Appendix For
Recurrent Bayesian Classifier Chains For Exact
Multi-Label Classification

Walter Gerych, Thomas Hartvigsen, Luke Buquicchio, Emmanuel Agu, Elke Rundensteiner
Worcester Polytechnic Institute
Worcester, MA
{wgerych, twhartvigsen, ljbuquicchio, emmanuel, rundenst}@upi.edu

1 Implementation Details

Base RCC Architecture The recurrent methods (RBCC, TS-RCCJ[6} 3], RCC [6], and OF-RCC [1]))
were each implemented in PyTorch [7]. Each method consisted of a 1-layer GRU with a hidden space
size of 100. Additionally, each recurrent method had a 1-layer feed forward network to map from the
100 dimensional latent space into prediction probabilities.

Base Feed Forward Network Architecture The non-recurrent methods (BCC and BD) consisted of
an ensemble of feed-forward networks that each map from the feature space to a 100 dimensional
latent space, replacing the GRU of the recurrent methods. These methods likewise had an additional
feed-forward layer to map from the latent space into prediction probabilities. The networks were
likewise implemented in PyTorch [7]].

Bayesian Network Learning We use the bnlearn [8]] Python package for Bayesian network learning.
For the experiments described in Section 3.5 of the main paper, all methods which required a Bayesian
network (RBCC, TS-RCC, BCC) used the same network which was found using the Hill Climbing
method in bnlearn. For the experiment described in Section 3.6, we used the Constraint Based, Hill
Climbing, and Chow Liu algorithms in bnlearn.

Obtaining Class Residuals We fit the Bayesian network on class residuals rather than on the classes
themselves. These residuals are obtained by first training a separate classifier per each class, and then
calculating the residual as the error between the predicted and ground truth class. These classifiers all
had the same form as the base model used by the BD method, described above. As calculating these
residuals requires out-of-sample inference, we fit the models and half of the data and evaluate on
the other half, before switching the training and testing sets and training/inferring again. Thus, the
residual of each class for each point is obtained from a model that was not trained on that point.

Training Hyperparameters For each method, we used a batch size of 128 and a learning rate of
0.001. We used the Adam optimizer [4] and PyTorch’s exponential learning rate scheduler with
gamma set to 0.99. Each method was trained until convergence for 200 epochs.

Feature Representations The Yelp and Scene datasets were already pre-featurized, but the PASCAL
VOC 2007 dataset comes in the form of raw images. We thus featurize the PASCAL VOC using a
pre-trained network. Specifically, we used the pretrained ResNet-18 model available in PyTorch, and
extracted the feature representations from the final average pooling layer.

2 Importance of Non-Noisy Conditioning

Rather than conditioning the prediction for each class on all previously predicted classes, as is done
by RCCs, RBCC instead conditions the prediction for each class on only the parents of that class. We
posit that conditioning on all previously-predicted classes introduces noise into the class prediction

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

0.75
2 0.70
@

3 0.65 1
3o

Q

< 0.60
-

2

2 0.551

=]
@ 0.50

0.45 1

5 10 15 20
= RBCC == RCC With Bayesian Class Ordering

Number of Classes

Figure 1: RBCC, which conditions the predictions for each class only on its parents, outperforms a
comparable RCC which conditions each class on its parents and all previously predicted classes. The
disparity in performance increases as the number of classes grows. Results shown for the PASCAL
VOC 2007 dataset.

Table 1: Performance of each method on the Enron dataset.

Metric RBCC (Ours) | RCC TS-RCC OF-RCC BCC BD

Subset Acc. 0.305+/-0.016 | 0.100+/-0.001 0.090+/-0.005 | 0.1470.019 0.090+/-0.007 | 0.2570.020
Hamming Loss | 0.027+/-0.004 | 0.043+/-0.003 0.041+/-0.001 | 0.040+/-0.003 | 0.041+4/-0.002 | 0.030+/-0.001
Macro-F1 0.233+/-0.013 | 0.0051 +/- 0.051 | 0.054+/-0.001 | 0.079+/-0.006 | 0.052+/-0.003 | 0.199+/-0.018
Micro-F1 0.759+/-0.075 | 0.607+/-0.020 0.614+/-0.023 | 0.617+/-0.022 | 0.611+4/-0.022 | 0.716+/-0.012

for the classes that are independent of each other. This leads to cascading label errors having more
negative effects on the final label set. To validate that our “non-noisy" class conditioning approach is
indeed better than the approach of standard RCC’s, we perform an additional experiment.

Here, we compare the performance of RBCC against a RCC that predicts the classes in an order
determined by a Bayesian network. Importantly, the Bayesian network is the same as the one used by
RBCC, and the class ordering implies that each class is predicted before its parent classes. However,
the RCC conditions each class on all previously predicted classes. The two approaches are compared
on the PASCAL VOC 2007 dataset where we vary the number of classes from 5 to 20 (the maximum
number of classes in PASCAL VOC 2007), such that the classes chosen are the most frequent.

Results are shown in Figure[I} As expected, RBCC’s approach of leveraging conditional independence
by performing ‘“non-noisy" conditioning results in improved classification performance. Notably, the
difference in performance increases as the number of classes increases. This fits our hypothesis that
conditioning on all previously predicted classes negatively impacts performance, as the sequence
length over which inference is performed grows as the number of classes for the RCC. For the RBCC,
on the other hand, the sequence over which inference is performed is only as long as the number of
parents, which will nearly always be significantly less than the total number of classes.

3 Additional experiments

We expand our experimental evaluation of our method to 3 additional datasets of varying numbers of
classes: Enron (53 classes) [, EukaryoteGO (22 classes) [9], and Yeast (14 classes) [2]. Results
(shown in Tables 1-3) indicate that our method continues to consistently outperform the state-of-the-art
methods.

Table 2: Performance of each method on the EukaryoteGO dataset.

Metric RBCC (Ours) | RCC TS-RCC OF-RCC BCC BD

Subset Acc. 0.906+/-0.041 | 0.813+/-0.018 | 0.792+/-0.020 | 0.863+/-0.008 | 0.771+/-0.029 | 0.766+/-0.007
Hamming Loss | 0.006+/-0.003 | 0.0114/-0.007 | 0.0104/-0.005 | 0.008+/0.001 | 0.008+/-0.002 | 0.013+/-0.000
Macro-F1 0.907+/-0.053 | 0.600+/-0.009 | 0.590+/-0.023 | 0.629+/-0.014 | 0.537+/-0.020 | 0.466+/-0.028
Micro-F1 0.937+/-0.028 | 0.892+/-0.024 | 0.863+/-0.030 | 0.9214/-0.005 | 0.843+/-0.025 | 0.872+/-0.006

Table 3: Performance of each method on the Yeast dataset.

Metric

RBCC (Ours)

RCC

TS-RCC

OF-RCC

BCC

BD

Subset Acc.

0.243+/-0.016

0.150+/-0.008

0.148+/-0.011

0.219+/-0.022

0.153+/-0.013

0.121+/-0.014

Hamming Loss

0.195+/-0.008

0.254+/-0.006

0.257+4/-0.005

0.188+/-0.005

0.248+/-0.010

0.203+/-0.008

Macro-F1

0.420+/-0.015

0.282+/-0.053

0.279+/-0.050

0.394+/-0.010

0.291+/-0.055

0.293+/-0.012

Micro-F1

0.658+/-0.025

0.528+/-0.021

0.530+/-0.019

0.682+/-0.012

0.526+/-0.024

0.602+/-0.022

4 RBCC Algorithms

Algorithm 1: Algorithm to obtain Bayesian network of conditional inter-class dependencies

function get_conditional_network (g(-), D¢rqin, S);

Input

directed acyclic graph fitting scheme S

Output

dependencies G
\As we desire out-of-sample inference when determining residuals, we split train set into K

subsets

for k < 1to K do
| Dy = n/k points sampled without replacement from Dy;.47,

end

all_residuals = {}
for £ < 1to K do

g.fit(Xk, Yk)

{F1, Es, ..

end

i EL}k = Yrtrain
all_residuals.concatenate({E1, Es, . .

:Bayesian network of inter-class

G = S.fit_predict(all_residuals)

return G

'7EL}]€)

— g.predict(Xirain \ X&)

:Binary relevance classifier g(-), training dataset Diqin = { Xtrain, Yerain }»

Algorithm 2: Training algorithm for RBCC

function train_RBCC (D, G);

Input : Training dataset D, Bayesian network G

Output :Trained Recurrent Conditional Dependency Model r3 and Bayesian-Conditioning
Classifier classifier he

for epoch < 1 to num_epochs do

for batch in batches do

for xy, y, in batch do

fork =11t L do

a;, = initialize_hidden_state

if Pa(Cy) = 0 then

vy =< Ty, or >

ajp = 7'<I>('Ub; ak)

h_b_k = he(ay)

else

for Cy in Pa(C}) do
vy =< Ty, [Yp]e >
ar = ro(vy, ay)

end

h_b_k = ho(ay)

end
end

end

Calculate loss according to Equation 4 (in the main paper)
Update ® according gradient descent

end

end
return g, he

Algorithm 3: Inference algorithm for RBCC

function RBCC_predict_class(T, G, rs, ho, k, z);
Input :Hash table of previously predicted classes 1", Bayesian network G, trained RBCC
RNN and feed forward network r¢ and he
Output :P(Cy|Pa(Cy),x)
for Cy in Pa(C},) do
if if ¢ not in T then
| T[] =round(predict_class(T,G,re, gs, L,))
end

end

ay, = initialize_hidden_state

if Pa(Cy) = 0 then

V =<uz0>

p_k_x=he(re(V,ax))

T(ck) = round(p_k_x)

else

for C; in Pa(C}) do
v=<uzT(c) >
ap =79V, ar)

end

p_k_x=he(ayg)

T(ck) = round(p_k_x)

end
return p_k_x

References

[1] Shang-Fu Chen, Yi-Chen Chen, Chih-Kuan Yeh, and Yu-Chiang Frank Wang. 2018. Order-free
rnn with visual attention for multi-label classification. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence.

[2] André Elisseeff and Jason Weston. 2001. A kernel method for multi-labelled classification.
Advances in neural information processing systems 14 (2001), 681-687.

[3] Arthur B Kahn. 1962. Topological sorting of large networks. Commun. ACM 5, 11 (1962),
558-562.

[4] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014).

[5] Bryan Klimt and Yiming Yang. 2004. The enron corpus: A new dataset for email classification
research. In European Conference on Machine Learning. Springer, 217-226.

[6] Jinseok Nam, Eneldo Loza Mencia, Hyunwoo J Kim, and Johannes Fiirnkranz. 2017. Maximizing
subset accuracy with recurrent neural networks in multi-label classification. In Advances in Neural
Information Processing Systems. 5413-5423.

[7] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation
in pytorch. (2017).

[8] Erdogan Taskesen. 2019. bnlearn. https://github.com/erdogant/bnlearn,

[9] Jianhua Xu, Jiali Liu, Jing Yin, and Chengyu Sun. 2016. A multi-label feature extraction algorithm
via maximizing feature variance and feature-label dependence simultaneously. Knowledge-Based
Systems 98 (2016), 172—184.

https://github.com/erdogant/bnlearn

	Implementation Details
	Importance of Non-Noisy Conditioning
	Additional experiments
	RBCC Algorithms

