
Appendix
This is the Appendix for “Self-Supervised Learning Disentangled Group Representation as Feature”.
Table .1 summarizes the abbreviations and the symbols used in the main paper.

Abbreviation/Symbol Meaning

Abbreviation
SSL Self-supervised Learning
SL Supervised Learning
DCI Disentangle Metric for Informativeness
IRS Interventional Robustness Score
EXP Explicitness Score
MOD Modularity Score
LR Logistic Regression
GBT Gradient Boosted Trees
OOD Out-Of-Distributed

Symbol in Theory
U Semantic space
X Vector space
I Image space
G Group
G(x) Group orbit w.r.t. G containing the sample x
ϕ Image generation process U → I
φ Visual representation I → X
f Semantic representation U → X
m The number of decomposed subgroups

Symbol in Algorithm
P Partition of dataset
P∗ Learned partition through Eq. (3)
P Set of partitions used in Eq. (2)
N Number of training images
θ “Dummy” parameter used by IRM
I Image
Xk The set of features in the subset k
X ∗ The set of augmented view features
λ1, λ2 Hyper-parameters in Eq. (2) and (3)

Table .1: List of abbreviations and symbols used in the paper.

This appendix is organized as follows:

• Section A provides the preliminary knowledge about the group theory. We also provide a
formal definition of “fixed” and “affected” used in Definition 1.

• Section B gives the proofs of Definition 2, Lemma 1 and Theorem 1.
• Section C shows the implementation details of our experiments in Section 5 of our main

paper.
• Section D presents the additional experimental results.

1



A Preliminaries

A group is a set together with a binary operation, which takes two elements in the group and maps
them to another element. For example, the set of integers is a group under the binary operation of
plus. We formalize the notion through the following definition.

Binary Operation. A binary operation · on a set S is a function mapping S × S into S. For each
(s1, s2) ∈ S × S , we denote the element ·(s1, s2) by s1 · s2.

Group. A group 〈G, ·〉 is a set G, closed under a binary operation ·, such that the following axioms
hold:

1. Associativity. ∀g1, g2, g3 ∈ G, we have (g1 · g2) · g3 = g1 · (g2 · g3).
2. Identity Element. ∃e ∈ G, such that ∀g ∈ G, e · g = g · e = g.
3. Inverse. ∀g ∈ G, ∃g′ ∈ G, such that g · g′ = g′ · g = e.

Groups often arise as transformations of some space, such as a set, vector space, or topological
space. Consider an equilateral triangle. The set of clockwise rotations w.r.t. its centroid to retain
its appearance forms a group {60◦, 120◦, 180◦}, with the last element corresponding to an identity
mapping. We say this group of rotations act on the triangle, which is formally defined below.

Group Action. Let G be a group with binary operation · and S be a set. An action of G on S is a
map π : G → Hom(S,S) so that π(e) = idS and π(g) ◦ π(h) = π(g · h), where g, h ∈ G, ◦ denotes
functional composition. ∀g ∈ G, s ∈ S, denote π(g)(s) as g ◦ s.
In our formulation, we have a group G acting on the semantic space U . For example, consider the
color semantic, which can be mapped to a circle representing the hue. Hence the group acting on
it corresponds to rotations, similar to the triangle example, e.g., π(g) may correspond to rotating a
color in S clockwise by 30◦. In the context of representation learning, we are interested to learn a
feature space to reflect G, formally defined below.

Group Representation. Let G be a group. A representation of G (or G-representation) is a pair
(π,X ), where X is a vector space and π : G → Homvect(X ,X ) is a group action, i.e., for each
g ∈ G, π(g) : X → X is a linear map.

Intuitively, each g ∈ G corresponds to a linear map, i.e., a matrix Mg that transforms a vector x ∈ X
to Mgx ∈ X . Finally, there is a decomposition of semantic space and the group acting on it in
our definition of disentangled representation. The decomposition of semantic space is based on the
Cartesian product ×. A similar concept is defined w.r.t. group.

Direct Product of Group. Let G1, . . . ,Gn be groups with the binary operation ·. Let ai, bi ∈ Gi
for i ∈ {1, . . . , n}. Define (a1, . . . , an) · (b1, . . . , bn) to be the element (a1 · b1, . . . , an · bn). Then
G1 × . . .×Gn or

∏n
i=1 Gi is the direct product of the groups G1, . . . ,Gn under the binary operation ·.

With this, we can formally define Xi, i ∈ {1, . . . ,m} is only affected by the action of Gi and fixed by
the action of other subgroups: (π|Gj ,Xi)j 6=i is a trivial sub-representation (“fixed”), i.e., for each
g ∈ Gj , j 6= i, π(g) is the identity mapping idXi

, and (π|Gj ,Xi)i is non-trivial (“affected”).

B Proof

B.1 Proof of Definition 2

D Defines a Partition of X . We will show that D defines an equivalence relation on X , which
naturally leads to a partition of X . For x1,x2 ∈ X , let x1 ∼ x2 if and only if ∃g ∈ D such that
g · x1 = x2. We show that ∼ satisfies the three properties of equivalence relation. 1) Reflexive:
∀x ∈ X , we have e · x = x, hence x ∼ x. 2) Symmetric: Suppose x1 ∼ x2, i.e., g · x1 = x2 for
some g ∈ D. Then g−1 · x2 = x1, i.e., x2 ∼ x1. 3) Transitive: if x1 ∼ x2 and x2 ∼ x3, then
g1 · x1 = x2 and g2 · x2 = x3 for some g1, g2 ∈ D. Hence (g2g1) · x1 = x3 and x1 ∼ x3.

Number of Orbits. Recall that G acts transitively on X (see Section 4). We consider the non-trivial
case where the action of G is faithful, i.e., the only group element that maps all x ∈ X to itself is
the identity element e. Let K = G/D = g1 × . . .× gk. We will show that each c ∈ K corresponds
to a unique orbit. 1) ∀c 6= e ∈ K, D(x) 6= D(c · x). Suppose ∃c 6= e ∈ K, such that for some

2



x ∈ X , the action of c on each x1 ∈ D(x) corresponds to the identity mapping. One can show that
for every different orbit, i.e., D(c′ · x) 6= D(x), the action of c on each x2 ∈ D(x) is also identity
mapping. As D partitions X into orbits w.r.t. D, this means that the action of c is identity mapping
on all x ∈ X , which contradicts with the action of G being faithful. 2) The previous step shows that
non-identity group elements in K lead to a different orbit. We need to further show that these orbits
are unique, i.e., ∀c, c′ 6= e ∈ K, if c 6= c′, then D(c · x) 6= D(c′ · x). Suppose c′ · x = c · x, i.e.,
c−1c′ · x = c−1c · x = x, so c−1c′ ∈ Gx, where Gx is the point stabilizer of x. As the action of G is
faithful, Gx = {e}. Hence c · x = c′ · x implies c = c′.

B.2 Details of Lemma 1

We will first prove Lemma 1 by showing the representation is G-equivariant, followed by showing
that D and G/D are decomposable and finally showing that

∏
d∈D d is not decomposable. We will

then present more details on the 4 corollaries.

Proof of G-equivariant. Suppose that the training loss − log
exp(xT

i xj)∑
x∈X exp(xT

j x)
is minimized, yet

∃xa = xb ∈ X for a 6= b. Let xi ∈ X in the denominator, and we have xTj xi = cos(θi,j) ‖xi‖ ‖xj‖,
where θi,j is the angle between the two vectors. When xi = xj , cos(θi,j) = 1. So keeping ‖xi‖ ‖xj‖
constant (i.e., the same regularization penalty such as L2), xTj xi can be further reduced if xi 6= xj ,
which reduces the training loss. This contradicts with the earlier assumption. Hence by minimizing
the training loss, we can achieve sample-equivariant, i.e., different samples have different features.
Note that this does not necessarily mean group-equivariant. However, the variation of training samples
is all we know about the group action of G, and we establish that the action of G is transitive on X ,
hence we use the sample-equivariant features as the approximation of G-equivariant features.

Proof of Decomposability between D and G/D. Recall the semantic representation f : U →
I → X , which is show to be G-equivariant in the previous step. Consider a non-decomposable
representation where X is affected by the action of both D and G/D. Let X = Xd × Xc, where
both sub-spaces are affected by the action of the two groups. In particular, denote the semantic
representation fc : (Ud × Uc)→ Xc, where Ud is affected by the action of D (recall that G affects
U and X through the equivariant map in Figure 1) and Uc is affected by the action of G/D. From
here, we will construct a representation where Xc is only affected by the action of G/D with a lower
training loss.

Specifically, we aim to assign a d∗i ∈ Ud, i ∈ {1, . . . , k} to the i-th orbit, which is given by:

d∗1, . . . , d
∗
k = arg min

(d1,...,dk)
E

i,j∈{1,...,k}
fc(di, ci)

T fc(dj , cj), (B.1)

where ci ∈ Uc is the value of Uc for i-th orbit. Now define f∗c : Uc → Xc given by f∗c (ci) =
fc(d

∗
i , ci)∀i ∈ {1, . . . , k}. Using this new f∗c has two outcomes:

1) xTi xj in the numerator is the linear combination of the dot similarity induced from Xd and Xc.
And the dot similarity induced from Xc is increased, as inside each orbit, the value in Xc is the same
(maximized similarity);

2) The denominator is now reduced. This is because the denominator is proportional to
Ei,j∈{1,...,k} Ed,d′∈Ud fc(d, ci)T fc(d′, cj), and we have already selected the best set d∗i that min-
imizes the expected dot similarities across orbits.

As the in-orbit dot similarity increases (numerator), and the cross-orbit dot similarity decreases
(denominator), the training loss is reduced by decomposing a separate sub-space Xc affected only
by the action of G/D with f∗c . Furthermore, note that a linear projector is used in SSL to project
the features into lower dimensions, and a linear weight is used in SL. To isolate the effect of D to
maximize the similarity of in-orbit samples (numerator) and exploit the action of G/D to minimize
the similarity of cross-orbit samples (denominator), the effect ofD and G/D on Xd must be separable
by a linear layer, i.e., decomposable. Combined with the earlier proof that Xc is only affected by the
action of G/D, without loss of generality, we have the decomposition X = Xd ×Xc affected by D
and G/D, respectively.

Proof of Non-Decomposability of d ∈ D. We will show that for a representation with d ∈ D
decomposed, there exists a non-decomposable representation that achieves the same expected dot
similarity, hence having the same contrastive loss. Without loss of generality, consider d1, d2 ∈ D

3



acting on the semantic attribute space U1,U2, respectively. Let f be a decomposable representation
such that there exists feature subspaces X1,X2 ∈ X affected only by the action of d1, d2, respectively.
Denote f1 : U1 → X1, f2 : U2 → X2. Now we define a non-decomposable representation with
mapping f ′1 : (U1,U2) → X1 and f ′2 : (U1,U2) → X2, given by f ′1(U1 = u1, U2 = u2) =
1√
2
(f1(U1 = u1) + f2(U2 = u2)) and f ′2(U1 = u1, U2 = u2) = 1√

2
(f1(U1 = u1)− f2(U2 = u2)).

Now for any pair of samples with semantic (u1, u2) and (u′1, u
′
2), u1, u

′
1 ∈ U1 and u2, u

′
2 ∈ U2,

the dot similarity induced from the subspace X1,X2 is given by f1(u1)2 + f2(u2)2. Therefore, the
decomposed and non-decomposed representations yield the same expected dot similarity over all
pairs of samples, and have the same contrastive loss.

Corollary 1. This follows immediately from the proof on G-equivariance.

Corollary 2. The same proof above holds for the SL case with xi ∈ X , whereX is the set of classifier
weights. In this view, each sample in the class can be seen as an augmented view (augmented by shared
attributes such as view angle, pose, etc) of the class prototype. In downstream learning, the shared
attributes are not discriminative, hence the performance is affected mostly by G/D. For example,
if the groups corresponding to “species” and “shape” act on the same feature subspace (entangled),
such that “species”=“bird” always have “shape”=“streamlined” feature, this representation does not
generalize to downstream tasks of classifying birds without streamlined shape (e.g., “kiwi”).

Corollary 3. In SL and SSL, the model essentially receives supervision on attributes that are not
discriminative towards downstream tasks, through augmentations and in-class variations, respectively.
The group D acts on the semantic space of these attributes, hence |D| determines the amount of
supervision received. With a large |D|, the model filters off more irrelevant semantics and G/D more
accurately describe the differences between classes. Note that the standard image augmentations in
SSL are also used in SL, making |D| even larger in SL.

Corollary 4. When the number of samples in some orbit(s) is smaller than |D(x)|, this has two
consequences that prevent disentanglement: 1) The G-equivariance is not guaranteed as the training
samples do not fully describe G. 2) The decomposability is not guaranteed as the decomposed f∗c , f

∗
d

in the previous proof only generalizes to the seen combination of the value in Ud × Uc.

B.3 Proof of Theorem 1

We will first revisit the Invariant Risk Minimization (IRM). Let I be the image space, X the feature
space, Y the classification output space (e.g., the set of all probabilities of belonging to each class),
the feature extractor backbone φ : I → X and the classifier ω : X → Y . Let Etr be a set of training
environments, where each e ∈ Etr is a set of images. IRM aims to solve the following optimization
problem:

min
φ,ω

∑
e∈Etr

Re(ω ◦ φ)

subject to ω ∈ arg min
ω̄

Re(ω̄ ◦ φ) ∀e ∈ Etr,
(B.2)

where Re(ω ◦ φ) is the empirical classification risk in the environment e using backbone φ and
classifier ω. Conceptually, IRM aims to find a representation φ such that the optimal classifier on top
of φ is the same for all environments. As Eq. (B.2) is a challenging, bi-leveled optimization problem,
it is initiated into the practical version:

min
φ

∑
e∈Etr

Re(φ) + λ ‖∇ω=1.0R
e(ω · φ)‖2 , (B.3)

where λ is the regularizer balancing between the ERM term and invariant term.

The above IRM is formulated for supervised training. In SSL, there is no classifier mapping from
X → Y . Instead, there is a projector network σ : X → Z mapping features to another feature space
Z , and Eq. (1) is used to compute the similarity with positive key (numerator) and negative keys
(denominator) in Z . Note that h in SSL is not equivalent to φ in SL, as σ itself does not generate the
probability output like ω, rather, the comparison between positive and negative keys does.

In fact, the formulation of contrastive IRM is given by Corollary 2 of Lemma 1, which says that SL is
a special case of contrastive learning, and the set of all classifier weights is the positive and negative

4



key space. In IRM with SL, we are trying to find a set of weights ωSL from the classifier weights
space (e.g., Rd×c with feature dimension as d and number of classes as c) that achieves invariant
prediction. Hence in IRM with SSL, we are trying to find a set of keys ωSSL from the key space (e.g.,
Rz×n with z being the dimension of Z and number of positive and negative keys as n) that achieves
invariant prediction by differentiating a sample with negative keys (Note that the similarity with
positive keys is maximized and fixed using standard SSL training by decomposing augmentations
and other semantics as in Lemma 1). Specifically, in IP-IRM, the 2 subsets in each partition form the
set of training environments Etr.
Proof of the Sufficient Condition. Suppose that the representation is fully disentangled w.r.t. G/Daug.
By Definition 1, there exists subspace Xi ∈ X affected only by the action of ci ∈ G/Daug. For
each partition given by {G′(ci · x),G′(c−1

i · x)}, let the projector network σ∗ : X ′ → Z , where
X ′ = X1 × . . .×Xi−1 ×Xi+1 × . . .×Xk. Note that σ∗ can be achieved in the parameter space of a
linear layer, as the subspace Xi is decomposed into fixed dimensions for all samples, which can be
filtered out by a linear layer by setting weights associated to those dimensions as 0. Moreover, the
resulting space Z (i.e., space of positive and negative keys) is affected only by the action of G′. As
the in-orbit group corresponds to G′, the values in Xi are not discriminative towards SSL objective.
Hence there exists σ∗ mapping to Z that is optimal in both orbits, i.e., minimizing the contrastive
IRM loss.

Proof of the Necessary Condition. Suppose that the contrastive IRM loss is minimized for the
partition {G′(ci · x),G′(c−1

i · x)}. We will show that ci is disentangled. First we will consider
the space Z (mapped from X by the projector network). If Z is affected by the action of ci and
G′, let ω∗1 ∈ arg minω̄ R

1(ω̄ ◦ φ) that optimizes the contrastive loss in the first orbit (by exploiting
the equivariance of G′). Given a fixed φ, ω∗1 is unique as the contrastive loss is convex. The IRM
constraint requires that ω∗1 = ω∗2 , which means that the action of ci on Z corresponds to identity
mapping. Yet this contradicts with the equivariant property from Corollary 1 of Lemma 1. Therefore
when the contrastive IRM loss is minimized, Z cannot be affected by the action of ci. Given the linear
projector network, there are two possibilities for X : 1) X = X ′i × X ′ where X ′i is affected by the
action of ci and G’, and X ′ is affected by the action of G′. In this way, the projector σ can discard X ′i
to obtain Z unaffected by ci. However, under the representation φ leading to the feature space with
decomposition X = X ′i ×X ′, the optimal ω in each orbit will exploit X ′i , which is discriminative as
it is affected by G′. Therefore, there exists no ω that is simultaneously optimal between the two orbits
under this representation. 2) X = Xi ×X ′ where Xi is affected only by the action of ci, and X ′ is
affected by the action of G′, i.e., the representation is disentangled with ci. In this way, we have ω
that is simultaneously optimal across orbits as shown in the proof of the sufficient condition.

Example of Step 2. As we consider two orbits in each partition corresponding to gi, we denote
Ui ∈ {0, 1}∀i ∈ {1, . . . , k} as a binary attribute space affected by gi. We will show how maximizing
the contrastive IRM loss will lead to the partition where cross-orbit group element h ∈ G/D.

From Lemma 1, the representation f is equivariant under the action of G, i.e., the SSL loss L reveal
the information about g ∈ G. Specifically, each pair of samples in a subset corresponds to a group
element whose action transform the attribute of the first sample to the second sample. In a subset, if
more group elements corresponding to pair-wise transformation are identity mapping, the samples
in the group are more similar in semantics. With the equivariant property of the representation, the
features in the subset are also more similar, leading to larger L (more difficult to distinguish two
samples apart).

Given binary semantic attributes, the similarity in the semantics is measured by the hamming distance,
i.e., for u1, u2 ∈

∏k
i=1 Ui, their hamming distance dH(u1, u2) is given by the number of different

bits (e.g., dH(u1 = 01, u2 = 11) = 1). Denote the set of semantic attributes of the samples in the
two orbits in space U1, . . . ,Uk as S1 and S2, respectively. From the equivariant property of Lemma 1,
the first term in Eq. (3) L(φ, θ = 1.0, k = 1,P) + L(φ, θ = 1.0, k = 2,P) is maximized when the
average hamming distance in the two orbits d(S1) + d(S2) is minimized, where d(S) is given by:

d(S) =
1

|S|2
∑
u∈S

∑
u′∈S

dH(u, u′). (B.4)

Without loss of generality, an arbitrary data partition is illustrated in Figure B.1 (a), where we arrange
the order of the samples in each orbit, such that those with Ut = 0, t ∈ {1, . . . , k} come first in the

5



subset S1, and those with Ut = 1 come first in the subset S2. The subset S1 has m0 samples with
Ut = 0 and m′1 samples with Ut = 1. Denote D0 = {(u1, . . . , ut−1, ut+1, . . . , uk) | u ∈ S1 ∧ ut =
0}, D′1 = {(u1, . . . , ut−1, ut+1, . . . , uk) | u ∈ S1 ∧ut = 1}. In orbit S2, we define m1,m

′
0,D1,D′0

similar to in S1. In Figure B.1 (b), we show the partition P∗ as described in Theorem 1. We will
proceed to show ∀S1,S2:

d(S1) + d(S2) ≥ d(S∗1 ) + d(S∗2 ). (B.5)

(a)

𝑚𝑚0 0

1

𝑈𝑈𝑡𝑡

1

0

𝑈𝑈1, … ,𝑈𝑈𝑘𝑘 \𝑈𝑈𝑡𝑡

𝒮𝒮1 𝒮𝒮2

𝑚𝑚1
′ 𝑚𝑚0

′

𝑚𝑚1 𝑚𝑚0 0

1

1

0

𝒮𝒮1∗ 𝒮𝒮2∗

𝑚𝑚1
′𝑚𝑚0

′

𝑚𝑚1

(b)

𝒟𝒟0

𝒟𝒟0′𝒟𝒟1′

𝒟𝒟1 𝒟𝒟0

𝒟𝒟0′

𝒟𝒟1

𝒟𝒟1′

𝑈𝑈𝑡𝑡

𝐏𝐏 𝐏𝐏∗

𝑈𝑈1, … ,𝑈𝑈𝑘𝑘 \𝑈𝑈𝑡𝑡
𝑈𝑈𝑡𝑡 𝑈𝑈1, … ,𝑈𝑈𝑘𝑘 \𝑈𝑈𝑡𝑡 𝑈𝑈𝑡𝑡 𝑈𝑈1, … ,𝑈𝑈𝑘𝑘 \𝑈𝑈𝑡𝑡

Figure B.1: (a) Any arbitrary data partition P. (b) The partition P∗.

As the hamming distance is calculated per-dimension, we have the following decomposition:

d(S1) = d(D0 ∪ D′1) +
1

|S1|2
∑
u∈S1

∑
u′∈S1

dH(ut+1, u
′
t+1)

= d(D0 ∪ D′1) +
2m0m

′
1

(m0 +m′1)2

(B.6)

d(S2) = d(D1 ∪ D′0) +
1

|S2|2
∑
u∈S2

∑
u′∈S2

dH(ut+1, u
′
t+1)

= d(D1 ∪ D′0) +
2m1m

′
0

(m1 +m′0)2

(B.7)

d(S∗1 ) = d(D0 ∪ D′0) (B.8)

d(S∗2 ) = d(D1 ∪ D′1) (B.9)

We will prove Eq. (B.4) by induction. First consider the case where |D′1| = |D′0| = 1. Denote
D′1 = {d′1} and D′0 = {d′0}. We can expand d(S1) as

d(S1) = d(D0) +
2

(m0 + 1)2

∑
d0∈D0

dH(d0, d
′
1). (B.10)

We can similarly expand d(S2), d(S∗1 ) and d(S∗2 ). Once the same terms are cancelled out, to prove
Eq. B.4, we only need to show for any d′0, d

′
1, we have:

m0 +
∑
d0∈D0

dH(d0, d
′
1)+m1 +

∑
d1∈D1

dH(d1, d
′
0) ≥

∑
d0∈D0

dH(d0, d
′
0)+

∑
d1∈D1

dH(d1, d
′
1), (B.11)

One sufficient condition is that the number of elements in D0,D1 is 2t−1. This can be empirically
achieved with a large dataset. First, we will prove:

m0 +
∑
d0∈D0

dH(d0, d
′
1) ≥

∑
d0∈D0

dH(d0, d
′
0). (B.12)

Consider D0 with 2t−1 unique elements. If the elements in D0 are such that they lie in a sub-cube of
dimension t− 1 with Uj = a for j ∈ {1, . . . , t}, a ∈ {0, 1}. Let

∆ =
∑
d0∈D0

dH(d0, d
′
0)−

∑
d0∈D0

dH(d0, d
′
1) (B.13)

6



𝑈𝑈1 𝑈𝑈2

𝑈𝑈3

𝑑𝑑0′

𝑑𝑑1′
𝒟𝒟0

Figure B.2: An example
of the sub-cube case with
m0 = 4, t = 3 and U3 =
0 in D0. The maximum ∆
is 4 with U3 = 1 for d′0
and U3 = 0 for d′1.

It is easy to show that ∆ is maximized when d′0 6∈ D0 and d′1 ∈ D0, where
∆ = m0 (example in Figure B.2). This satisfies Eq. (B.11). Now consider
a general case of D0 such that na elements have Uj = a, forming the
set D0,a and nā elements have Uj = ā, forming the set D0,ā, where (̄·)
denotes negation. Without loss of generality, let na > nā (we discuss
equality case later). To maximize ∆, d′0 must have Uj = ā, which can
be proved through contradiction. If Uj = a for d′0 that maximizes ∆,
there exists d′′0 which differs from d′0 only on Uj , such that dH(d′′0 , d)−
dH(d′0, d) = 1 ∀d ∈ D0,a and dH(d′′0 , d̄) − dH(d′0, d̄) = 1 ∀d̄ ∈ D0,ā.
As na > nā, we have

∑
d0∈D0

dH(d0, d
′
0) <

∑
d0∈D0

dH(d0, d
′′
0), which

contradicts the condition that we begin with. One can similarly show that
d′1 must have Uj = a. In the case of equality, both d′0, d

′
1 can have Uj = a

or Uj = ā. Now, starting with the case where every element in D0 has
Uj = a (sub-cube case), for every one additional element in D0 that we
change its Uj to ā which na >= nā still holds,

∑
d0∈D0

dH(d0, d
′
0) is

reduced by 1 and
∑
d0∈D0

dH(d0, d
′
1) is increased by 1, which reduces

∆ by 2. Hence ∆ is maximized in the sub-cube case, for which we have already shown Eq. (B.11)
holds, and we have proven the sufficient condition.

One can apply the same analysis above and prove:

m1 +
∑
d1∈D1

dH(d1, d
′
0) ≥

∑
d1∈D1

dH(d1, d
′
1). (B.14)

Now we have proved the case where |D′0| = |D′1| = 1. By induction, we assume that Eq. (B.4) holds
for |D′0| = |D′1| = p, p ≥ 1. We need to prove for the case with one additional element, i.e., D′1 ∪ d′′1
and D′0 ∪ d′′0 . Through reduction, this is to show:

m0 +
∑
d0∈D0

dH(d0, d
′′
1)+m1 +

∑
d1∈D1

dH(d1, d
′
0) ≥

∑
d0∈D0

dH(d0, d
′′
0)+

∑
d1∈D1

dH(d1, d
′
1). (B.15)

This clearly holds given Eq. (B.11) is true.

Eq. (B.4) contains an equality case, we have shown that in the sufficient condition that the equality
holds in the sub-cube case, i.e., the partition is such that within every subset, the group action of
ci, i ∈ {1, . . . , k} on the subspace of X spanned by the subset is the identity mapping. This means
that with the overall SSL loss term itself, the partition may be based on one of c1, . . . , ck. However,
with the contra-position of the sufficient condition in Theorem 1, the cross-orbit action does not
correspond to any d ∈ D. Hence overall, we have shown the maximization leads to a partition with
cross-orbit action as h ∈ G/D.

C Implementation Details

C.1 Implementation Details of the CNN Activation Visualization

We used ImageNet100 with image size of 224 for our visualization in Figure 2 (b). The visualization
is based on the guided propagation method used in [25], and we adopted the publicly available
implementation1. We chose VGG-16 [24] as backbone, due to its native support by guided propagation
visualization. We followed the default training methods of the SimCLR but only replaced the default
ResNet-50 backbone with the VGG16. We trained the baseline and ours model with 200 epochs and
for IP-IRM, λ1 = 0.2, λ2 = 0.5. Please refer to Section C.3.1 for more details. Once the backbone
is trained, we first obtained the augmentation-unrelated filters by performing augmentations and
removing the filters equivariant to augmentations. Then we performed K-Means clustering (K = 4)
on the CNN weights of layer 17 and layer 28 among the remaining filters, and chose the 4 filters
closest to the cluster center. The motivation for such design is to reveal what the representation
captures beyond augmentation-equivariant semantics, and the clustering helps locate the different
semantics captured by the representation. We show the activation visualization on layer 18 and 29,
i.e., after the ReLU layer, which is the actual input to the next CNN layer, instead of immediately
after CNN layer 17 and 28.

1https://github.com/utkuozbulak/pytorch-cnn-visualizations

7

https://github.com/utkuozbulak/pytorch-cnn-visualizations


C.2 Unsupervised Disentanglement

C.2.1 Evaluation Metric Details

As we discussed in Section 5.1 of the main paper, here we follow [21, 31] to give more detailed
formulas or evaluation methods of the used metrics. All the implementations follow the open-source
library 2.

Disentangle Metric for Informativeness (DCI). In [10], the authors propose a complete framework
to evaluate disentangled representations instead of a single metric. They report separate scores
for modularity, compactness and explicitness, which they call disentanglement, completeness and
informativeness. It computes the importance of each dimension of the learned representation for
predicting a factor of variation. The predictive importance Rij of the dimensions of feature can be
computed with a Lasso or a Random Forest classifier. For the lasso regressor, the importance weights
Rij are the magnitudes of the weights learned by the model, while the Gini importance [2] of code
dimensions is used with random forests. Here we adopted the Informativeness score, which can be
computed as the prediction error of predicting the factors of variations.

Interventional Robustness Score (IRS). IRS [26] propose to measure the feature robustness by
computing distances between sets of codes before and after an intervention on factor realizations.
The intuition behind the metric is that changes in nuisance factors should not impact code dimensions
attributed to targeted factors. First a reference set is created from instances where realizations of
target factors are fixed. Then a second set contains instances with the same targeted factor realization,
but different realizations of nuisance factors. The metric computes the distance between the mean of
code dimensions associated to targeted factors. This sampling and distance measurement procedure
is repeated several times and the maximum observed distance is reported to reflect the worst case.
The final metric reports a weighted average of the maximum distances. The distances are weighted
by the frequency of the factor realizations in the data set.

Modularity Score (MOD) & Explicitness Score (EXP). In [23], for modularity, the authors esti-
mate the mutual information between each code dimension and each factor. If a code dimension is
ideally modular, it will have high mutual information with a single factor and zero mutual information
with all other factors. Given a single code dimension i and a factor f , we denote the mutual informa-
tion between the code and factor by mif . For ease to computation, authors also create a vector ti fo
the same size, which represetns the best-matching case of ideal modularity for code dimension i:

tif =

{
θi, if f = arg maxg (mig)
0, otherwise,

where θi = maxg (mig). The observed deviation from the template is given by

δi =

∑
f (mif − tif )

2

θ2
i (N − 1)

,

where N is the number of factors. A deviation of 0 indicates that we have achieved perfect modularity
and 1 indicates that this dimension has equal mutual information with every factor. Thus, finally 1−δi
is used as a modularity score for code dimension i and the mean of 1− δi over i as the modularity
score for the overall code. For explicitness, the authors propose to use a classifier trained on the entire
latent codes to predict factor classes, assuming that factors have discrete values. They suggest using
a simple classifier such as logistic regression and report classification performance using the ROC
area-under-the-curve (AUC). The final score is the average AUROC over all classes for all factors.

Downstream Tasks with LR and GBT. We follow [21] to consider the simplest downstream
classification task where the goal is to recover the true factors of variations from the learned feature
using either multi-class logistic regression (LR) or gradient boosted trees (GBT). For each factor we
fit a different model and then report the average test accuracy across factors. We consider two different
models. First, we train a cross validated logistic regression from Scikit-learn with 10 different values
for the regularization strength (Cs = 10) and 5 folds. Finally, we train a gradient boosting classifier
from Scikit-learn with default parameters. We sample the training set of 7500 and the evaluation
set of 2500 samples for CMNIST; while the training set of 1000 and the evaluation set of 2500 for
Shapes3D.

2https://github.com/google-research/disentanglement_lib

8

https://github.com/google-research/disentanglement_lib


C.2.2 Model Architecture

In the main paper we stated that we used CNN-based feature extractor bascknones with compara-
ble number of parameters for all the baselines and IP-IRM. Here we provide the detailed model
architectures in Table C.1, C.2, C.3, C.4.

Encoder Decoder

Input: 28× 28× 3 Input: R10

FC, 2352× 148 ReLU FC, 10× 148 ReLU
FC, 148× 148 ReLU FC, 148× 148 ReLU
FC, 148× 20 FC, 148× 2352 Sigmoid

Table C.1: Encoder and Decoder architecture of the VAE-based methods with 0.747M parameters for CMNIST
dataset in the main experiment.

Encoder Decoder

Input: 64× 64× 3 Input: R10

4× 4 conv, 32 ReLU, stride 2, padding 1 FC, 10× 32 ReLU
4× 4 conv, 32 ReLU, stride 2, padding 1 FC, 32× 512 ReLU
4× 4 conv, 32 ReLU, stride 2, padding 1 4× 4 upconv, 32 ReLU, stride 2, padding 1
4× 4 conv, 32 ReLU, stride 2, padding 1 4× 4 upconv, 32 ReLU, stride 2, padding 1
FC, 512× 32 ReLU 4× 4 upconv, 32 ReLU, stride 2, padding 1
FC, 32× 20 4× 4 upconv, 3 Sigmoid, stride 2, padding 1

Table C.2: Encoder and Decoder architecture of the VAE-based methods with 0.136M parameters for Shapes3D
dataset in the main experiment.

Encoder
Input: 28× 28× 3
FC, 2352× 256 ReLU
FC, 256× 256 ReLU
FC, 256× 10

Projection Head
FC, 10× 64 BatchNorm ReLU
FC, 64× 32

Table C.3: Model architecture of the SSL models with 0.674M parameters for CMNIST dataset in the main
experiment.

C.2.3 Training Details

For all the methods, the training epoch is fixed to 200 and training batch size is fixed to 2048. The
optimizer is Adam and feature dimension was set to 10. Note that due to much more computational
complexity of the self-supervised learning, we decreased the sample size used for training and
evaluation with both VAE and SSL models to make sure a fair comparison. Specifically, for CMNIST,
we used 50,000 samples for training and 10,000 for testing. For Shapes3D, we used 90,000 for
training and 10,000 for testing. For VAE-based model, we followed their common hyperparameters
setting without fine-tuning and the implementation codes were built upon the open-source code 3.
Specifically, the learning rate is 5e-4 for all the models except for the 1e-4 of Factor-VAE. For β-VAE,
β = 4. For β-AnnealVAE, the starting annealed capacity C = 0 and the final annealed capacity
C = 25. For β-TCVAE, β = 6, α = 1, γ = 1. For Factor-VAE, γ = 6, the learning rate of the

3https://github.com/YannDubs/disentangling-vae

9

https://github.com/YannDubs/disentangling-vae


Encoder
Input: 64× 64× 3
4× 4 conv, 32 BatchNorm ReLU, stride 2, padding 1
4× 4 conv, 32 BatchNorm ReLU, stride 2, padding 1
4× 4 conv, 64 BatchNorm ReLU, stride 2, padding 1
4× 4 conv, 64 BatchNorm ReLU, stride 2, padding 1
4× 4 Average Pooling
FC, 64× 10

Projection Head
FC, 10× 64 BatchNorm ReLU
FC, 64× 32

Table C.4: Model architecture of the SSL models with 0.120M parameters for Shapes3D dataset in the main
experiment.

discriminator is 5e-5 with Adam optimizer. For SSL-based methods, we used SimCLR as our base
model. The learning rate is set to 1e-3 and temperature is 0.5. For IP-IRM, λ1 = 0.2, λ2 = 0.5, the
partition P is updated every 30 epochs and optimized from random every time. All the experiments
were completed on the work station with 4 Nvidia 2080Ti GPUs.

C.3 Self-supervised Learning

C.3.1 Implementation Details

For SimCLR, we follow [8, 16] to use ResNet-50 as the encoder architecture and use the Adam
optimizer. The temperature is set to 0.5 and the dimension of the latent vector is 128. All the models
were trained for 400 or 1000 epochs and evaluated by training a linear classifier after fixing the
learned features. The learning rate is set to 0.001 and weight decay is 1e-6 for both SSL pretraining
and downstream fine-tuning. For DCL [8] and HCL [16], we adopted the best parameters posted
in the original paper and followed the implementation from the open-source code 4. Particularly,
for DCL, τ+ = 0.12 on STL10 and Cifar100 dataset; while for HCL, τ+ = 0.1, β = 1 on STL10,
τ+ = 0.05, β = 0.5 on Cifar100. For our IP-IRM, we applied λ1 = 0.2, λ2 = 0.5 on STL10
and λ1 = 0.2, λ2 = 0.2 on Cifar100. We additionaly performed baselines and our IP-IRM on
ImageNet-100 [27], a randomly chosen subset of 100 classes of ImageNet with 200 training epochs.
The results are reported in Table C.6. We followed the best parameters reported in the paper [8, 16].
Particularly, for DCL, τ+ = 0.01. For HCL, τ+ = 0.01, β = 1.0. Note that on ImageNet100, we
slightly modified the τ and β to achieve the better performance. Specifically, for DCL+IP-IRM, we set
τ = 0.1; while for HCL+IP-IRM, we set τ = 0.1, β = 0.5. While extending ssl pretraining process
to 1000 epochs with MixUp [19], we directly followed the open-source MixUp implementation5

for SimCLR: the temperature is set to 0.2 and MixUp alpha is set to 1.0. For our IP-IRM, note
that the MixUp was processed within each subsets to avoid the sample confusion of two subsets.
Therefore, the training time inevitably grow linearly due to the increase of the partitions. To mitigate
this problem, we controlled the number of partitions (e.g., 5 partitions, FIFO) in practice as an
approximation. For the supervised training, as introduced in the main paper, we adopted the same
codebase, optimizer and parameter setting, i.e., the Adam optimizer with learning rate as 0.001 and
weight decay as 1e-6 for 100 epochs. We only added the learning rate decay to achieve the optimal
training at 60 and 80 epoch. Moreover, we found that adding MixUp with α = 1.0 would decrease
the performance. Therefore, we set α as 0.5. The experiments were completed on the workstation
with 4 Nvidia 2080Ti GPUs.

When training on the large-scale ImageNet, we built our IP-IRM based on SimCLR, MoCo-v2 and
SimSiam [7] 6. The batch size is 512 for SimCLR due to the limited computation resources. Different

4https://github.com/chingyaoc/DCL, https://github.com/joshr17/HCL
5https://github.com/kibok90/imix
6https://github.com/taoyang1122/pytorch-SimSiam (Note that the official implementation of Sim-

Siam was not available then.)

10

https://github.com/chingyaoc/DCL
https://github.com/joshr17/HCL
https://github.com/kibok90/imix
https://github.com/taoyang1122/pytorch-SimSiam


Class
Context Long-Tailed Contexts Zero-Shot Contexts

Dog on grass in water in cage eating on beach lying running at home in street on snow
Cat on snow at home in street walking in river in cage eating in water on grass on tree
Bear in forest black brown eating grass in water lying on snow on ground on tree white

Sheep eating on road walking on snow on grass lying in forest aside people in water at sunset
Bird on ground in hand on branch flying eating on grass standing in water in cage on shoulder
Rat at home in hole in cage in forest in water on grass eating lying on snow running

Horse on beach aside people running lying on grass on snow in forest at home in river in street
Elephant in zoo in circus in forest in river eating standing on grass in street lying on snow

Cow in river lying standing eating in forest on grass on snow at home aside people spotted
Monkey sitting walking in water on snow in forest eating on grass in cage on beach climbing

Table C.5: Construction of our NICO [14] subset for OOD multi-classification . Context denotes the context
class name, while Class represents the object class name. “Long-Tailed Contexts” is the training contexts
arranged by the sample number order (from more to less) and “Zero-shot Contexts” represents the context labels
only appear in testing rather than training.

with the contrastive loss adopted in SimCLR and other conventional SSL methods, SimSiam discards
the negative samples and uses the MSE loss. Therefore, our IP-IRM was built directly based on MSE
loss and encourages the samples in each subset achieve the same performance (i.e., the same MSE
loss). For the detailed proof that IRM can be applied to any convex loss function, please refer to [1].
λ1 = 0.2, λ2 = 0.5, partition P was updated every 50 epochs. Other hyper-parameters followed
the default SimSiam setting. For downstream linear classifier training, we followed the open-source
code to use Nvidia LARC optimizer with learning rate 1.6. The experiments were completed on the
workstation with 8 Nvidia V100 GPUs.

C.4 OOD Classification on NICO

C.4.1 NICO dataset

In our experiment, we selected a subset of NICO animal dataset [14] as a challenging bench-
mark to test the feature decomposability for proposed IP-IRM and baselines. Specifically, images
in NICO are labeled with a context background class (e.g., “on grass”), besides the object fore-
ground class (e.g., “dog”). For each animal class, we randomly sample its images and make sure
the context labels of those images are within a fixed set of 10 classes (e.g.,“snow”, “on grass”
and “in water”). Based on these data, we propose a challenging OOD setting including three fac-
tors regarding contexts: 1) Long-Tailed: training context labels are in long-tailed distribution in
each individual class, e.g., “sheep” might have 10 images of “on grass”, 5 images of “in water”
and 1 image of “on road”; 2) Zero-Shot: for each object class, 7 out of 10 context labels are in
training images and the other 3 labels appear only in testing; 3) Orthogonal—the head context
label of each object class is set to be as unique (dominating only in one object class) as possible.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

IR=0.2
IR=0.1
IR=0.05
IR=0.02
IR=0.01

Context Class Index

R
at
io

Figure C.1: Plot of context class index against its corre-
sponding ratio under various imbalance ratio (IR).

The detailed 7 context classes (long-tailed con-
texts) and 3 zero-shot contexts are shown in Ta-
ble C.5) for each object class. Next, we formed
a long-tailed training dataset by selecting part
of the images in each context class with multi-
plying a ratio. In particular, the ratio for w-th
context class (w ∈ {0, . . . , 6}) is given by

ratio = IRw/6, (C.1)

where IR is a hyper-parameter that denotes the
imbalance ratio. The effect of IR on ratio is
shown in Figure C.1 — lower ratio leads to the
harder OOD problem. In the main paper we
keep IR = 0.02. During testing, the number
of test samples across the 7 context classes are
balanced, i.e., 50 samples per context. Moreover,
we added 3 zero-shot context classes for each
object class as shown in Table C.5 (last three columns). These zero-shot context classes have the
larger number of test samples (100 samples per context). Therefore, a model that performs well in

11



our split must be robust to both long-tailed and zero-shot problems w.r.t. the context class. Figure C.2
shows an example of our constructed subset for “cat” and “dog” during training and testing.

On Beach Running In cage On grass Eating In water Lying

In river In street At home In cage Walking On snow Eating

In street On snowAt home

On grass In water On tree

Tr
ai

n
Tr

ai
n

ZS
-T

es
t

Dog

Cat

Test
ZS

-T
es

t
Test

Figure C.2: We list the sample images of each context class using “Dog” and “Cat” as the example in our
constructed NICO dataset. Train, Test and ZS-Test denote samples for training, testing and zero shot testing
respectively. Note that there is no overlap between training and testing images.

C.4.2 Training Details

Different from the linear classifier fine-tuning of SSL which uses a linear fc layer mapping from
the feature dimension to the class label dimension, we adopted a linear fc layer mapping from the
feature dimension to the feature dimension (e.g., R2048×2048) as the feature space mapping for bias
NICO training. Then the classification (both training and inference) is based on the metric learning
paradigm (e.g., supervised contrastive learning) by measuring the distance between sample features
(e.g., k-nn accuracy). The reason is that the shared feature mapping layer can help classifier to neglect
the bias feature. Empirically, this paradigm outperforms the conventional classifier by more than
10%. For parameter setting details, the learning rate is set to 0.2 with SGD optimizer and the batch
size is fixed to 128. We utilized k-nn classifier (k = 10) for evaluation. All the models are trained for
150 epochs and the first 2 epochs are the warm-up stage. Learning rate was decreased by 5 at 80, 120
epoch. We report the best accuracy during training as the final performance.

C.5 Transfer Learning

We used the ResNet-50 backbone trained on ImageNet through SSL or our IP-IRM as the feature
extractor when transferring to the downstream tasks. For the baseline models, we followed [11]
to download the pre-trained weights of the ResNet50 models in the open-source code. All models
have 23.5M parameters in their backbones and were pre-trained on the ImageNet [9] training set,
consisting of 1.28M images.

C.5.1 Many-shot Learning

The top-1 accuracy metric is reported on Food-101, CIFAR-10, CIFAR-100, SUN397, Stanford Cars,
and DTD, mean per-class accuracy on FGVC Aircraft, Oxford-IIIT Pets, Caltech-101, and Oxford
102 Flowers and the 11-point mAP metric on Pascal VOC 2007. On Caltech-101 we randomly
selected 30 images per class to form the training set and we test on the rest. We used the first
train/test split defined in DTD and SUN397. On FGVC Aircraft, Pascal VOC2007, DTD, and
Oxford 102 Flowers we used the validation sets defined by the authors, and on the other datasets
we randomly select 20% of the training set to form the validation set. The optimal hyperparameters
were selected on the validation set, after which we retrained the model on all training and validation
images. Finally, the accuracy is computed on the test set. For the downstream transfer learning,
we finetuned the models following [11] with minor modifications. We train for 5000 steps with

12



0 2 4 6 8 0 2 4 6 8

Partition #1

Su
bs
et

#2
#1

Partition #2

Partition #3

Su
bs
et

#2
#1

Su
bs
et

#2
#1

GreenRed Red Green

Subset #1 Subset #2

Subset #1 Subset #2

Subset #1 Subset #2

(b) 3

(b) 2

(b) 1

(a) 3

(a) 2

(a) 1

Figure C.3: Visualization of the obtained partition P∗ during training on the full CMNIST dataset with balanced
colorization. The left part (i.e., (a)1, (a)2, (a)3) is the 20 samples chosen randomly from each specific subset in
different partitions, similar to the Figure 5 in the main paper. Note that for (a)3 we mainly show 0,1,4,7,9 for
ease of comparing. The right part ((b)1, (b)2, (b)3) is the global statistic view of the two subsets. Specifically,
(b)1 plots the number of images with different colors in subset #1 and #2; (b)2 draws the number of images in
terms of the digit in subset #1 and #2; (b)3 shows the images by averaging samples from the same digit.

a batch size of 64. The optimiser is SGD with Nesterov momentum and a momentum parameter
of 0.9. The learning rate follows a cosine annealing schedule without restarts, and the initial
learning rate is chosen from a grid of 4 logarithmically spaced values between 0.0001 and 0.1.

Method
ImageNet100

k-NN Linear

Top-1 Top-5 Top-1 Top-5
SimCLR [5] 64.64 89.36 76.58 94.22
DCL [8] 65.12 89.86 77.32 94.74
HCL [16] 69.24 90.66 79.15 94.72
SimCLR+IP-IRM 69.08 90.96 79.52 94.76
DCL+IP-IRM 69.62 91.62 80.38 95.32
HCL+IP-IRM 71.78 91.94 80.30 95.38

Table C.6: Accuracy (%) of k-NN and linear classifiers trained on
the representations learnt on ImageNet100 [27] with 200 training
epochs. We used the pretext task in SimCLR [5], DCL [8] and
HCL [16] with IP-IRM, denoted as (·) + IP-IRM.

The weight decay is similarly cho-
sen from a grid of 4 logarithmically
spaced values between 1e-6 and 1e-3,
along with no weight decay. These
weight decay values are divided by
the learning rate. We selected the data
augmentation from: random crop with
resize and flip, or simply a center crop.

C.5.2 Few-shot Learning

For the dataloader, no augmentation
is used and the images are resized to
224 pixels along the shorter side us-
ing bicubic resampling, followed by
a center crop of 224 × 224. For all methods on all datasets, we trained a linear classifier in each
episode using SGD optimizer with learning rate as 0.01 and weight decay as 0.001. The classifier
was trained for 100 epochs with batch size as 4. The learned classifier is evaluated using 15 query
images in each episode and the reported accuracies and errors are computed on 2000 total episodes.

D Additional Experimental Results

D.1 Visualization of Partition P∗

As we proposed in Section 5.1, here we plot the partition results on the full CMNIST dataset with
balanced colorization (each image is uniformly colored by red or green) in Figure C.3. We can see in
each partition, the obtained P∗ still tells apart a specific semantic into two subsets. Similar to that
in the experiment on CMNIST binary dataset (see Figure 5 (a) in the main paper), the semantics of
color, digit and slant can be obviously discovered by our IP-IRM algorithm.

13



Method DCI IRS MOD EXP LR GBT Average

Sh
ap

es
3D

(F
ul

l) VAE [18] 0.473±0.021 0.525±0.009 0.907±0.009 0.895±0.025 0.753±0.072 0.472±0.021 0.671±0.015
β-VAE [15] 0.495±0.023 0.485±0.032 0.859±0.026 0.899±0.006 0.713±0.013 0.496±0.025 0.658±0.012
β-AnnealVAE [3] 0.634±0.033 0.813±0.050 0.758±0.095 0.786±0.024 0.598±0.034 0.634±0.033 0.704±0.025
β-TCVAE [4] 0.556±0.048 0.524±0.074 0.797±0.054 0.897±0.028 0.718±0.042 0.569±0.072 0.677±0.048
Factor-VAE [17] 0.454±0.013 0.447±0.027 0.798±0.032 0.839±0.030 0.637±0.029 0.455±0.013 0.605±0.007

SimCLR [5] 0.368±0.020 0.452±0.031 0.795±0.034 0.796±0.008 0.516±0.055 0.369±0.019 0.549±0.027
IP-IRM (Ours) 0.392±0.010 0.426±0.011 0.835±0.024 0.806±0.006 0.523±0.018 0.391±0.012 0.562±0.012

Table D.1: Results on disentanglement metrics of existing unsupervised disentanglement methods, standard SSL
(SimCLR [5]) and IP-IRM using Shapes3D [17] (full). Results are averaged over 4 trails (mean ± std).

D.2 Unsupervised Disentanglement on Full Shapes3D Dataset

As we introduced in Section 5.1, we evaluate our IP-IRM and baseline models on Shapes3D dataset
with only first three semantics, as the standard augmentations in SSL will contaminate any color-
related semantics. Here we present the results on full Shapes3D dataset in Table D.1. We can find that
the VAE-based models indeed perform much better than the SSL model due to the well-dientangled
color semantics.

D.3 Additional Results on ImageNet100

We additionally performed our algorithm and baselines on the medium-scale dataset — ImageNet100.
Similar to the results presented in the Table 2 of the main paper, incorporating IP-IRM algorithm to
the baselines still brings the huge performance boosts to both k-NN and linear classification. For
example, we can observe that our IP-IRM improves the SimCLR by 4.44% on k-NN Top-1 and 2.94%
on linear classification Top-1 accuracy. Moreover, our DCL+IP-IRM achieves a new state-of-the-art
accuracy of 80.38% in the downstream linear classification evaluation. Also we can find that IP-IRM
brings more performance gain with k-NN classifier compared to the supervised linear classifier, e.g.,
4.50% using DCL+IP-IRM and 2.54% with HCL+IP-IRM. This validates that the constructed feature
space using IP-IRM more faithfully reflect the semantic differences than the baselines.

D.4 Detailed Results of Transfer Learning

Method Aircraft Caltech Cars Cifar10 Cifar100 DTD Flowers Food Pets SUN VOC Avg.

M
an

y-
Sh

ot

InsDis [29] 36.87 71.12 28.98 80.28 59.97 68.46 83.44 63.39 68.78 49.47 74.37 62.29
PCL [20] 21.61 76.90 12.93 81.84 55.74 62.87 64.73 48.02 75.34 45.70 78.31 56.73
PIRL [22] 37.08 74.48 28.72 82.53 61.26 68.99 83.60 64.65 71.36 53.89 76.61 63.92
MoCo-v1 [13] 35.55 75.33 27.99 80.16 57.71 68.83 82.10 62.10 69.84 51.02 75.93 62.41
MoCo-v2 [6] 41.28 87.91 40.04 91.33 73.14 74.47 89.02 67.10 80.49 58.10 80.13 71.18
IP-IRM (Ours) 43.12 87.22 41.16 91.84 74.13 73.94 89.23 68.05 81.70 58.41 80.32 71.74

20
-S

ho
t

InsDis [29] 47.44 88.32 54.37 67.60 72.79 82.37 92.98 69.49 82.84 90.08 - 74.82
PCL [20] 44.72 92.42 47.55 69.13 70.95 79.55 81.82 67.57 92.30 90.25 - 73.63
PIRL [22] 48.15 90.01 55.20 67.87 73.27 82.83 92.89 69.98 84.43 90.54 - 75.52
MoCo-v1 [13] 47.08 90.81 51.98 64.01 69.72 83.26 92.54 70.12 83.78 90.00 - 74.33
MoCo-v2 [6] 42.57 95.75 57.30 73.99 79.20 86.83 93.15 73.64 91.59 93.85 - 78.78
IP-IRM (Ours) 43.92 95.77 57.59 76.43 81.56 86.69 94.03 74.81 92.35 94.19 - 79.73

Table D.2: Accuracy (%) of transfer learning experiments using representation trained on ImageNet [9]. Few-shot
experiment was conducted with 5-way-20-shot setting using 2,000 episodes. We excluded VOC [12] in few-shot
experiments following [11] as it is a multi-label dataset where standard few-shot evaluation is not applicable.

As we wrote in the main paper that we also conducted experiments of many-shot and 20-shot, here
we show the results in Table D.2. From the results we can make the following observations: (i) The
downstream transfer performance is approximately correlated to the in-domain self-supervised learn-
ing evaluation, i.e., the linear classification accuracy. The better methods in ImageNet classification
can also obtain higher transfer performance. (ii) Our IP-IRM outperforms all the counterparts on
most datasets and achieves best performance on the Avg.. (iii) Combining with the 5-shot results in
Table 4 of the main paper, we can find with the increasing training samples (i.e., 5-shot→ 20-shot
→ many-shot), the performance gain of our IP-IRM decreases. This is in line with the conclusion
of [28] that the disentangled feature is more helpful for the learning with fewer training samples.

14



Method Aircraft Caltech Cars Cifar10 Cifar100
InsDis [29] 35.07±0.43 75.97±0.47 37.49±0.36 51.49±0.40 57.61±0.48
PCL [20] 36.86±0.44 90.72±0.30 39.68±0.39 59.26±0.36 60.78±0.46
PIRL [22] 36.70±0.44 78.63±0.46 39.21±0.37 49.85±0.42 55.23±0.52
MoCo-v1 [13] 35.31±0.44 79.60±0.45 36.35±0.35 46.96±0.39 51.62±0.50
MoCo-v2 [6] 31.98±0.38 92.32±0.29 41.47±0.41 56.50±0.42 63.33 ±0.51
IP-IRM (Ours) 32.98±0.40 93.16±0.26 42.87±0.41 60.73±0.39 68.54±0.49
Method DTD Flowers Food Pets SUN
InsDis [29] 69.38±0.43 77.35±0.51 50.01±0.45 66.38±0.44 74.97±0.48
PCL [20] 69.53±0.43 67.50±0.50 57.06±0.44 88.31±0.36 84.51±0.37
PIRL [22] 70.43±0.42 78.37±0.48 51.61±0.45 69.40±0.43 76.64±0.46
MoCo-v1 [13] 68.76±0.46 75.42±0.53 49.77±0.46 68.32±0.43 74.77±0.50
MoCo-v2 [6] 78.00±0.38 80.05±0.45 57.25±0.48 83.23±0.40 88.10±0.33
IP-IRM (Ours) 79.30±0.36 82.68±0.41 59.61±0.46 85.23±0.38 89.38±0.30

Table D.3: Accuracy (%) of 5-way-5-shot few-shot evaluation with standard deviation (mean±std) using the
image representation learned on ImageNet [9].

To report the error bars as stated in the checklist, here we presented the standard deviation for the
5-shot experiments as a supplement for the Table 4 in the main paper. As shown in Table D.3, all the
methods perform in a stable interval.

D.5 Interventional Few-Shot Learning

We evaluated the learned representations by SSL and our IP-IRM with the IFSL classifier proposed
in [30], which is an intervention-based classifier designed to remove the confounding bias from
the misuse of pre-trained knowledge in few-shot learning (e.g., treating grass as dog when most
dogs appear with grass in the few-shot training images). We adopted the combined adjustment
implementation with n = 4 (dividing feature channels into 4 subsets). For all models in all datasets,
we trained the IFSL classifier using the Adam optimizer with learning rate as 0.01 for 50 epochs. The
batch size was set as 4. The reported accuracy is based on the average across 2,000 episodes.

Method Aircraft Caltech Cars Cifar10 Cifar100 DTD Flowers Food Pets SUN Avg.

L
in

ea
r

InsDis [29] 35.07 75.97 37.49 51.49 57.61 69.38 77.35 50.01 66.38 74.97 59.57
PCL [20] 36.86 90.72 39.68 59.26 60.78 69.53 67.50 57.06 88.31 84.51 65.42
PIRL [22] 36.70 78.63 39.21 49.85 55.23 70.43 78.37 51.61 69.40 76.64 60.61
MoCo-v1 [13] 35.31 79.60 36.35 46.96 51.62 68.76 75.42 49.77 68.32 74.77 58.69
MoCo-v2 [6] 31.98 92.32 41.47 56.50 63.33 78.00 80.05 57.25 83.23 88.10 67.22
IP-IRM (Ours) 32.98 93.16 42.87 60.73 68.54 79.30 82.68 59.61 85.23 89.38 69.44

IF
SL

InsDis [29] 41.49 86.53 45.37 60.51 66.94 75.99 87.61 58.85 80.12 85.87 68.93
PCL [20] 41.22 91.23 44.55 64.96 68.10 73.10 77.99 62.35 90.88 87.28 70.17
PIRL [22] 42.31 88.54 46.61 61.07 66.49 76.70 88.20 60.37 82.59 87.01 69.99
MoCo-v1 [13] 41.43 89.30 44.20 57.01 63.29 76.84 87.12 60.80 81.73 85.90 68.76
MoCo-v2 [6] 40.02 93.95 51.12 69.56 73.84 80.67 86.94 66.10 90.38 91.18 74.38
IP-IRM (Ours) 41.49 94.31 52.80 72.02 76.52 80.78 87.69 67.35 91.13 91.62 75.57

Table D.4: Accuracy (%) of IFSL classifier using representation trained on ImageNet [9]. Experiment was
conducted with 5-way-5-shot setting using 2,000 episodes. We used the combined adjustment for all experiments.

From the results shown in Table D.4, we can observe that: i) our IP-IRM obtains the best accuracy,
validating the superiority of the learned disentangle representation. ii) IFSL significantly improves the
performance of the vanilla linear classifier, showing that IFSL can further deconfound. iii) Compared
with linear classifier, the performance gain of IP-IRM over the best baseline (MoCo-v2) is not as high
(1.19% v.s. 2.22%). This is reasonable, since the disentangled feature with our proposed IP-IRM
helps the downstream classifier to deconfound by neglecting the non-discriminative features (see
Section 5.3).

E Others

E.1 License

We use the following open-source database and the license just follow them.

15



• https://github.com/YannDubs/disentangling-vae
• https://github.com/chingyaoc/DCL
• https://github.com/joshr17/HCL
• https://github.com/facebookresearch/moco
• https://github.com/taoyang1122/pytorch-SimSiam
• https://github.com/facebookresearch/InvariantRiskMinimization
• https://github.com/kibok90/imix

E.2 Data Consent

We entirely use the open-source data and they have already obtained the consent during the data
collection. Details can be checked on their website.

E.3 Personally Identifiable Information

The open-source data we used does not contain personally identifiable information or offensive
context. More information can refer to the website of the open-source data.

References
[1] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-

mization. arXiv preprint arXiv:1907.02893, 2019.

[2] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[3] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Des-
jardins, and Alexander Lerchner. Understanding disentangling in β-vae. arXiv preprint
arXiv:1804.03599, 2018.

[4] Ricky T. Q. Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of
disentanglement in variational autoencoders. In Advances in Neural Information Processing
Systems, 2018.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PMLR, 2020.

[6] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[7] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. arXiv preprint
arXiv:2011.10566, 2020.

[8] Ching-Yao Chuang, Joshua Robinson, Lin Yen-Chen, Antonio Torralba, and Stefanie Jegelka.
Debiased contrastive learning. arXiv preprint arXiv:2007.00224, 2020.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[10] Cian Eastwood and Christopher KI Williams. A framework for the quantitative evaluation of
disentangled representations. In International conference on learning representations, 2018.

[11] Linus Ericsson, Henry Gouk, and Timothy M. Hospedales. How Well Do Self-Supervised
Models Transfer? In CVPR, 2021.

[12] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 2010.

[13] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. arXiv preprint arXiv:1911.05722, 2019.

16

https://github.com/YannDubs/disentangling-vae
https://github.com/chingyaoc/DCL
https://github.com/joshr17/HCL
https://github.com/facebookresearch/moco
https://github.com/taoyang1122/pytorch-SimSiam
https://github.com/facebookresearch/InvariantRiskMinimization
https://github.com/kibok90/imix


[14] Yue He, Zheyan Shen, and Peng Cui. Towards non-iid image classification: A dataset and
baselines. Pattern Recognition, 110:107383, 2021.

[15] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. International conference on learning representations, 2017.

[16] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus.
Hard negative mixing for contrastive learning. arXiv preprint arXiv:2010.01028, 2020.

[17] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International Conference on
Machine Learning, 2018.

[18] Diederik Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

[19] Kibok Lee, Yian Zhu, Kihyuk Sohn, Chun-Liang Li, Jinwoo Shin, and Honglak Lee. i-mix: A
domain-agnostic strategy for contrastive representation learning. In ICLR, 2021.

[20] Junnan Li, Pan Zhou, Caiming Xiong, Richard Socher, and Steven CH Hoi. Prototypical
contrastive learning of unsupervised representations. arXiv preprint arXiv:2005.04966, 2020.

[21] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learning
of disentangled representations. In international conference on machine learning, 2019.

[22] Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant rep-
resentations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6707–6717, 2020.

[23] Karl Ridgeway and Michael C Mozer. Learning deep disentangled embeddings with the
f-statistic loss. In Advances in neural information processing systems, 2018.

[24] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In 3rd International Conference on Learning Representations, 2015.

[25] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving
for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

[26] Raphael Suter, Djordje Miladinovic, Bernhard Schölkopf, and Stefan Bauer. Robustly disen-
tangled causal mechanisms: Validating deep representations for interventional robustness. In
International Conference on Machine Learning, 2019.

[27] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. arXiv preprint
arXiv:1906.05849, 2019.

[28] Sjoerd Van Steenkiste, Francesco Locatello, Jürgen Schmidhuber, and Olivier Bachem. Are
disentangled representations helpful for abstract visual reasoning? In Advances in neural
information processing systems, 2019.

[29] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via
non-parametric instance discrimination. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3733–3742, 2018.

[30] Zhongqi Yue, Hanwang Zhang, Qianru Sun, and Xian-Sheng Hua. Interventional few-shot
learning. In NeurIPS, 2020.

[31] Julian Zaidi, Jonathan Boilard, Ghyslain Gagnon, and Marc-André Carbonneau. Measuring
disentanglement: A review of metrics. arXiv preprint arXiv:2012.09276, 2020.

17


	Preliminaries
	Proof
	Proof of Definition 2
	Details of Lemma 1
	Proof of Theorem 1

	Implementation Details
	Implementation Details of the CNN Activation Visualization
	Unsupervised Disentanglement
	Evaluation Metric Details
	Model Architecture
	Training Details

	Self-supervised Learning
	Implementation Details

	OOD Classification on NICO
	NICO dataset
	Training Details

	Transfer Learning
	Many-shot Learning
	Few-shot Learning


	Additional Experimental Results
	Visualization of Partition P*
	Unsupervised Disentanglement on Full Shapes3D Dataset
	Additional Results on ImageNet100
	Detailed Results of Transfer Learning
	Interventional Few-Shot Learning

	Others
	License
	Data Consent
	Personally Identifiable Information


