
A Appendix: Approximations for the computation of m

Providing a very low critical probability pc means that certification occurs when the simulation
ends after a large number of iterations m. Λ(Lm) follows a Gamma distribution Γ(m,N) which
can be then approximated by the Gaussian law N (m/N;m/N2) (application of the Central Limit
Theorem). We introduce `c the threshold associated to pc s.t. pc = P(h(X) > `c), and mc =
log(pc)/ log(1− 1/N).

Under this assumption:

P(Λ(Lm) < Λ(`c)) = α→ Λ(`c) =
m

N
− zα

√
m

N
(15)

with zα = Φ−1(1− α) > 0 for α < 1/2 and Λ(`c) = − log(pc). We find a first approximation of m
by solving this second order polynomial in

√
m:

m ≈ m̃1 =

⌈
1

4

(
zα +

√
z2α − 4N log(pc)

)2⌉
. (16)

This clearly shows that the dependence on pc is approximately logarithmic. Table 5 shows that this
approximation is excellent even for large pc.

Moreover, if N is large enough, then N log(pc) = Nmc log(1− 1/N) ≈ mc and m approximately
satisfies

m− zα
√
m−mc = 0, (17)

producing

m ≈ m̃2 =

⌈
1

4

(
zα +

√
z2α + 4mc

)2⌉
=

⌈
mc

(√
1 + z2α/4mc +

zα
2
√
mc

)2
⌉
. (18)

This shows that m is a little larger than mc = log(pc)/log(1−1/N).

B Experiments in the idealized case

This appendix details the experimental results of Sect. 5.1. This section assumes that X = xo + σX̃
with X̃ ∼ N (0n; In) and that h(x) = x>g− τ with g ∈ Rn and ‖g‖ = 1 (w.l.o.g.). In this textbook
case, the true probability p = π0(h(X) > 0) depends on τ by

p = 1− Φ

(
τ − x>o g

σ

)
. (19)

We now explain how to ‘directly’ sample a new particle as required by line 11, Alg. 1 for this
particular case, without resorting to Alg. 2.

The projection of X̃ onto g is Gaussian distributed. By linearity of the score function, conditioning
on the event E := {h(X) > L} means that the c.d.f of Z := X̃>g equals:

FZ(z) = 1(z > L0).
Φ(z)− Φ(L0)

1− Φ(L0)
with L0 := (L−x>o g)/σ. (20)

On the other hand, the projection of X̃ onto any other direction orthogonal to g remains normal
distributed. This justifies the following construction:

Z = F−1Z (U) = σΦ−1 ((1− Φ(L0/σ))U + Φ(L0/σ)) with U ∼ U[0,1] (21)

X = xo + σ
(
Zg + (In − gg>)N

)
with N ∼ N (0n; In), (22)

In a nutshell, (In − gg>) is the projection onto the (n − 1)-dimension subspace orthogonal to g.
This operator resets the projection of N onto g, which is then set to Z. Section 5.1 uses this toy
example to illustrate our procedure in the idealized case.

12

C Choice of N and T

Most experiences are run with N = 2 which is counter-intuitive. In this section we elaborate on the
choice of N and T using experiments in case of linear decision function and X follows a Gaussian
law. More precisely we take X ∼ N (0, Id) and the score function s : Rd 3 x 7→ xTn with n ∈ Rd
defining the normal vector of the decision hyperplane. For simplicity, we take n = e1 i.e. the first
vector of the canonical basis of Rd. With this toy model the probability of failure for a threshold level
L is given by,

p = P(s(X) > L) = P(X1 > L) = 1− Φ(L) (23)

We now apply the last particle algorithm 1 to the statistical test with null hypothesisH0 : p ≥ pc and
alternative hypothesisH1 : p < pc. For numerical experiments below, we take p = pc and α = 0.05.
We let vary the number of particles N in the range {2, 20, 100} and the parameter T in the range
{25, 50, 100, 150, 200}. For each couple of parameters (N,T) we make 1000 runs and count the
number of false positive (i.e. the number of times the algorithm wrongfully asserted that p < pc).
The results are presented in the table 5 below.

Table 5: Estimation of false positive rates and number of calls in function of T and N for a toy model

N T Estimated false positive rate Avg. number of calls

2 25 0.038 1.05e+03
2 50 0.041 2.08e+03
2 100 0.033 4.14e+03
2 150 0.026 6.19e+03
2 200 0.040 8.28e+03

20 25 0.034 1.04e+04
20 50 0.050 2.07e+04
20 100 0.048 4.15e+04
20 150 0.043 6.20e+04
20 200 0.043 8.29e+04

100 25 0.036 5.19e+04
100 50 0.052 1.04e+05
100 100 0.049 2.07e+05
100 150 0.033 3.11e+05
100 200 0.050 4.15e+05

D Automatic control of kernel strength

In practice the strength parameter s of the kernel is adapted at each iteration using an heuristic. More
precisely we choose a acceptance ratio threshold a∗ ∈ [0, 1] and at iteration k, after the line 11 of
Algorithm 1, decrease the s by a decay rate 0 < γ < 1. Conversely if the acceptance ratio is high but
progress, as measured by the relative gain between the old and the new level, is too slow we increase
s by the same parameter γ. This tuning mechanism is further outlined in algorithm 3. Experimentally
we find that, with well chosen parameters (a∗,g∗, γ) this adaptive tuning speeds up the algorithm
drastically keeping both acceptance ratio and level-wise progress under control.

E Proof of proposition 4

π0 denotes the reference probability distribution. The proof applies to the last particle algorithm
describes in Alg.1 in the case where the refreshed particle state Gen(l, 1) is given for each l ∈ R by
Alg.2. We recall that in Alg.2, Gen(l, 1) is obtained by t iterations of a proposal K with score-based
accept /reject; starting from a uniformly chosen other (surviving) particle with score strictly greater
than l.

The proof is based on a (instructive and explicit) probabilistic coupling between this last particle
algorithm and the ’idealized algorithm’ counterpart. The latter is obtained by taking for Gen(l, 1) the

13

Algorithm 3 Adaptive Sampling for one particle AdaptGen(L, 1)

Require: threshold L, finite set X of particles whose score is larger than L, input strength parameter
sin, scaling parameter γ < 1, acceptance ratio threshold a∗, gain threshold g∗

Ensure: new particle X, new strength parameter sout
1: Initialize Count← 0, sout ← sin, X← U(X) . Draw uniformly a particle in X
2: for k = 1 : t do
3: Z← K(X, sin) . π0 reversible proposal. See Sect. 4.1
4: if h(Z) > L then . Rejection
5: X← Z
6: Count← Count + 1
7: end if
8: end for
9: if Count < t× a∗ then

10: sout ← γ × sin . Decrease s if acceptation rate is too low
11: else
12: L∗ ← min(h(X),minx∈X h(x))
13: Gain← L∗−L

|L|
14: if Gain < g∗ then
15: sout ← sin

γ . Increase s if the progress is too low
16: end if
17: end if
18: return X, sout

exact conditional distribution π0(dx|h(x) > l). The underlying idea (see Guyader et al. [2011]) is that
the Markov chain generated by Gen(l, 1) in Alg.2 leaves invariant the distribution π0(dx|h(x) > l),
so that the idealized algorithm is formally the limit of the simulated algorithm when t→ +∞.

Step 0: Checking the lower bound assumption

The lower bound assumption can be rewritten as follows:

∃ p∗ > 0, s0 > 0, ∀x, s ≥ s0, Law(K(x, s)) ≥ p∗π0 (Doeblin)

where inequality between two measures simply means that their difference is a non-negative measure.
(Doeblin) is a well-known irreducibility condition coined ’Doeblin condition’ in the probabilistic
literature on Markov chain.

Let us check that the lower bound condition is compliant with some very minor variants of the
transformation method detailed in Sect. 4.2.

Consider for instance the transformation: X ∼ U(B2,ε(xo)), T (U,xo) = xo + εU(1 : n) where U
is n+ 2-dimensional with uniform distribution on the unit sphere of Rn+2.

On the other hand, consider the proposal on the unit sphere of Rn+2 obtained by composing the
Gaussian proposal (14) in Rn+2 with an additional orthogonal projection. This proposal on the sphere
has the following two properties: i) it is reversible with respect to the uniform distribution on the
sphere (by a symmetry argument), ii) its density satisfies (Doeblin) (by lower bounding (14) with
initial condition on the unit sphere by a centered Gaussian distribution).

Combining the latter proposal with T we obtain again a proposal reversible w.r.t. U(B2,ε(xo))
and satisfying (Doeblin). See below for possible (slight but technical) generalizations to proposals
satisfying weaker versions of (Doeblin).

Step 1: Uniform rejection rate The acceptance rate of a proposal satisfying (Doeblin) with accept
rule given by score h(x) > l is bounded from below by:

p∗P(h(X) > l),

which is, in turn, uniformly bounded from below if l ≤ l0 with P(h(X) > l0) > 0.

Note that the proof is thus compliant with the tuning of the proposal strength s w.r.t. a constant
rejection rate (App. D), since that latter can be carried out while ensuring (Doeblin).

14

Step 2: Coupling of proposals Let us define the ‘local’ coupling between proposals that will enable
the coupling between algorithms. Let x,x′ be given, as well as a proposal satisfying (Doeblin). A cou-
pled proposalK((x, s),K(x, s)) is generated as follows: i) with probability p∗, generate a successful
coupling K(x, s) = K ′(x′, s) with distribution π0; ii) else, generate independent proposals K(x, s)
and K ′(x′, s) with respective distributions Law(K(x, s))− p∗π0 and Law(K(x′, s))− p∗π0.

Clearly, the associated two marginal distributions of K(x, s) and K ′(x′, s) are respectively
Law(K(x, s)) and Law(K(x′, s)).

Step 3: Coupling of the two algorithms

Let us denote by Lk and L′k the two levels of the last particle at iteration k in Alg. 1 for the real and
idealized algorithms, respectively. If Lk = L′k, we sample independently X′k, the new, refreshed
particle of the idealized algorithm, according to the exact conditional distribution π0(dx|h(x) > Lk)
(this replaces line 1 in Alg. 2). X′k is then modified in parallel with the new particle of the real
algorithm according to Alg. 2 by iterating t times the coupled proposal transition of Step 2; K being
used for the real and idealized algorithms, respectively.

After t iterations one has thus obtained a successful coupling with probability (conditional on Lk)
1− (1− p∗P(h(X) > Lk))t −−−−→

t→+∞
1.

Moreover, since Alg. 2 leaves invariant the conditional distribution π0(dx|h(x) > Lk), it does not
modify the distribution of the refreshed particle in the idealized algorithm.

Step 4: Conclusion by induction

Let l0 be any critical level such that π0(h(X) > l0) > 0. We consider the following induction
hypothesis at iteration k:

Hk On the event, Lk ≤ l0, The probability that the two particle systems are equal tends
exponentially fast to 1 when t→ +∞.

Assume Hk is true. The probability that the two particle systems are equal at iteration k + 1
is the probability conditioned by equality at iteration k multiplied by probability of equality at
iteration k. If the score level is below l0, the former conditioned probability is bounded below by
1− (1− p∗P(h(X) > l0))t by Step 3 so that using Hk the induction on Hk+1 is complete.

We deduce that P(Lm ≤ l0) converges exponentially fast with t large towards P(L′m ≤ l0) for each
l0. Using in addition Theorem 1 on the idealized algorithm, we conclude the proof.

Possible Generalizations: It is possible to relax the irreducibility condition (Doeblin) so that it is
verified by most practical proposals, see Sec. 4.2. This requires using so-called Lyapounov functions,
as well as an extra (but mild) assumption on the shape of h ’at infinity’.

For instance, consider the Gaussian proposal (14) in Rn+2. It satisfies the Doeblin condi-
tion (Doeblin), but only locally, for all x in a ball, p∗ depending now of the size of the ball.

The extra assumption on the shape of the score function h at infinity is then necessary to check that
the rejection rate is again uniformly bounded from below.

Finally, one can remark that the following so-called Lyapounov condition E[|K(x, s)|2] ≤ ρ|x|2 + c

holds true (with ρ = 1
1+s2 < 1 and c = s2

1+s2 < +∞). It ensures that the proposal cannot be stuck at
infinity, in areas where the ’local’ Doeblin condition is poor.

One can then couple proposals using (Doeblin) as above, but only when the coupled initial states are
in a given ball, and use the Lyapounov condition (see Hairer and Mattingly [2011]) to nonetheless
obtain a successful coupling with a lower bounded success rate.

The proof then works as above.

Final remarks: Note that the exponential convergence rate obtained in the proof of Proposition 4 is
too sub-optimal to be suitable for practical purpose. Practical estimation of this rate is left for future
work although estimating the mixing rate of such Markov chain is known to be difficult and widely
dependent on the geometry of h.

15

F Implementation details of the experiments

In this section we give further details on the implementations used in the experiments. The source
code provided can be used to re-run experiments or run different experiments (see the README for
more information).

F.1 ACAS Xu

In the experiments on the ACAS Xu DNN compression case study we used the 45 neural networks
from the VNNLIB website (in ONNX format), which do not require normalizing the inputs. We
only tested the 5 first properties since they apply to all networks. We use an adaptive procedure
to tune the strength parameter s as explained in D. Experiments main parameters are set to: N =
2, pc = 10−50, T = 40, α = 10−3. We initialize the strength s at 1.5 and use the adaptive sampling
procedure of section D with γ = 0.99, a∗ = 0.90, g∗ = 0.01. In addition we ran experiments with
the ERAN complete certification method using DeepPoly and Mixed Integer programming on the
same benchmark.

F.2 MNIST

We selected 4 neural networks from the ERAN benchmark: 3 architectures of varying complexity
trained with pytorch named ’convMedGRELU__PGDK_w_0.1’,’ffnnRELU__PGDK_w_0.1_6_500’ &
’ffnnRELU__Point_6_500’ and a simpler model trained with tensorflow ’mnist_relu_9_200’.
We use batched version of the Last Particle algorithm where we test the local robustnes aroung 100
images in parallel. For each image we create a system of N(= 2) particles and we call the score at
each iteration (line 6 in Algorithm 1) with a batch consisting of all lower-scored particles. This trick
accelerates the computations by taking advantage of the GPU. We also used the adaptive tuning of
the strength, initializing s at 1.5 and with γ = 0.999, a∗ = 0.90, g∗ = 0.01.

F.3 ImageNet

Similarly to MNIST we used a batched version of the Last Particle algorithm presented in section
3. Again we also used a automatic control mechanism (see section D, initializing s at 1 and taking
γ = 0.999, a∗ = 0.90, g∗ = 0.01. For ImageNet we could not run the ERAN certification methods
unfortunately since these methods barely scale to such high input dimension and management of
ImageNet is not implemented for now on the ERAN GitHub repository.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the pa-
per’s contributions and scope? [Yes] Efficiency and scalability are experimentally
demonstrated in Sect. 5. Non-asymptotic guarantees are proven in Prop. 1 to 4.

(b) Did you describe the limitations of your work? [Yes] We did in the conclusion
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We did in

the ‘Broader Impact’ Section.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] Yes, we had.
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Especially for
Prop. 4.

(b) Did you include complete proofs of all theoretical results? [Yes] In particular, proof of
Prop. 4 is in App. E

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] App. F.3 gives
the implementation details to reproduce the experimental results. The code is available
on github.

16

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In App. F.3.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] For run-times of the Last Particle algorithm, since the
method is stochastic.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Datasets and

benchmark suite.
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compenCertion? [N/A]

17

	Appendix: Approximations for the computation of m
	Experiments in the idealized case
	Choice of N and T
	Automatic control of kernel strength
	Proof of proposition 4
	Implementation details of the experiments
	ACAS Xu
	MNIST
	ImageNet

