with competition. The idea that users can
choose a provider has been considered in Koren (2023) and
Horowitz et al. (2024), but only for binary choice (i.e., join
or drop out) and under uncertainty. Our work differs in that
it supports choices between multiple firms in a competitive
market. In a recent paper, Chen et al. (2025) study strategic
learning with externalities; interestingly, their construction
also gives rise to a potential game (as ours does), but be-
tween users (rather than providers). Our work also draws
connections to the field of performative prediction (Per-
domo et al., 2020), which studies how (re)training models
can gradually change the underlying data distribution. As
we show, this perspective applies to our approach when con-
sidered from the viewpoint of a single competing provider.

3. Setup
In our competitive learning setting, users are described by
features x ∈ X and labels y ∈ Y , over which there is an
unknown joint distribution p(x, y). There are n service pro-
viding firms, s1, . . . , sn, who provide prediction services
to users, and together form a market. Given a training set
S = {(xi, yi)}mi=1, each service provider si learns a classi-
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fier hi from some model class Hi. Each user x then chooses
a provider among those offering an accurate prediction:

s(x) ∈ {si : hi(x) = y} (1)

If multiple providers are accurate, then s(x) is determined
by a random tie-breaking rule. When no providers offer an
accurate prediction, we denote the null choice by s(x) = ∅.
Welfare is defined as the ratio of users that obtain service:

W (h) = Ep[1{s(x) ≥ 1}] (2)

where h = (h1, . . . , hn) are all classifiers in the market.

The goal of service providers is to maximize their market
share, defined as the expected ratio of users that choose them.
For each provider si, this depends on its choice of learned
model hi, but also on the set of all other models, h−i. For-
mally, the market share of service provider si is defined as:

µi = µ(hi | h−i) = Ep[P[s(x) = si]] (3)

where probability is w.r.t. how s(x) is chosen from the set of
accurate providers in Eq. (1). For simplicity we assume ties
are broken uniformly at random, namely P[s(x) = si] =
1/κ(x) where κ(x) = |{sj : s(x) ∈ sj}|. This conforms
to the setting of Ben-Porat & Tennenholtz (2017; 2019).

When the market includes only a single provider, maximiz-
ing market share is equivalent to maximizing accuracy:

argmaxh∈H Ep[1{y = h(x)}] (4)

which is the standard objective of supervised learning, and
in this case also maximizes welfare by definition. However,
once there is competition, this connection breaks since each
provider’s market share becomes dependent on all others.
Thus, the naïve approach of maximizing accuracy as a proxy
becomes suboptimal, and the question of how providers
maximize their market share must be considered jointly.

Competitive learning as a game. For a given distribution
p, if we think of each provider si as a player and interpret
Eq. (3) as their utility, then this defines a game, which we
refer to as an accuracy game. The strategy space for each si
is the set of all models in its model class Hi, and each tuple
h = (h1, . . . , hn) defines a game state. We will assume the
game is played on the empirical distribution induced by S,
but that final payoffs are given by expected market share
w.r.t. p. Note the game remains well-defined when players
have their own Si ∼ pi, although current equilibrium results
do not hold for this setting. In terms of information, we
work in the full information setting where all players have
complete access to the payoff matrix. However, as we will
see, optimal strategies for providers require strictly less
information.

Dynamics. To understand how game states progress, we
will explore dynamics in which providers can update their
predictive models over time, and in response to others. As-
sume w.l.o.g. that providers are ordered, s1 ≺ s2 ≺ · · · ≺
sn. Then at round t, each provider in turn chooses their hi

by playing best response, defined as:

ht
i = BR(ht

−i) = argmax
h∈Hi

µ(h | ht
−i) (5)

That is, providers respond by choosing the optimal classi-
fier hi assuming all others classifiers remain fixed, namely
ht
−i = (ht

1, . . . h
t
i−1, h

t−1
i+1, h

t−1
n ) and for some choice of

initial classifiers {h0
i }. We refer to ht

i as the best-response
classifier of si, but note it need not be unique. Since solv-
ing Eq. (5) can be computationally infeasible, we will also
consider approximate best responses that replace µ(h | ht

−i)
with a tractable surrogate objective (see Sec. 5).

Equilibrium. We will be interested in studying the game’s
equilibria, focusing mostly on pure Nash equilibrium (PNE).
These are defined as states h in which no provider has
incentive to unilaterally deviate from its chosen strategy:

∀ i ∈ [n], h′ ∈ Hi : µ(hi | h−i) ≥ µ(h′ | h−i) (6)

Ben-Porat & Tennenholtz (2017) prove that the game is
a type of potential game (Monderer & Shapley, 1996).2

Since the game is played on the empirical distribution,
which implies that the set of all possible predictions is finite
(even if H is not), a direct result is that a PNE exists and
is reachable via a finite sequence of best responses (Eq. (5)).
Note that multiple equilibria may exist, and that these may
differ significantly in market shares, market concentration,
and induced welfare. Furthermore, not all equilibria can
necessarily be reached via best-response dynamics, and the
equilibrium that is reached can depend on the initial game
state (i.e., choice of first classifiers) and the order of play.

4. Analysis
In this section we set out to analyze basic properties of accu-
racy markets. To permit tractable analysis, here we focus on
simple two player markets. We start with a restricted model
class, and then proceed to consider more general classes.
Proofs for all results are deferred to Appendix A.

We begin with some basic notation and properties that are
useful for games with n = 2. Fix p, and consider some H .
For each provider si, denote the accuracy of its chosen hi as:

ai = Ep[1{hi(x) = y}] (7)

2For completeness, in Appendix B.1 we give the game’s charac-
terization as a congestion game by identifying the appropriate
congestible resources and constructing an explicit cost function.
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h1 h2

h1
1
2a1,

1
2a1

1
2 (a1 + δ12),

1
2 (a2 + δ21)

h2
1
2 (a2 + δ21),

1
2 (a1 + δ12)

1
2a2,

1
2a2

Table 1: Payoff matrix of the 2x2 game

We define the partial discrepancy of hi relative to hj as:

δij = δi(hj) = Ep[1{hi(x) = y ∧ hj(x) ̸= y}] (8)

which sums points on which hi is correct on but hj is wrong.

Proposition 1. Let hi, hj , then µ(hi | hj) =
1
2 (ai + δij).

This implies that there are two ways to increase market share:
by improving overall accuracy (ai), or by being exclusively
correct on more points (δij). Thus, the choice of h should
consider how these two terms trade off. Note that points in
δij are counted twice, since they are also included in ai.

Interestingly, as long as the classifiers are distinct, then who-
ever has higher accuracy also secures a larger market share:

Proposition 2. For any hi ̸= hj , it holds that:

µ(hi | hj) > µ(hj | hi) ⇔ ai > aj (9)

This, however, should not be taken to imply that maximizing
accuracy is a good strategy, since providers seek to maxi-
mize their absolute market share—not their market share in
relation to others. Regardless of the other’s market share, a
provider may switch to an equally accurate classifier3— or
even sacrifice in accuracy to gain greater discrepancy— if
this results in market share increasing. Empirically we ob-
serve that sacrificing accuracy is both common and effective.

4.1. Warmup: 2× 2 accuracy markets

Consider a simple setting with n = 2 providers and a shared
model class of size two, H = {h1, h2}. For example, these
could be two available pre-trained models, or an existing
model that is already in deployment and a new model that is
a possible alternative. Such 2×2 games are fully determined
by the tuple (a1, a2, δ12, δ21)—see Table 1. This formula-
tion enables a characterization of all possible equilibria:

Theorem 1. Let H = {h1, h2}. Then for any p, the game
admits one of two following types:

1. Dominant-strategy: either (h1, h1) or (h2, h2) is a PNE

2. Anti-coordination: both (h1, h2) and (h2, h1) are PNEs

3This is a likely scenario: see works on the ‘Rashomon’ effect
(Paes et al., 2023) and model multiplicity (Semenova et al., 2022).

In the latter case, the game admits a chicken-like4 structure:
one provider obtains a larger market share by choosing the
‘better’ classifier, while the other must settle for the smaller
share. Note that better here does not mean more accurate,
as outcomes at equilibrium also depend on discrepancy.
The proof of Thm. 1 relies on the following result:

Lemma 1. Providers will choose differing strategies at
equilibrium if and only if |a1 − a2| ≤ 1

3 (δ12 + δ21).

Thus, anti-coordination emerges when h1, h2 are sufficiently
similar in terms of accuracy, but note that the condition is
fairly lenient. Empirically, we observe that chicken play
is by far the more prevalent scenario, and that the order of
play (which is only hinted to here) is highly significant. We
next show that the above properties hold more broadly.

4.2. Accuracy markets with threshold classifiers

Keeping n = 2, consider a more general accuracy game
in which y ∈ {0, 1}, inputs are scalar (x ∈ R), and H
comprises threshold classifiers hτ (x) = 1{x > τ}. This
also captures settings with general inputs x where there is
a pre-trained score function f(x) and each si can set its
own thresholds as hi(x) = 1{f(x) > τi}; i.e., competition
revolves around different ways to ‘set the bar’ w.r.t. f(x).

Our next result shows that under certain conditions, even
though H includes a continuum of models, the game simpli-
fies significantly. Consider the following common property:

Definition 1 (MLR). Let p(x, y) be continuous in x, and fy
the PDF of each conditional p(x|y) for y ∈ {0, 1}. We say
that p exhibits a (strict) monotone likelihood ratio (MLR) if
the density ratio ρ(x) = f1(x)

f0(x)
is (strictly) increasing.

We show that MLR entails a simple closed-form solution
to the best-response classifier against any other classifier:

Theorem 2. Fix n = 2, and let H = {hτ} be a class of
threshold classifiers over d = 1. Let p be such that it is
strictly MLR in some interval [a, b]. Then for any τ ∈ [a, b]:

BR[a,b](τ) ∈
{
max{a, ρ−1(1/2)},min{b, ρ−1(2)}

}
where BR[a,b](τ) is the best-response to τ from the set [a, b].

Thm. 2 states that of all thresholds in the range where MLR
holds, the set of candidates for a best-response classifier
reduces to just two. For natural cases in which the extreme
choices of τ < a and τ > b are not optimal,5 the structure
of the game simplifies even further.

4The standard Chicken game has payoffs of the form
Temptation>Coordination>Neutral>Punishment; our variant
has T>N>P>C> 0, which preserves the same PNE.

5For example, a mixture of two Gaussians is MLR everywhere
except possibly in the far tails, where thresholding is ineffective.
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Corollary 1. For n = 2 and H = {hτ}, any accuracy
game played on an MLR region of p reduces to a 2×2 game.
Hence, all results from Sec. 4.1 hold.

Note the reduced model class is H = {ρ−1(1/2), ρ−1(2)}.6

This is not by chance: under MLR, these ratios are precisely
the points in which accuracy and discrepancy balance each
other. Interestingly, this partitions the population into three
segments: mostly negative points, mostly positive, and a
mixed subpopulation. Providers then compete over who
obtains exclusive access to the more rewarding segments.

Thm. 2 can be generalized to any 1D distribution:

Theorem 3. Fix n = 2, and let H = {hτ} be a class of
threshold classifiers. Then for any interval [a, b] and any τ :

BR[a,b](τ) ∈ {a, b, τ} ∪ P−1
+ (1/2) ∪ P−1

+ (2)

where P−1
+ (z) = {τ : ρ(τ) = z ∧ ρ′(τ) > 0}.

For reasonable distributions, it is likely that |P−1
+ (z)| < c

for some small constant c. This then implies that H effec-
tively reduces to include only O(c) candidate strategies.

The above results also have implications on dynamics:

Proposition 3. For n = 2 and H = {hτ}, best-response
dynamics converge after one round.

We therefore receive that for threshold classifiers, not only
is calculating the best-response a simple task, but the market
also converges immediately. The difference from the MLR
setting is that there can now be multiple equilibria, and
convergence can depend on the initial choices of {h0

i }.

Best-response dynamics imply that model updates can im-
prove market share only for the provider that responds. In-
terestingly, in the above setting, we can show that a best-
response by one player improves outcomes also for the other.

Proposition 4. Let h0
i = hopt, ∀i. Then for each si, market

share µi increases even when the other sj best-responds.

Empirically, we observe that this form of implicit coopera-
tion emerges also in broader settings. For n > 2, outcomes
improve once all other players have responded.

4.3. Accuracy markets for general model classes

For general classes and n = 2, several properties of the
market can still be established. The first considers providers:

Proposition 5. If h0
i = h0 ∀i, for some h0, then µ∗

i ≥ µ0
i .

That is, if providers start at the same initial classifier, then all
of them will provably gain from competition. This directly
implies that competition also improves welfare for users:

6If they exist; otherwise the optimal models are at a, b; see Thm. 2.

Corollary 2. Fix initial classifier h0 ∀i, and let h∗ be the
set of classifiers at equilibrium. Then W (h∗) ≥ W (h0).

In terms of the market, we can bound its concentration:

Proposition 6. Let h∗ = (hi, hj) be any equilibrium. Then
µ(hi|hj) ≤ 2 · µ(hj |hi).

Thus, despite the tendency for differentiation under compe-
tition, no player can dominate more than 2/3 of the market.

General accuracy markets. Empirically, many of our
above results hold also for any number of players and gen-
eral model classes: quick convergence, implicit cooperation,
an incentive to differentiate, sacrificing accuracy for mar-
ket share, bounded market concentration, and high welfare.
Some results however do not carry over to n > 2; for ex-
ample, the order of play becomes much more intricate, and
whether moving first is good or bad can depend on context.
Importantly, our results hold despite the intractability of
computing best responses exactly, and by using our method
for learning approximate best responses—presented next.

5. Method
We now turn to the question of how to implement a best re-
sponse, i.e., by solving Eq. (5) for any setting. Our main ob-
servation is that a provider’s market share objective (Eq. (3))
can be rewritten as a weighted expected accuracy objective
with a particular choice of per-example weights:

µi = Ep[wi(x) · 1{hi(x) = y}], wi(x) =
1

1 + κ−i(x)
(10)

where κ−i(x) = |{sj ̸= si : hj(x) = y}|, i.e., the number
of other providers that are correct on x. Thus, weights
wi(x) determine the importance of input x for provider i,
and inform the objective of which inputs to target, or avoid.

Hardness. In terms of tractability, our results are mixed:

Observation 1. For any choice of H , and given wi, com-
puting the best-response classifier hi = BR(h−i) is just as
hard as maximizing expected accuracy over H .

This holds since weights in Eq. (10) simply modify the data
distribution, a change to which learning algorithms should
be agnostic.7 Unfortunately, because maximizing the ex-
pected 0-1 accuracy is computationally intractable (and sta-
tistically challenging) for the vast majority of classification
problems, computing a best-response classifier exactly will
mostly be infeasible. The bright side is that this is precisely
the problem that machine learning practice aims to solve.

7E.g., consider how the PAC framework defines a class H as
learnable if there exists an (efficient) algorithm that maximizes
accuracy well simultaneously for all distributions (Valiant, 1984).
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Figure 1: Two-player threshold market. (Left:) Data consists of two class-conditional Gaussians p(x | y) = N (ay, σy)
Beginning at hopt, providers compete over who gets the better classifier, h2, which secures exclusive access to the larger
sector of positive users (blue). (Center:) The game as played over time. Each best response improves market share for
both providers, but the second mover (s2) prevails. (Right:) Outcomes for increasingly distanced p(x | y) (here σy = σ).
Equilibrium classifiers are pulled further away, and sacrifice accuracy for increased market share.

Hence, any solution that works well for general machine
learning tasks should also work well to learn best responses.

Learning (approximate) best-response classifiers. Since
the game is played on the empirical distribution, we can
adapt any method of empirical risk minimization that sup-
ports custom example weights, i.e., that aims to solve:

ĥi = argmin
h∈H

1

m

m∑
j=1

wi(xj)ℓ(yj , h(xj)) + λR(h) (11)

where ℓ is a proxy loss (e.g., hinge loss or cross-entropy)
and R is an (optional) regularization term. This approach
applies to any type of data and choice of model class H . We
refer to ĥi as the approximate best-response classifier of si.
Note that optimizing ĥi depends on the other classifiers h−i

only through the example weights wi(xj). This means that
computing the empirical best-response classifier requires
only access to the number of other providers that are correct
on each data point—not to the actual classifiers in h−i. Also,
we can observe that the average weight 1

|S|
∑

i∈S wi has an
intuitive meaning: it is the maximum possible market share
that could be achieved by a perfect classifier, i.e., when all
its predictions are correct. The actual µi is then this optimal
market share minus the weighted loss incurred by the chosen
classifier ĥi.

Performativity. Eq. (4) casts maximizing market share as
a problem of learning under distribution shift, where shift is
due to competition, as expressed by weights wi(x). From
the perspective of a single provider si at time t, weights
wt

i(x) describe how the market has changed in response
to its own actions, i.e., the choice of ht−1

i . This reveals
that learning in a market setting is of a performative nature:
the choice of classifier at the current time step t shapes the
(effective) distribution at the next, pt+1

i (x, y). When there

are only two providers, performativity is stateless, meaning
that pt+1

i depends only on the current ht
i through how sj

will best-respond; this relates to the common (and simpler)
setting often studied in performative prediction (Perdomo
et al., 2020). When n > 2, dynamics become stateful, i.e.,
are path-dependent, and so choices accumulate over time—
a generally much more challenging setting (Brown et al.,
2022; Li & Wai, 2022). Luckily, our market construction
adds structure that makes it a tractable instance. An inter-
esting point to make is that performativity in our setting has
no ‘real’ effect on the distribution. Rather, it only changes
how providers should perceive the distribution in order to
effectively maximize their utility in the market.

6. Experiments
We now present our empirical investigation of learning in
accuracy markets. We begin by demonstrating the basic
mechanics of competitive learning on simple synthetic data
which allows us to compute best-response classifiers exactly.
Then we switch to real data and apply our method from
Sec. 5 to accuracy markets across multiple datasets and
various learning algorithms. Code is available at https:
//github.com/Ohadeinav/competition_games.

6.1. Synthetic data

To gain an understanding of how accuracy markets work,
consider a simple setting with n = 2 providers, binary la-
bels y ∈ {±1}, univariate features x ∈ R sampled from
class-conditional Gaussians x ∼ p(x | y) = N (ay, σy), and
threshold classifiers H = {hτ (x) = 1{x > τ} | τ ∈ R}.
Figure 1 (left) illustrates this setup for a = 1, σ−1 = 2,
and σ+1 = 1, and shows the learned classifiers at equilib-
rium, h1 and h2; as Thm. 2 suggests, these are precisely
ρ−1(1/2) and ρ−1(2). Note how the region between h1 and
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Table 2: Learning in accuracy markets. Results show outcomes of best-response dynamics, implemented as training by
Eq. (11). All runs were initialized to h0 = hopt, and converged after at most t = 2 rounds. Results include % increase at
equilibrium of market share (min and max over providers), market concentration (HHI =

∑
i µ

2
i ), and welfare. Standard

errors of the experiments are insignificant and shown in Appx. D.1.

COMPAS-arrest COMPAS-violent Adult

minµ maxµ HHI welfare minµ maxµ HHI welfare minµ maxµ HHI welfare

#
pr

ov
id

er
s 2 +25.4% +31.0% +64.5% +28.2% +41.8% +61.2% +130.6% +51.5% +4.0% +30.5% +39.8% +17.3%

3 +38.7% +48.5% +106.2% +43.5% +46.8% +82.5% +163.7% +61.6% +2.9% +41.7% +51.8% +22.1%
4 +38.0% +66.9% +121.9% +48.4% +48.5% +94.6% +172.0% +63.9% +6.1% +39.4% +51.2% +22.0%
5 +36.8% +83.2% +128.7% +50.1% +48.7% +94.6% +172.3% +64.0% +11.7% +33.2% +51.4% +22.7%
6 +38.7% +80.4% +127.9% +50.2% +48.5% +89.0% +172.3% +64.2% +10.5% +41.6% +53.7% +23.2%

h2 (hatches) is split between the providers: s1 is exclusively
correct on positive examples, and s2 on negatives. The
regions to the right of h1 and left of h2 are shared.

Fig. 1 (center) shows how market shares µ1, µ2 evolve over
rounds of best-responses. Here we initialize h0

1 = h0
2 =

hopt where hopt is the optimal classifier (i.e., which maxi-
mizes accuracy on p). In line with our results from Sec. 4.2,
dynamics converge after one round, i.e., each provider re-
sponds once, and so h1 = h1

1 and h2 = h1
2. Although s1

moves first and improves µ1, this not only improves µ2 for
s2, but also to a greater extent than that of s1. When s2 then
moves, again both µ1, µ2 increase, but µ2 retains its advan-
tage over µ1. Hence, s2 ‘wins’ the chicken game by playing
second and obtaining access to the larger exclusive subgroup
of positives. Regardless of who wins, users gain from the
competition since welfare (= µ1 + µ2) always increases.

Fig. 1 (right) shows how outcomes change for matching
gaussians (σ+1, σ−1 = 1) when the class-conditional dis-
tributions p(x | y = −1) and p(x | y = 1) are pulled closer
together, achieved by decreasing a. When the distributions
are far away, h1 and h2 are at hopt and so fully share the
market. But as overlap increases, several effects take place.
First, h1 and h2 grow further apart and become more distinct
in who they target, causing the exclusivity regions to grow in
size. Second, since classification becomes harder, the maxi-
mal attainable accuracy decreases. The accuracies of h1, h2

also decrease, but at a faster rate—a result of specialization.
Third, we see that welfare—as the sum of market shares—
begins at its maximal value of 1 (when the gaussians are
perfectly separable), then decreases when the exclusivity
doesn’t extend to the tails, and finally returns to 1 when the
providers play opposite thresholds. We explore additional
aspects on non-matching gaussians in Appendix D.4.

6.2. Real data

Our goal in this section is to explore accuracy markets un-
der our three perspectives: (learning) providers, users, and
the market. We experiment with three datasets: COMPAS-
Arrest, COMPAS-Violence, and Adult, and consider several

learning algorithms, including linear SVMs, boosted trees
(using XGBoost), and random forests. These generally work
well for standard accuracy tasks on the above datasets. Ap-
pendix C includes full details on datasets, methods, and our
experimental setup. Appendix D includes additional exper-
iments that extend and complement those presented here.

Learning. Table 2 shows performance under several mea-
sures of interest across multiple datasets and for varying
number of providers. Here we show results for Linear
SVMs, but note that other learning algorithms exhibit over-
all similar trends (see Appendix D.1). All results are aver-
aged over 10 random train-test splits. The table describes
outcomes after t = 2 rounds, which we found sufficed to
obtain near-convergence across all settings—regardless of
training set size, model class complexity, and the use of a
proxy objective to implement (approximate) best responses.

In terms of market share improvement, we see that competi-
tion is helpful for all providers; nonetheless, there can be a
large gap between the minimal and maximal improvement.
In the COMPAS datasets, this gap begins at smaller values,
but grows as n increases. For Adult, whose baseline accu-
racy is higher, the gap remains mostly stable, but is large to
begin with. As competition progresses, the market becomes
more concentrated, which also generally increases with n.
Overall welfare gains are quite high, reaching up to +65%.

Market outcomes. Figure 2 shows how the market
is partitioned across providers at equilibrium. Here we
focus on COMPAS-Arrest with XGBoost and n = 3
providers; providers are numbered by their order of play
(i.e., s1 ≺ s2 ≺ s3), where this order is preserved across
rounds. The plot shows for each provider si its total market
share (bottom left) and accuracy on the entire population
(top left) due to its final learned hi. The plot also shows the
decomposition of the market across all subsets of providers:
what proportion is exclusive to s1, what is joint to s2 and
s3, what is shared by all, etc. (right). Here we see that s1,
who moved first, attained the largest market share (36%).
However, its accuracy is significantly lower than others,
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Figure 2: Market share. An example for n = 3 where the
first mover (s1) dominates the market, achieved by sacri-
ficing overall accuracy for exclusive access to a large user
sector. Other providers are left to share the remaining sector.

and below 50%. The subsets plot reveals the reason: s1
was able to gain exclusive access to 28.5% of the market;
it shares an additional 19% with all providers, but only
1% with each of them alone. In contrast, s2 and s3 share
almost all of their users, either as a pair (44%) or along
with s1. This shows how s1 has come to dominate the
market by learning a classifier h1 that sacrifices accuracy
in order to effectively target an exclusive user sector. The
low overall accuracy of h1 suggests that naïvely optimizing
for accuracy without considering the effects of competition
can be highly suboptimal in terms of market outcomes.

Order of play. Whereas our 2× 2 analysis from Sec. 4.1
suggested that the game either has a dominant strategy or a
chicken-like structure (which implies that moving second
is preferable), we see in Fig. 2 that for n > 2 providers
reality is more complex, and in fact moving first allows to
dominate the market. Interestingly, this first move induces a
2-player game on the other providers whose equilibrium ad-
mits a dominant strategy. To quantify this phenomenon, and
assert its robustness across methods, we ran experiments for
every combination of datasets and model classes, listed in
Appendix C. For each experiment, namely for each combi-
nation of model class and dataset, the final market shares
were calculated for each provider along with his/her rela-
tive position of play, i.e., at what position did the provider
perform a best-response. Additionally, each experiment
was performed for competitions with 2,3,4,5, and 6 players,
so that we can compare dynamics across different market
saturations. Figure 3 shows the order of play comparisons,
averaged out across all of the experiments that were de-
scribed above. When the competition game is played with
n = 2 providers, we see a clear preference to be the provider
that moves last, characterized by the market share term µ2.

2 3 4 5 6
Number of providers

-10%

0

+10%

∆µ

∆µ

µ2 − µ1

µ2 − µ3

Figure 3: Influence of order of play on market share.
The orange densities measure the difference in market share
between the provider that moved 2nd and the provider that
moved 1st, and the blue densities measure the difference in
market share between the provider that moved 2nd and the
provider that moved 3rd, for n > 2. Dashed lines inside
the densities represent the 25%, 50%, and 75% quantiles of
values, respectively, from bottom to top.

The vast majority of experiments showed a significant gain
in market share, as seen by the fact that the 25% quantile
of values already shows a net-positive gain from moving
last. We also note that the expected (mean) competitive
advantage of moving last is 3.6% with a median of 4.8%.
Given that for 2 players with equal model classes, the mar-
ket share of a single provider will never exceed 2

3 = 0.67
(see Proposition 6), then a 4.8% difference in market share
is quite significant.

When the competition game is played with n ≥ 3 providers,
however, we observe an entirely different dynamic. Figure 3
provides two densities: The orange density is as in the 2-
provider setting (µ2−µ1). The blue density is the difference
in market share between the player who moved 2nd versus
the player who moved 3rd (µ2 − µ3). We find here that the
ratios have switched: it is in fact more advantageous to be
the provider that moves 1st, as evidenced by the negative
orientation of the orange density plot. The next interesting
thing that we note is the seeming insignificance of order-
of-play beyond the first two positions, as we can observe
that the blue density hovers around 0 with relatively low
variance. This alludes to the premise put stated above that in
competitive settings with 3 or more players, the person who
moves 1st is in essence “grabbing his territory”, which then
induces all of the other players to play among themselves
for the other resources, i.e, consumers.

User welfare. Our result in Cor. 2 states that competition
is conductive to welfare. It remains to consider how conduc-
tive it is, as well as how quickly welfare improves. Fig. 4
left shows how welfare changes over time and for increasing
number of providers n. Here we focus on COMPAS-arrest
and LinearSVC, with other settings shown in Appendix D.3.
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round (t)
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0.8

0.9
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we
lfa

re
number of providers (n)

n = 2
n = 3
n = 4
n = 5
n = 6

0 1 2
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d = 14
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Figure 4: Welfare over rounds. Competition consistently
increases welfare over time, until convergence. Welfare
improves with the number of providers (left), but (perhaps
counterintuitively) decreases with the quality of data (right).

The plot shows a clear trend of welfare increasing through-
out competition. It also makes apparent the effect of n: as
the number of providers increases, welfare climbs higher
and faster. For n = 2, welfare attains a maximum of 0.85,
reached only at the second round. For n = 3, welfare max-
imizes at 0.95 by the end of the first round. Notice that
welfare reaches the upper bound of 1 already at n = 5 and
before the end of the first round (i.e., before all providers
have moved). With n = 6 providers, this occurs even earlier.

The above depicts accuracy markets as highly efficient. On
the one hand, our market setting allows for the free flow
of information, and models users as making informed (ra-
tional) decisions—which are necessary to enable efficient
outcomes. But on the other, providers are restricted in that
they cannot compute best-responses exactly. We therefore
take the results above to again suggest that maximizing mar-
ket share using proxy objectives can work well in practice.

Since market share should generally align with accuracy,
another interesting question is how does the capacity to max-
imize accuracy affect the overall welfare. For a different
setting of competing predictors, Jagadeesan et al. (2024)
argue that increased capacity can result in lower welfare for
users. We show that this occurs quite distinctly in our set-
ting as well: When the complexity goes down, maximizing
accuracy may be harder, but gaining discrepancy is easier,
as there are more users to specialize on. Following the idea
of controlling capacity by the quality of representation, we
implement this by varying the number of features available
for learning. Fig. 4 (right) shows welfare for increasing
number of features and for n = 2 (see Appendix D.3 for
more settings). As expected, at time t = 0, better represen-
tations entail higher accuracy, and therefore higher welfare.
But once providers respond, the trend inverts: restricting
learning to use only two features attains the optimal welfare
of 1, while using all features gives welfare of 0.84.

7. Discussion
This work studies learning in a competitive setting where
classifiers are trained to increase market share. From a learn-
ing perspective, our main message is that while maximizing
accuracy naïvely is likely not a good strategy, optimizing
a weighted accuracy objective that correctly encodes com-
petition can be very effective. Although technically similar,
the transition to market-induced objectives has implications
on the market and consequently on user welfare. In our
market model competition promotes welfare, but this relies
on model transparency, efficient information flow, and
calculated user decisions. Realistic markets are likely to
fall short of such ideals: firms may prefer to keep models
private, informational advantages can be exploited, and user
behavior can be far from rational. The fact that most service
sectors currently include only a few competing platforms
(consider media, social, e-commerce, finance, housing, etc.)
should raise concerns of oligopolistic behavior, notably
collusion and lock-in practices. This requires deliberation of
appropriate regulation for these emerging accuracy markets.

Impact Statement
Our work considers the role of machine learning in fostering
markets in which utility to consumers derives from person-
alized accuracy. The market model we study is inspired
by real markets of this type, but as a model, makes sev-
eral simplifying assumptions that merit consideration before
drawing conclusions about actual markets. One assumption
is that there is a single underlying distribution that is fixed
and accessible to all providers. Although this is a common
assumption in standard machine learning, under competi-
tion it has further implications. When data distributions
differ across providers, or even when the distribution is the
same but samples are different (which is plausible), it is
no longer clear if pure equilibrium exists or is reachable
through reasonable dynamics. Another assumption is that
users choose a provider who is accurate on their own input.
This applies in some cases, such as personalized recom-
mendations: users likely know their preferences, but do not
know if (and which) content items match them—but can
make conclusions once recommended. More generally how-
ever, we consider our model as a simplification of outcomes
that materialize and stabilize over time, such as provider
reputation, social learning, or confirmation in hindsight. An-
other alternative is that users interact with a platform not
once but many times; if the platform has access to some
personalized examples, then competition can revolve around
future expected outcomes. A final assumption is that users
are rational and choose by maximizing utility independently
at each time step. This can be a reasonable assumption in
settings where users have both incentive and resources to
invest effort in bettering their choices, and when sufficient
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time passes between rounds to enable switching providers.
More generally, user behavior is likely to play a key role in
market outcomes, and can benefit from more realistic mod-
eling. It is also likely that competition can drive providers to
exploit users’ behavioral weaknesses—an additional reason
for establishing appropriate regulations and norms.
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A. Proofs
Notations. In the proofs below, we may use the multiple notations for partial discrepancy interchangeably, namely
δij = δhi(hj). This is for readability and ease of portrayal. Similarly, in place of µ (market share), sometimes there can be
written U , for utility. These terms are also interchangeable. Lastly, the terms “player” and “provider” are interchangeable as
well, since both refer to the learner.

Before delving in to the proofs of the individual statements from the main paper, we will start with showing a helpful
observation that sits at the crux of competitive dynamics, and will help with many of the proofs below.

Observation 2. For any 2 classifiers hi, hj with accuracies ai, aj , it stands: ai − δij = aj − δji.

Proof. Visual proof by building a confusion matrix split up by accuracy on the label:

hj = y hj ̸= y

hi = y ai − δij δij = ai

hi ̸= y δji 1− ai − δji = 1− ai

= aj = 1− aj

Explanation of the table:

• the cells are partitioned by buckets according to the correctness of the classsifiers. This helps us understand the
discrepancy and overlap of accurate predictions between the classifiers.

• We can immmediately observe that the 1st row sums to ai, and the 1st column sums to aj . Similarly, the 2nd row
and 2nd column sum up to 1− ai, 1− aj , repsectively. So too, dij and δji are in the top right and bottom left cell by
definition.

From the sums of the rows and columns, we observe the following equality from the top-left cell:

ai − δij = aj − δji (12)

Proposition 1 (Market Share).

Proof. from the definition of our problem setting, classifier hj gets:

• Full market share on the points that only hj is correct on: 1
n

∑n
i=1 1{hj(x) = yi ∧ hi(x) ̸= yi}

• Half market share on the points that they are both correct on: 1
2 · 1

n

∑n
i=1 1{hj(x) = yi ∧ hi(x) = yi}

By the definition of partial discrepancy (Eq. 8), the first bullet is exactly δhj (hi), and the second bullet is equal to
1
2 (aj − δhj

(hi)).

We then receive: U(hj |hi) = δhj (hi) +
1
2 (aj − δhj (hi)) =

1
2 (aj + δhj (hi))

12
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Proposition 2 (Market share ↔ accuracy). We will first prove a helpful claim:
Helpful claim 1. For any 2 classifiers h1, h2 i with accuracies a1, a2, respectively, it stands that δ12 > δ21 ⇔ a1 > a2.

Proof. From Observation 2, a1 − δ12 = a2 − δ21, meaning: a1 = a2 + δ12 − δ21. Therefore:

a1 > a2 ⇔ a1 − a2 ≥ 0

⇔ a2 + δ12 − δ21 − a2 ≥ 0

⇔ δ12 − δ21 ≥ 0

⇔ δ12 ≥ δ21

Where the 2nd inequality comes from substituting a1 = a2 + δ12 − δ21

We will now prove Proposition 2:

Proof. From Proposition 1, We know: µ(h1|h2) = a1 + δ12, and µ(h2|h1) = a2 + δ21.

µ(h1 | h2) > µ(h2 | h1)

⇔ a1 + δ12 > a2 + δ21

⇔ a1 > a2

(13)

Where the last inequality follows from Helpful claim 1.

Lemma 1. We will start with a helpful claim:
Helpful claim 2. Let h1, h2 ∈ H. Then:

• U(h1|h2) > U(h2|h2) ⇔ δh1
> 1

2δh2

• U(h2|h1) > U(h1|h1) ⇔ δh2
> 1

2δh1

Additionally, the above inequalities hold if and only if |δh1
− δh2

| < 1
3 (δ12 + δ21).

Proof. From Proposition 1 we know that U(h1|h1) =
1
2a1, U(h2|h2) =

1
2a2, U(hi|hj) =

1
2 (ai + δij). Therefore,

U(h1|h2) > U(h2|h2) ⇔
1

2
(a1 + δ12) >

1

2
(a2)

⇔ a1 + δh1 > a1 + δh2 − δh1

⇔ δh1 > δh2 − δh1

⇔ 2δh1 > δh2

⇔ δh1
>

1

2
δh2

(14)

Where the substitution of the RHS in the 2nd line comes from Observation 2.

Similarly,
U(h2|h1) > U(h1|h1) ⇔ a2 + δh2

> a1

⇔ a2 + δh2
> a2 + δh1

− δh2

⇔ δh2
> δh1

− δh2

⇔ 2δh2
> δh1

⇔ δh2 >
1

2
δh1

(15)

Now assume that the inequalities hold, meaning δh1 > 1
2δh2 and δh2 > 1

2δh1 . Then,
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δh1
>

1

2
δh2

→ δh1
+ δh2

>
3

2
δh2

→ δh2
<

2

3
(δh1

+ δh2
) (16)

Similarly, δh1 < 2
3 (δh1 + δh2). This means that max{δh1 , δh2} < 2

3 (δh1 + δh2), and therefore |δh1 − δh2 | < 1
3 (δh1 + δh2).

[Note that all derivations apply both ways, meaning if |δh1 − δh2 | < 1
3 (δh1 + δh2), then δh1 > 1

2δh2 and δh2 > 1
2δh1 .]

Using Helpful claim 2, the proof of Lemma 1 is almost immediate: from Observation 2 we know that a1 − a2 = δ12 − δ21.

The 2 players will choose differing strategies in the 2x2 game if and only if U(h1|h2) > U(h2|h2) and U(h2|h1) >
U(h1|h1), which holds if and only if δh1 > 1

2δh2and δh2 > 1
2δh1 , which holds if and only if |δh1 − δh2 | < 1

3 (δ12 + δ21).
Since we know a1 − a2 = δ12 − δ21, this proves Lemma 1.

Theorem 1 (2x2 PNEs.) From the inequalities in Lemma 1, we receive the conditions for which the providers play
anti-coordinated strategies.

If one of these inequalities doesn’t hold, meaning either U(h1|h2) < U(h2|h2) or U(h2|h1) < U(h1|h1), then the dominant
strategy is h1, h2, respectively, depending on which inequality does not hold.

Theorem 2 (Threshold best-responses under MLR).

Proof. Firstly,we note that since g is continuous8 and increasing strongly in [a, b], g−1 is well defined.

We will split [a, b] into sub-intervals [a, h], [h, b] and calculate the best response in each interval:

Let h be the strategy we are responding to.

It is clear that for all strategies in [a, h], the utility on all points in [h, b] is constant, since the classification on those points
is the same. So within the interval [a, h], the player is looking to maximize U[a,h]. Similarly, when considering the best
response in interval [h, b], we need only maximize U[h,b], since for all points in the interval U[a,h] is the same.

Let U[a,b](h|h) = c.

It stands that ∀h1 ∈ [a, h]:

U[a,b](h1|h)− c =

∫ h

h1

f1(x)−
1

2
f0(x)dx

This is a straightforward expression of the utility. Any points outside [h1, h] have an identical classification for both h and
h1, and so the only difference in utility is found inside the interval [h1, h], which h1 classifies as positive and h classifies as
negative. Therefore the gain in utility is

∫ h

h1
f1(x)dx, but the loss on the negative points is 1

2

∫ h

h1
f0(x)dx, since the utility

on those points would be otherwise shared with h.

Similarly, ∀h1 ∈ [h, b]:

U[a,b](h1|h)− c =

∫ h1

h

f0(x)−
1

2
f1(x)dx

Therefore, BR[a,h](h) = argmax
h1∈[a,h]

U[a,b](h1|h) = argmax
h1∈[a,h]

∫ h

h1
f1(x)− 1

2f0(x)dx.

And BR[h,b](h) = argmax
h1∈[h,b]

U[a,b](h1|h) = argmax
h1∈[h,b]

∫ h

h1
f0(x)− 1

2f1(x)dx.

We will divide into cases based on the value of g(h):

8We note that the theorem holds for categorical distributions as well, where the provider will simply go to the nearest point x : g(x) ≥ 1
2

if to the left, or x : g(x) ≤ 2 if doing a best-response to the right.
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Case 1: 1/2 ≤ g(h) ≤ 2:

We will calculate BR[a,h](h). Since g is strictly increasing in [a, b], the value f0(x)− 1
2f1(x) is positive for all points x

where g(x) ≥ 1
2 .

Therefore, ∀h1 < h2 ∈ [a, h], if g(h1) ≥ 1
2 then U[a,h](h1|h) ≥ U[a,h](h2|h)

In this case: BR[a,h](h) = max
(
a, g−1 (1/2)

)
, since in the case where ∀h1 ∈ [a, h], g(h1) >

1
2 , then the maximum utility

is found at a.

Similarly, the same argument holds to derive that: BR[h,b](h) = max
(
b, g−1 (2)

)
Case 2: g(h) > 2:

In this case, ∀h1 > h it stands that U[h,b](h1|h) < U[h,b](h|h), since the value f0(x)− 1
2f1(x) is negative for all points in

[h, b].

Therefore the best-response is found in the interval [a, h], in which case the derivation from the previous case holds, and so
BR[a,h](h) = max

(
a, g−1 (1/2)

)
.

Case 3: g(h) < 1/2:

In this case, ∀h1 < h it stands that U[a,h](h1|h) < U[a,h](h|h), since the value f0(x)− 1
2f1(x) is negative for all points in

[a, h].

Therefore the best-response is found in the interval [h, b], in which case the derivation from the previous case holds, and so
BR[h,b](h) = max

(
b, g−1 (2)

)
.

So across all cases, we find that in the interval [a, b], there are only 2 possible best responses:

max
(
b, g−1 (2)

)
, and min

(
a, g−1 (1/2)

)
.

Corollary 1.

Proof. Immediate from the fact that the strategy space of both players can be reduced to the 2 candidate best-responses
stipulated in Theorem 2.

Theorem 3 (General threshold best-responses).

Proof. As in the proof of Theorem 2, We will split [a, b] into sub-intervals [a, h], [h, b] and calculate the set of possible best
responses for each interval:

Let h be the strategy/threshold we are responding to. We will rewrite the explicit forms for U[a,b]:

∀h1 ∈ [a, h]:

U[a,b](h1|h)− c =

∫ h

h1

f1(x)−
1

2
f0(x)dx

∀h1 ∈ [h, b]:

U[a,b](h1|h)− c =

∫ h

h1

f0(x)−
1

2
f1(x)dx

Where c = U[a,b](h|h).
As explained in the proof of Theorem 2, to calculate the best response in [a, h],it is sufficient to maximize U[a,h]; and to
calculate the best-response in [h, b], it is sufficient to maximize U[h,b].

We will calculate the best response in [a, h]:
Helpful claim 3. Let (h1, h2) be any open interval in [a, h] such that ∀x ∈ (h1, h2) it holds that g(x) > 1

2 .

Then ∀x ∈ (h1, h2] → U[a,h](h1|h) > U[a,h](x|h).

15



A Market for Accuracy: Classification under Competition

Proof. Let x ∈ (h1, h2].

Using the derivations above of relative market shares between thresholds, we will compare the market shares of x and h1:

U[a,h](h1|h)− U[a,h](x|h) =
∫ x

h1
f1(u)− 1

2f0(u)du.

Since we are given that in the segment [h1, x], g > 1
2 , then it folows that ∀u, f1(u)− 1

2f0(u) > 0, and therefore the integral
must be positive and hence U[a,h](h1|h)− U[a,h](x|h) > 0.

Helpful claim 4. Let (h1, h2) be any interval in [a, h] such that ∀x ∈ (h1, h2) it holds that g(x) < 1
2 .

Then ∀x ∈ [h1, h2) → U[a,h](h2|h) > U[a,h](x|h).

Proof. We will show that U[a,h](h2|h)− U[a,h](x|h) > 0, in a similar manner to Helpful claim 3:

Let x ∈ (h1, h2]. We will compare the market shares of x and h1:

U[a,h](h2|h)− U[a,h](x|h) =
∫ h1

x
f0(u)− 1

2f1(u)du.

Since we are given that in the segment [x, h2], g < 1
2 , then it folows that ∀u, f0(u)− 1

2f1(u) > 0, and therefore the integral
must be positive and hence U[a,h](h2|h)− U[a,h](x|h) > 0.

Using the helpful claims, we can see that BR[a,h](h) ∈ {a, h} ∪ P−1
+ (1/2):

Let h1 /∈ {a , h} ∪ P−1
+ (1/2).

Case 1 - g(h1) >
1
2 :

Let (x, y) ⊆ [a, h] be the largest consecutive interval that includes h1 such that ∀h′ ∈ (x, y) → g(h′) > 1
2 . Since f0, f1 are

continuous, then we know g is continuous. Therefore, either g(x) = 1
2 and g′(x) > 0, or x = a. From Helpful claim 3, we

receive that U[a,h](x|h) > U[a,h](h1|h), and therefore h1 cannot be a best response.

Case 2 - g(h1) <
1
2 :

Let (x, y) ⊆ [a, h] be the largest consecutive interval that includes h1 such that ∀h′ ∈ (x, y) → g(h′) < 1
2 . Since f0, f1 are

continuous, then we know g is continuous. Therefore, either g(y) = 1
2 and g′(x) > 0, or y = h. From Helpful claim 4, we

receive that U[a,h](y|h) > U[a,h](h1|h), and therefore h1 cannot be a best response.

We define similar claims to calculate the set of possible best responses in [h, b]:

Helpful claim 5. Let (h1, h2) be any open interval in [h, b] such that ∀x ∈ (h1, h2) it holds that g(x) > 2.

Then ∀x ∈ (h1, h2] → U[h,b](h1|h) > U[a,h](x|h).

Proof. We will show that U[h,b](h1|h)− U[h,b](x|h) > 0:

Let x ∈ (h1, h2]. We will compare the market shares of x and h1:

U[h,b](h1|h)− U[h,b](x|h) =
∫ x

h1

1
2f1(u)− f0(u)du.

Since we are given that in the segment [x, h2], g > 2, then it follows that ∀u, 1
2f1(u)−f0(u) > 0, and therefore the integral

must be positive and hence U[h,b](h1|h)− U[h,b](x|h) > 0.

Helpful claim 6. Let (h1, h2) be any open interval in [h, b] such that ∀x ∈ (h1, h2) it holds that g(x) < 2.

Then ∀x ∈ [h1, h2) → U[a,h](h2|h) > U[a,h](x|h).

Proof. We will show that U[h,b](h2|h)− U[h,b](x|h) > 0:

Let x ∈ (h1, h2]. We will compare the market shares of x and h1:
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U[h,b](h2|h)− U[h,b](x|h) =
∫ h2

x
f0(u)− 1

2f1(u)du.

Since we are given that in the segment [x, h2], g < 2, then it follows that ∀u, f0(u)− 1
2f1(u) > 0, and therefore the integral

must be positive and hence U[h,b](h2|h)− U[h,b](x|h) > 0.

Using the helpful claims, we can see that BR[h,b] ∈ {h, b} ∪ P−1
+ (2):

Let h1 /∈ {b} ∪ P−1
+ (2).

Case 1 - g(h1) > 2:

Let (x, y) ⊆ [a, b] be the largest consecutive interval that includes h1 such that ∀h′ ∈ (x, y) → g(h′) > 2. Since f0, f1 are
continuous, then we know g is continuous. Therefore, either g(x) = 2 and g′(x) > 0, or x = a. From Helpful claim 5, we
receive that U[a,h](x|h) > U[a,h](h1|h), and therefore h1 cannot be a best response.

Case 2 - g(h1) < 2:

Let (x, y) ⊆ [h, b] be the largest consecutive interval that includes h1 such that ∀h′ ∈ (x, y) → g(h′) < 2. Since f0, f1 are
continuous, then we know g is continuous. Therefore, either g(y) = 2 and g′(x) > 0, or y = b. From Helpful claim 5, we
receive that U[a,h](y|h) > U[a,h](h1|h), and therefore h1 cannot be a best response.

Proposition 3 (Convergence after 1 round).

Proof. Let h be any starting classifier.

At timestep t = 0, we asume both players are at h.

At timestep t = 1, player i plays h1
i = BR(h), and player j plays h1

j = BR(h1
1).

Let hmin = min{h1
i , h

1
j}, hmax = max{h1

i , h
1
j}.

Firstly, we will argue that there exists an optimal-accuracy classifier hopt such that hopt ∈ [hmin, hmax]:

Assume for the sake of contradiction that this isn’t the case. Then there must exist some hopt either to the left of hmin

or to the right of hmax. Let’s assume w.l.o.g that there exists some hopt > hmax. Then µ(hopt|hmin) > µ(hmax|hmin):
aopt > amax by definition, and δopt,min > δmax,min, since when hmin < hmax < hopt, then δmax,min ⊂ δopt,min.9

Therefore, exists some hopt ∈ [hmin, hmax].

We now argue that (h1
i , h

1
j ) is a PNE.

Assume without loss of generality h1
i < hopt. This generalization is without loss since we are proving a best-response

equilibrium symmetrically for both thresholds, so it does not matter which player is on which side of hopt.

From the proof of Theorem 3, we know that h1
i = argmax

h∈{a,hopt,P
−1
+ (1/2)}

U(h|hopt).

[if h1
i = hopt we are done.]

We know then that h1
j ≥ hopt.

Assume for the sake of contradiction that h1
j < hopt -

Then δhopt
(h1

i ) > δh1
j
(h1

i ) , and from the optimality of hopt: aopt ≥ ah1
j
, and therefore U(hopt|h1

i ) > U(h1
j |h1

i ),
contradiction to h1

j being a best-response.

Now, h1
j ≥ hopt > h1

i .

We will argue h1
i is a best-response to h1

j :

9containment here refers to the points that contribute to the values of δ
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∀h ∈ (hopt, h
1
j ], the utility of hopt is greater, similarly to how was argued above.

∀h < hopt, if h1
i is a best-response to hopt, then it must also be a best-response to h1

j , since the accuracy stays the same and
the discrepancy grows in an equal amount for all classifiers h < hopt.

Therefore, both classifiers h1
i , h

1
j are best responses to each other and therefore are a PNE.

Proposition 4 (“I improve, you improve”).

Proof. From the proof of convergence in Proposition 3, we receive that in all threshold games, the players go to either side
of an optimal classifier hopt.

Assume that player i moved to as an initial best-response h1
i to some hopt. Then player j’s best-response h1

j is such that hopt

is between h1
i and h1

j . Since h1
j is a BR, we know the market share of player j increases (weakly).

For player i, from Proposition 1, µi =
1
2 (ai + δij).

ai remains the same, but δij increase because h1
j went further away to the other side of hopt, and as explained in the proof

of Proposition 3, δh1
i ,opt

⊂ δh1
i ,h

1
j
.

Therefore µi increases as well.

Proposition 5 (Market share increases during competition).

Proof. Assume the players started from h0:

µ(h0|h0) = 1
2a

0

Let (h1, h2) be anyt equilibrium.

µ(h1|h2) =
1
2 (a1 + δ12)

We will prove a1 + δ12 ≥ a0:

Assume a1 + δ12 < a0.

Then a0 + δh0,2 > a1 + δ12, contradiction to h1 being a best-response to h2.

Corollary 2 (Welfare increases during competition). This is immediate from Proposition 5 since SW =
∑

i µi.

Proposition 6

Proof. Let h1, h2 be any PNE.

Assume for the sake of contradiction that µ(h1|h2) > 2 · µ(h2|h1).

From Proposition 1 we receive that µ(h2|h1) =
1
2 (a2 + δ21).

We will show that µ(h1|h1) =
1
2a1 > 1

2 (a2 + δ21) = µ(h2|h1):

W know that µ(h1|h2) > 2 · µ(h2|h1) ⇒ a1 + δ12 > 2 · (a2 + δ21).

We also know δ12 ≤ a1, by definition of partial discrepancy.

Therefore a1 + a1 ≥ a1 + δ12 > 2 · (a2 + δ21)

And so: a1 > a2 + δ21 ⇒ µ(h1|h1) > µ(h2|h1), contradiction to (h1, h2) being a PNE.
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B. Additional theoretical results
B.1. Characterization of our problem setting as a congestion game.

In Section 3, we mentioned that our problem setting is proven to have a PNE, a result shown by (Ben-Porat & Tennenholtz,
2019) through the use of an exact potential function. Additionaly, (Monderer & Shapley, 1996) show that every potential
game is isomorphic to some congestion game; this connection however is not always readily evident. We show here the
exact reduction of our problem setting to a congestion game, and highlight that the cost function is negative, which may be
counterintuitive to more classic settings of congestion games.

Observation 3. Our problem setting is reduced to the congestion game (N,M, (Hi)i∈N , (cj)j∈M ) Where:

• N is the number of players

• M is the samples in the training set upon which the players want to gain market share

• Hi is the hypothesis class available to player i

• cj(k) = − 1
k is the cost function assigned to each sample, where k is the number of companies accurate on consumer j

Proof. Firstly, we will show that the game that is defined above is indeed a congestion game. We can observe this almost
immediately, as the cost function (while negative) is monotone increasing with nj , and the cost is per-sample (equal for each
player).

Additionally, the hypothesis class Hi has a one-to-one function a : H → P(M) which is a(h) = {(x, y) ∈ M : h(x) = y}.
Therefore, each strategy h is equivalent to the strategy a(h) and this is a subset of the facilities M .

From the game that is defined, we receive a potential function Φ such that ∀i, ∆Φ = ∆Ci.

The potential function is: Φ(⃗h) =
∑m

j=1

∑nj

k=1 cj(k)

(For each sample, we take the sum of c(1), . . . , c(nj), and since c is monotone increasing, minimizing the potential means
minimizing both players being accurate for the same classifier)

Now, we will show that our problem setting reduces to this game by showing the equivalence between maximizing the player
utility in the problem setting and minimizing the player cost in the above congestion game, meaning, ∀i, ∆Ui = −∆Ci.

Let ski be the number of samples that player i is accurate on along with k − 1 other players.

We observe that

Ci(⃗h) =
∑

j∈ai(hi)

cj(nj (⃗h)) =

n∑
k=1

ski · c(k) = −
n∑

k=1

ski · 1
k
= −Ui(⃗h)

(where the middle equality comes from rearranging the samples in bins of how many other players were accurate, and and
then the cost is constant in that bin).

C. Experimental details
C.1. Data details

All of the experiments on real data were studied on 3 datasets: compas-arrest, compas-violent, and adult. The
compas datasets originated from studies of recidivism in the United States (Angwin et al., 2016), and are used to predict if a
criminal will be rearrested for general crimes and violent crimes, respectively. The adult dataset is used to predict whether
the an individual’s income exceeds $50K.

Preprocessing Details:

• Adult: The adult dataset was imported in python through the uciml library. All of the categorical features were one-hot
encoded, and numerical features remain unprocesssed. To enable a balanced learning task, SMOTE resampling was
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applied from the imblearn package to attain a 50% positive class ratio. After the above preprocessing, 10,000 samples
were chosen randomly, resulting in a dataset with n = 10, 000 samples and d = 100 features.

• COMPAS-Arrest/Violent: The COMPAS-Arrest dataset was preprocessed for analysis by Marx et al. (2020), and a copy
of their csv files are included in their code. The csv files can be found at :
https://github.com/charliemarx/pmtools/tree/master/data.
Both datasets contain d = 21 preprocessed binary (previously one-hot encoded) features. The COMPAS-Arrest dataset
contains n = 6, 172 samples and has a positive class ratio of 45.5%.
The COMPAS-Violent dataset also originally had 6, 172 samples, however the positive ratio was 88.8%. Therefore
SMOTE upsampling was applied to the negative class to bring the positive ratio to 50%. The total number of samples for
which we use COMPAS-Violent is then n = 10, 960.

C.2. Model Class details

For our empirical anlysis, we analyzed results of the experiments with 3 model class variants that were used as the effective
strategy space of the service providers. We note that since the objective of this work is to understand the ability of providers
to learn based on the importance of the samples, we kept the hyperparameter tuning minimal, so as not to forcefully overfit
the data.

1. Linear SVM:

• Hyperparameters: The regularization parameter C = 1.0. Other hyperparameters were left as default.
• Hyperparameter tuning was performed on the values of C, but we observed no significant difference in the ability

of providers to best-respond.
• The model was implemented using the LinearSVC class from the sklearn package.
• sample weights from our method were passed using the sample weight parameter of the fit method.

2. XGboost:

• Hyperparameters:
– Learning rate: 0.3
– Max tree depth: 6
– all other hyperparameters remained the default, in particular performing row and column subsampling of 1.

• the loss metric used for boosting is log-loss
• the model was implemented using the XGBClassifier class from the xgboost package
• We note that some basic hyperparameter tuning was performed using a grid search, but default values yielded

satisfactory results.

3. Random Forest:

• Hyperparameters:
– Number of estimators: 10
– Max tree depth: the default, meaning all nodes were expanded until all of the leaves are pure or contain a

single sample.
– all other hyperparameters remained the default.

• the loss metric used for boosting is log-loss
• the model was implemented using the RandomForestClassifier class from the sklearn package
• Hyperparameters were minimally tuned, and the default values were primarily used.

C.3. General implementation details

Test and validation set. For all experiments, the dataset was split into training, validation, and test sets. The test set
comprised 20% of the data and was held out for final performance evaluation. The validation set, also comprising 20% of
the data, was used for hyperparameter tuning when applicable. In cases where no hyperparameter tuning was performed, the
validation set was not utilized, and so only the training and test sets were used.
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Experiment Splits. To ensure integrity and mitigate the effect of random variations in the data, each experiment was
conducted over 10 random splits of the dataset. For each split, the data was shuffled and divided into training, validation, and
test sets according to the above proportions. The reported results in the following sections include standard errors calculated
across these 10 splits, providing an estimate of variability in the model performance.

Code. All of our code is implemented in Python. All of our experiments are reproducible and attached as supplementary
material.

Hardware. All experiments were run in the PyCharm IDE on a single Macbook Pro laptop, with 16GB of RAM, and M2
processor, and with no GPU support. However, the experiments to create the table metrics were cumbersome on the IDE,
and so the PyCharm heap size was raised to 8K MegaBytes in order to enlarge the stack. The total runtime for all the results
takes roughly 12 minutes.

D. Additional experimental results
D.1. Main results for additional settings

In this appendix we showcase additional insights from our main results when tested on additional model classes.

Table 3: XGboost performance

Adult COMPAS-arrest COMPAS-violent

minµ maxµ HHI welfare minµ maxµ HHI welfare minµ maxµ HHI welfare

#
pr

ov
id

er
s 2 +1.1% +2.1% +3.2% +1.6% +20.5% +39.0% +69.3% +29.7% +26.7% +54.6% +100.0% +40.7%

3 +1.7% +3.3% +5.2% +2.6% +34.5% +57.8% +105.8% +43.0% +35.7% +68.9% +120.5% +47.7%
4 +2.4% +3.8% +6.2% +3.1% +35.3% +66.3% +116.1% +46.4% +36.3% +66.1% +125.8% +49.8%
5 +2.4% +4.6% +7.2% +3.5% +37.2% +78.0% +122.0% +48.1% +43.3% +68.6% +128.6% +50.8%
6 +2.0% +5.0% +7.2% +3.5% +40.2% +73.1% +124.0% +49.1% +43.4% +69.3% +130.8% +51.6%

XGboost Table 3 shows the learning performance of the service providers when using XGBoost as the model class for
training and inference. The details of the Xgboost implementation and hyperparameters can be found in Appendix C.2. A
comparison of interest is the general improvements of the players relative to the Linear model class. We can notice that
the welfare improvement, which is equal to the total market share of all players, is significantly lower for both the Adult
and COMPAS-ARREST dataset. This does not indicate that the total welfare is lower, but rather that due to the increased
expressiveness of the XGboost model, the starting welfare began at a higher value.

Another point of interest is how the HHI (the measure of imbalance in market share between the providers) persists across
model classes, regardless of expressivity. This further highlights the importance of taking into account the market dynamics
and the order of play when competing with other providers.

Table 4: Random forest performance

Adult COMPAS-arrest COMPAS-violent

minµ maxµ HHI welfare minµ maxµ HHI welfare minµ maxµ HHI welfare

#
pr

ov
id

er
s 2 +2.9% +3.9% +6.9% +3.4% +20.6% +36.1% +65.3% +28.3% +25.7% +53.0% +96.1% +39.3%

3 +4.1% +5.8% +10.1% +4.9% +30.9% +58.7% +98.9% +40.3% +34.3% +71.8% +118.9% +46.9%
4 +4.5% +6.5% +11.3% +5.5% +33.0% +70.5% +111.8% +44.7% +33.5% +70.6% +124.5% +49.2%
5 +4.5% +7.5% +12.5% +6.1% +34.2% +81.0% +117.0% +46.0% +41.7% +75.1% +128.3% +50.5%
6 +5.2% +8.0% +13.5% +6.5% +37.4% +78.2% +119.5% +47.3% +38.6% +75.7% +130.3% +51.2%

Random Forest In a similar manner, Table 4 presents the results on competition where the providers are employing a
Random Forest model, whose details can be found in Appendix C.2. We can observe that the results resemble those of the
XGboost model class, which can be expected due to the similarity in nature of all Decision Tree models.
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Standard errors of experiments As mentioned in Appendix C, each experiment was run over 10 train-test splits and the
metric values were averaged out over those splits. Table 5 portrays, for each metric, the maximum variation of the standard
error among the three model classes analyzed. We note that all of the errors are below 5%, and most of the errors are well
below 3%.

Table 5: Max standard errors of experiments across all model classes

Adult COMPAS-arrest COMPAS-violent

minµ maxµ HHI welfare minµ maxµ HHI welfare minµ maxµ HHI welfare

#
pr

ov
id

er
s 2 ±1.9% ±4.4% ±2.1% ±2.6% ±1.0% ±2.6% ±1.2% ±1.3% ±1.0% ±2.9% ±1.4% ±1.1%

3 ±0.8% ±1.9% ±1.0% ±2.0% ±1.2% ±3.5% ±0.8% ±2.7% ±0.8% ±2.5% ±0.8% ±2.3%
4 ±0.7% ±2.0% ±2.1% ±4.2% ±0.9% ±2.9% ±0.7% ±3.2% ±0.7% ±2.2% ±1.2% ±3.2%
5 ±0.9% ±2.2% ±1.1% ±3.2% ±1.0% ±3.5% ±0.7% ±4.4% ±0.7% ±2.2% ±0.8% ±3.6%
6 ±0.8% ±1.9% ±2.4% ±3.4% ±1.0% ±3.2% ±0.8% ±4.4% ±0.6% ±2.1% ±1.0% ±2.7%

D.2. Competition Dynamics

Market Share In order to provide a more comprehensive analysis of how the market shares of the providers move through
the best responses in the competition, Figure 5 shows, for each number of players competing for market share, the shifts in
market share of each provider based on their positions in the game (order of play).

We can observe a few key points:

1. Market Stability. Across all variations of the number of players, the market shares of the player converge almost
immediately to their final respective values. This convergence occurs even before every player offered a single
best-response, i.e, by the end of Round 1.

2. Order of play. In line with what is expressed in Section 6.2, The order of play when offering a best-response is
important, and varies as a function of the number of players. For n = 2 providers, playing second can offer a significant
competitive advantage. When shifting to markets with n ≥ 3 providers, however, we observe a significant advantage to
the 1st mover, as discussed in Section 6.2.

3. General market share trend. Regardless of the order of play, and as alluded to in Table 3, the market share rises for
all players, which supports the empirical claim that providers that are competing are in a way collaborating to figure
out how optimally divide the market.

4. Generalization to an unseen test set. The performance on the unseen test set closely mirrors that observed during
training, highlighting the robustness of the competition method. The similarity in performance demonstrates that the
model can calculate a best-response without overfitting, and underscores the ability of the framework to maintain
accuracy in line with that expected from traditional ML methods.

D.3. Welfare

Welfare behaviors in additional settings. Figure 6 shows the social welfares across the model classes described in
Appendix C.2, namely LinearSVC, XGBoost, and RandomForest. The test welfares are shown for the COMPAS-arrest
dataset, and are portrayed for each model class and each game varying the nubmer of players. We can see that, as in
Section 6.2, the welfare gets mazimized very early for the Linear model class, but hits a non-maximal plateau for the
Decision Trees. This is another example of the non-monotonic nature of social welfare: in many cases providers having less
expressiveness in their models will in fact benefit the consumers.

Welfare across asymmetry in data. The social welfare trends across different levels of data representations can also
behave in a surprising manner, as shown in Section 6.2 and explained in great detail by (Jagadeesan et al., 2024). As a
portrayal of this phenomenon across different competition settings, Figure 7 plots the social welfares across experiments of
2,3, and 4 players, respectively. We can observe, that while no as blatant as with n = 2 providers, the general trend across
all player formats is that the social welfare increases as an inverse proportion to the richness of the data representations.
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Figure 5: Competition Dynamics with XGboost models on the COMPAS-Arrest dataset. Utilities of individual players are
shown for Train (Left) and Test (Right), in markets involving 2,3,4,5,and 6 players (Top to Bottom)

.

D.4. Synthetic Data

In Section 6.1, we showed an example of the chicken dynamic between asymmetrical class-conditioned gaussians. Ad-
ditionally, we performed an overlap analysis between symmetric gaussians, where for each measure of distance between
the means, or overlap, we calculated the best-response thresholds and performance metrics. Figure 8 (Left) shows the
above analysis on asymmetric gaussians, namely σ−1 = 2, σ+1 = 1. As in Section 6.1, at each overlap the thresholds of
the players are initialized at h0

1 = h0
2 = hopt, where hopt is the naively optimal classifier that maximizes accuracy on the

distributions. Here too, and as is guaranteed by Theorem 3, the best-response dynamics converge after just one round. In
this case of asymmetry between the class-conditioned gaussians, we notice a distinctly different behavior. while h1 remains
in the same proximity to hopt as in the symmetric case, threshold h2 has a “tipping point”, where it suddenly jumps to the
far end of both distributions. From the accuracy graph we can also see a sudden drop in accuracy coming fromm model h2.
In regards to the market share, however, the provider that gets a spike in market share is in fact the one who played h1 and
remains close to the optimal, while the market share of h2 simply shows a gradual increase, with no reference to a tipping
point.
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Figure 6: Social Welfares across model classes on the test set for the COMPAS arrest dataset. Each plot calculates the social
welfare at each timestep and for each experiment that varies the number of players.

This phenomenon is understandable when we look at Theorem 3, that states that the best-response may be at the far end of
the distributions. This occurs when either of the values g−1(1/2), g−1(2) stops existing, where g(x) = f1(x)

f0(x)
is the MLR

function. In these cases, the left or right threshold (depending on which value of g−1 disappears) will continue to gain by
moving to the far end of the interval. This is precisely what is shown in Figure 8 (Right); at a certain overlap (∼ −1), there
is no threshold h for which g(h) = 2, and so the gain in discrepancy for h2 will continue to outweigh the loss in accuracy,
and h2 ends up at the far right end. The market share of h1 is then suddenly increased, since while its accuracy remains the
same, the discrepancy from h2 is now significantly greater.

D.5. Asymmetrical power between players

Another interesting question we can ask from the perspective of the learners/providers is, if a provider were to invest cost
and effort to gain better data, how would this help them in competition? In naïve settings, i.e. single-provider markets, the
answer to this is straightforward: more data = better accuracy. In accuracy markets, however, the specialization needs to
be considered as well, and as we have seen (Section 6.2), the behavior of the market when altering the data quality can
be counter-intuitive. To measure the gain to be had when improving data, we ran experiments where one of the providers
has access to more features than its counterpart/s. For each of 2 possible move positions (1st or 2nd), two metrics were
considered:

1) The provider’s gain in market share over himself if he weren’t to improve his data (i.e. the data is identical for all parties),
which measures the provider’s marginal gain from improving data

2) The provider’s gain in ∆µ from the next-best provider versus the setting where he didn’t improve his data, which measures
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Figure 7: Comparison of social welfares on the COMPAS arrest test set when varying the number of features available to
use for model training (and inference).
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the impact of the data investment on the concentration of the market as a whole.

Table 6 shows the above metrics for markets with 2,3, and 4 providers, and for various possibilities of data improvement.

We can observe a few interesting trends:

1. ∆µ from regular setting. One of our central insights from Section 6.2 is that when n = 2 providers, moving second is
beneficial, and when n > 2, the opposite is true, and moving first is better. In the case of investing in better data, and
when comparing the provider’s market gain vs. himself in a regular setting, we see an inverse effect.

For n = 2, better data creates market gains only when you are the first mover, as in certain lopsided markets the gain is
> 12%. For example, in the case where the better-data provider has 15 features, and the other providers have 3 features,
we can observe a 12% gain, which measures the benefit of investing in the additional 12 features.

When the provider moves second, however, investing in more data does not translate to higher market share, in fact the
provider loses significant market share, and would have been better off retaining the same primitive data as the other
competitors. This phenomenom gets exacerbated further the more the provider invests in better data; For example, if
one were to utilize all 21 features of the dataset when the competitors have access to only 9 features, the advatnaged
provider would see a -12.35% loss in market share.

For markets where n > 2, it is the other way around. When the advantaged provider moves first, he may see a decrease
in market share from the regular setting where he didn’t gain extra data; When moving 2nd, the data gain proves
helpful. This stands in polar contrast to the case where n = 2, and perhaps understandably so: It seems that wherever
the providers have an initial advantage when the data is symmetrical, they would lose that advantage when investing in
more data, perhaps hinting at the idea of decreasing marginal returns in investments.

2. ∆µ from the next-best provider. When comparing the difference across data-variation experiments in market shares
between providers, we notice that the trend behaves similarly to how we have seen in the order-of-play results of
Section 6.2. We can observe that, interestingly, if a provider improved his absolute market-share relative to himself, this
doesn’t translate to the provider improving his market share relative to others. Take for example the cases where n > 2
and the provider moves 2nd. As stated above and as can be seen in Table 6, the added data advantage in this setting
helps the provider gain in absolute market share. The market gain relative to the other providers, however, has an
inverse result, and in many cases the competitors end up with a better overall utility. This tells us that in these settings,
when the advantaged provider goes second, the total welfare (as the sum of individual market shares) increases.
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Table 6: Asymmetrical power between players. Results are shown for markets with 2,3,and 4 providers, respectively. Rows
are shown for each choice of number of features for the provider with better data,and the columns for the number of features
of the other providers. Table results are shown for using XGboost trees on the compas-arrest dataset, that contains 21
features in total.

# features of the worse data

∆µ from regular setting ∆µ from next best provider

# providers move position # features: better data 3 6 9 12 15 18 3 6 9 12 15 18

2 first 6 3.20% -14.37%
9 8.96% 5.34% -1.17% -3.97%

12 12.82% 9.41% 4.76% 14.04% 12.21% 1.01%
15 12.66% 9.15% 4.99% 0.48% 14.48% 12.41% 2.17% -10.96%
18 11.85% 8.76% 5.43% 0.60% -0.33% 13.46% 11.86% 3.69% -9.43% -10.63%
21 10.10% 7.01% 2.53% -3.44% -3.42% -3.11% 9.98% 8.02% -1.16% -14.89% -14.12% -13.96%

second 6 -4.98% 20.32%
9 -8.78% -4.38% 17.55% 14.03%

12 -13.36% -5.26% -8.40% 15.92% 17.19% 5.15%
15 -13.95% -5.62% -9.91% -0.33% 15.91% 17.74% 3.98% 12.64%
18 -14.55% -6.17% -10.28% -1.32% -0.81% 14.88% 17.09% 3.53% 11.06% 10.35%
21 -16.46% -8.38% -12.35% -3.29% -2.97% -2.27% 9.92% 13.09% -0.89% 5.76% 5.74% 7.20%

3 first 6 -0.48% 51.86%
9 0.25% 1.93% 57.14% 55.02%

12 -6.79% -2.88% -1.58% 40.07% 46.39% 30.02%
15 -4.65% -3.75% -1.33% -0.41% 45.18% 44.24% 31.88% 18.26%
18 -3.09% -2.55% -1.53% -0.99% -0.65% 51.18% 47.61% 31.82% 17.21% 18.85%
21 -10.45% -7.13% -3.11% -2.65% -2.56% -1.44% 30.02% 37.01% 30.14% 16.38% 17.40% 17.42%

second 6 1.43% -27.44%
9 9.68% 9.78% -11.53% -8.80%

12 15.39% 12.55% 5.81% -7.08% -6.05% -7.29%
15 15.10% 12.33% 5.51% 0.47% -8.34% -7.49% -8.85% -15.49%
18 14.97% 12.24% 5.40% 0.84% -0.25% -8.39% -7.48% -9.09% -14.97% -16.66%
21 14.63% 11.25% 5.74% -0.04% -0.11% -0.42% -7.84% -7.53% -8.84% -13.25% -13.49% -12.83%

4 first 6 1.09% 24.08%
9 -12.59% 5.66% -8.55% 13.93%

12 -8.11% 3.04% 0.82% -1.02% -0.21% 16.63%
15 -7.90% 2.01% -3.05% -0.67% -0.51% -1.72% 9.94% 16.75%
18 -8.18% 2.04% -2.28% -0.90% -0.60% -1.00% -1.90% 11.50% 16.96% 15.68%
21 -7.66% 1.64% -3.96% -2.22% -2.36% -1.32% -0.35% -2.98% 8.00% 12.08% 10.02% 12.10%

second 6 6.64% -11.54%
9 14.80% 11.58% -11.82% -0.20%

12 21.42% 16.05% 9.82% -4.49% -3.83% -9.99%
15 21.13% 15.91% 9.61% 0.00% -4.75% -3.78% -10.45% -16.16%
18 21.03% 15.72% 9.24% 0.10% 0.46% -4.97% -4.63% -10.51% -16.32% -15.31%
21 19.48% 13.98% 8.23% -0.69% -0.73% -0.35% -7.57% -6.54% -13.06% -18.51% -18.15% -17.31%
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