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Abstract

Language models learn rare syntactic phenom-
ena, but it has been argued that they rely on
rote memorization, as opposed to grammati-
cal generalization. Training on a corpus of
human-scale in size (100M words), we itera-
tively trained transformer language models on
systematically manipulated corpora and then
evaluated their learning of a particular rare
grammatical phenomenon: the English Arti-
cle+Adjective+Numeral+Noun (AANN) con-
struction (“‘a beautiful five days”). We com-
pared how well this construction was learned
on the default corpus relative to a counterfac-
tual corpus in which the AANN sentences were
removed. AANNs were still learned better
than systematically perturbed variants of the
construction. Using additional counterfactual
corpora, we suggest that this learning occurs
through generalization from related construc-
tions (e.g., “a few days”). An additional exper-
iment showed that this learning is enhanced
when there is more variability in the input.
Taken together, our results provide an existence
proof that models can learn rare grammatical
phenomena by generalization from less rare
phenomena. Code will be available at (url).

1 Introduction

1.1 Motivation and Prior Work

Humans come to learn and use rare grammatical
structures, even if they have encountered those
structures only rarely or even not at all (Pullum
and Scholz, 2002; Pearl, 2022). For instance, hu-
mans accept the grammaticality of the PiPP con-
struction (“surprising though it may be...”) even
where the preposed element crosses a finite close
boundary (“surprising though I know it may be
that...”) (Pullum, 2017) and even though they may
plausibly have never encountered such a sentence
in their linguistic experience (see Potts, 2023, for
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Figure 1: Some of our key experimental manipulations
and resulting performance changes. We train LMs on
varied input corpora and measure the learning of the rare
AANN (“a beautiful five days”) or related constructions.
E.g., we train on the default BabyLM corpus, a corpus
in which we remove all AANNSs, a corpus in which we
replace all AANNs with a corrupted version (

) and measure learning of the corrupted
version, and a corpus in which we remove AANNs and
also remove related constructions like “a few weeks is”.

corpus estimate). How people come to know an ut-
terance is grammatical has occupied a central place
in linguistics. Specifically, mastery of never-before-
encountered grammatical structures has been taken
to mean that people are endowed with innate lin-
guistic knowledge (Chomsky, 1986, 1957, 1965).
Recent evidence, though, suggests that Large
Language Models (LLMs) can learn complex gram-
mar (Wilcox et al., 2018; Futrell et al., 2019;
Linzen et al., 2016; Mahowald et al.) even from
human-scale amounts of input (Warstadt et al.,
2023; Eldan and Li, 2023; Huebner et al., 2021).
This raises the possibility that input data, along



with an appropriately sophisticated or weakly bi-
ased statistical learning mechanism, is sufficient for
learning rare constructions by allowing for models
to emergently learn appropriate grammatical ab-
straction (Baroni, 2022; Piantadosi, 2023; Misra
and Kim, 2023).

But modern LLMs often have access to much
more training input than people do and thus might
memorize in a way that humans can’t (Warstadt and
Bowman, 2022; Warstadt et al., 2023). The possi-
bility that LLMs are “stochastic parrots” (Bender
et al., 2021), heavily reliant on memorization, is a
common criticism of using LLMs to study human
language (e.g., Chomsky et al., 2023).

There are different levels of memorization,
though, requiring different levels of abstraction.
Consider the AANN construction: “a beautiful five
days in Florida” (Solt, 2007; Keenan, 2013; Dal-
rymple and King, 2019), which is rarer than the
default “five beautiful days in Florida”. A model
that strictly memorizes this phrase might come to
know that “a beautiful five days in Florida” is gram-
matical but have no idea that “a beautiful four days
in Florida” is grammatical if it never appeared in its
training. A model that generalizes just a bit more
might know that “a beautiful five days in New York”
is also grammatical by generalizing that any U.S.
state can fill the slot. Knowing that “an astonishing
200 pages” is acceptable requires generalization
beyond mere lexical items. And knowing that “a
blue five pencils” is not acceptable (because colors
are “stubbornly distributive”, Schwarzschild 2011)
requires yet more knowledge. Even for an ideal-
ized learner, it is difficult to precisely formulate
how these kinds of generlizations emerge.

There is increasing evidence that LLMs can gen-
erate novel linguistic utterances (McCoy et al.,
2023), and also make subtle judgments on rela-
tively rare constructions like these (Weissweiler
etal., 2022; Potts, 2023), including the AANN (Ma-
howald, 2023). If they do so by memorizing exam-
ples verbatim from an unrealistically large training
corpus, that would not be particularly informative
for human processing. But, if they do learn rare
grammatical phenomena from smaller amounts of
data and can generalize beyond just those verbatim
instances, that would raise the question of how they
do it and if it can inform theorizing about humans.
For instance, in the context of the PiPP construc-
tion, Potts (2023) speculates that the comparative
construction (e.g., “They are happier than we are.”)
“may be the key to all of this [i.e., learning the

PiPP]” because such constructions are “incredibly
common” yet share abstract structure with the PiPP.
If LLMs learn rare grammatical structures in part
by learning and generalizing structures from much
more common constructions, that would be power-
ful evidence for abstraction in LLMs and raise the
possibility that even quite general learners could
learn very rare phenomena without strong innate
priors, drawing in part on the long-posited linguis-
tic hypothesis that apparently distinct grammatical
phenomena often share underlying structure.

To that end, our goal in this paper is to study a
relatively rare grammatical phenomenon in LMs
trained on controlled input corpora that are (a) of
human realistic scale, and (b) systematically ma-
nipulated with respect to the target constructions
as well as key related constructions. Our hypoth-
esis is that generalization abilities of LMs on
such rare phenomena come from abstractions
and structures learned from more frequent phe-
nomena—and that knowledge of more frequent
phenomena are the “keys to all of this.”

As a case study, we focus on the aforemen-
tioned AANN construction, although we highlight
how the methods used here could serve as a
blueprint for work on other rare grammatical phe-
nomena. Our method is to train different instan-
tiations of a standard transformer model on the
100M-word BabyLLM corpus, which we systemati-
cally manipulate—via removal and replacement—
to shed light on the extent to which frequent and
related phenomena encountered during training can
give rise to abstractions that allow for generaliza-
tions in LMs. To test for generalization, we sub-
jected our different LMs to a series of acceptability
tests on sentences which do not appear in the train-
ing corpus and which specifically target the special
properties of the AANN. This approach of training
on a systematically manipulated corpus has been
fruitfully used to debias models (Lu et al., 2020;
Maudslay et al., 2019), study whether LMs rely on
lexical knowledge in learning syntactic rules (Wei
et al., 2021), explore the effect of permuting words
on pretrained models (Sinha et al., 2021), and test
whether LMs can learn languages judged to be hard
for humans (Kallini et al., 2024), among others.

1.2 Summary of findings

First, we find BabyLM-trained LMs to successfully
generalize to novel instances of the AANN construc-
tion. Performance unsurprisingly drops for LMs
that were trained without being exposed to even a



single AANN during training, but perhaps surpris-
ingly, not by all that much—they are substantially
above chance. This suggests that certain items
present in the training data might give rise to LMs’
non-trivial performance in judging acceptability of
AANNSs. This finding is further strengthened by the
fact that LMs trained on counterfactual variants of
the AANN—e.g., ANAN and NAAN, obtained by
shuffling word order and are far less likely to share
structure with training data items—are unable to
generalize to those constructions as well as they do
to AANNS.

Next, we investigated what might enable LMs’
learning of the AANN, by further systematically
manipulating their training data to hold out utter-
ances conforming to specific linguistic and sta-
tistical phenomena. Through our manipulations,
we find LMs become worse at predicting novel in-
stances of the AANN as more frequent, non-AANN-
but-AANN-related phenomena are held out. For
example, phenomena such as the treatment of mea-
sure noun phrases as singular (e.g., a few days is
all we need)—similar to how AANNs treat a plu-
ral NP as singular—end up making unseen AANNs
less likely by 31% on average. Importantly, these
results could not be explained simply by loss of
data—LMs that were trained with these phenom-
ena left in but without an equivalently large chunk
of the training data removed were almost as good as
LMs that never saw AANNs. This further strength-
ens the conclusion that the hypothesized linguistic
phenomena did indeed affect generalization of the
targeted construction. Notably, LMs are largely
affected by these manipulations when they do not
see any AANNs during training, highlighting the
expected non-trivial role of encountering some in-
stances of AANNs to show stronger generalization.

Finally, we characterized the aforementioned in-
terplay between the properties of the encountered
AANNs and the LMs generalizations on novel in-
stances. Here we found LMs that observed AANNSs
with more variability on the adjective, numeral,
and noun slots to show better generalization than
did LMs that saw more restricted-but-repeating in-
stances of AANNs. This importantly mimicked anal-
ogous findings of inductive inference in humans
across linguistics (Goldberg, 1995, 2005; Suttle
and Goldberg, 2011; Baayen, 2009; O’Donnell,
2015) and cognitive psychology studies (Osherson
et al., 1990; Xu and Tenenbaum, 2007).

Taken together, these results provide an exis-
tence proof that a weakly biased but sophisticated

general-purpose statistical learner can learn rare
and complex linguistic phenomena, in part because
of key related phenomena seen during training.
While our analyses suggest potential links between
“constructions” (Goldberg, 1995), our findings are
also compatible with theories that think of rare phe-
nomena as derivationally related (Chomsky, 1965)
to more frequent and well-attested structures (much
as Potts (2023) posits shared syntactic structure as
the key to the PiPP).

2 General Methods

Here we describe methods that we use to character-
ize learning of the targeted rare construction, the
AANN. As mentioned in §1, we take these methods
as a general blueprint for studying other grammati-
cal phenomena.

2.1 Data and Model

Corpus Throughout the paper, we use the
BabyLM-strict corpus (Warstadt et al., 2023) as
our base training set, often with systematic abla-
tions. We use BabyLLM-strict because of its human-
realistic scale and tractable size (100M tokens),
which allows us to (1) detect and control the in-
stances of the target construction as well as related
linguistic phenomena; and (2) train a large number
of LMs in a reasonable timeframe.

Construction Detection We use regexes over a
POS-tagged version of the BabyLLM training data
to detect AANN instances.! We detect 2,301 AANNs
in the BabyLLM corpus, occurring in about 0.02 %
of all utterances.

Model Our LMs are instances of OPT LM
(Zhang et al., 2022), an autoregressive transformer
architecture. Our LMs have 12 layers and atten-
tion heads, use a vocabulary size of 16,384, and
are trained for a maximum of 20 epochs using the
transformers library (Wolf et al., 2020). The re-
sults we report for a given LM are averaged over
three different runs (with different random seeds).
We list other hyper-parameters and architectural
details in Appendix B.

2.2 Acceptability data

To test our LMs on their knowledge of the AANN,
we use data from Mahowald (2023), which consists
of 12,960 templatically generated sentences that

"'We use spaCy for getting POS-tags, see Appendix C for
the exact details of the detection pipeline.



contain AANNs. Out of these, 3,420 contain accept-
ability ratings provided by 190 human participants,
ranging from 1 (unacceptable) to 10 (acceptable).
We use 7 as the threshold for clear acceptability,
in that we only keep instances where human par-
ticipants rated the acceptability of the construction
in context to be greater than 7. We additionally
discarded instances where the AANNs appear in the
BabyLM training set (n = 4), as testing on these
would not shed light on the LMs’ generalization
behavior. This leaves us with 2,027 items.

For each AANN instance in the dataset, Ma-
howald (2023) has also made available its corre-
sponding corrupted versions, which focus on (1)
adjective-numeral order; (2) presence of the arti-
cle; (3) presence of the adjective; and (4) presence
of the numeral. A hypothetical example of these
corruptions is shown in Table 1 under the “AANN”
column. A model that has knowledge of the AANN
should find the well-formed instance to be more
likely than each of its corrupted versions. Below
we describe methods to measure likelihood and
assess accuracy on these tests.

2.3 Scoring and Accuracy

We use the Syntactic Log-odds Ratio (SLOR) pro-
posed by Pauls and Klein (2012); Lau et al. (2017),
to score sentences in our tests. Given a sentence
containing a prefix followed by our target construc-
tion C and an optional suffix, SLOR is computed as
the log of the ratio between the probability of the
construction given the prefix as estimated by the
LM, and that estimated by a unigram model, nor-
malized by the length of the construction. Given a
language model m and a unigram estimator u:

1 Pm (C | prefix)
= lo
cl T 0

Importantly, we train the unigram estimator for
a given corpus using the same tokenizer used to
train our autoregressive LMs on that corpus. We
use SLOR in lieu of the usual normalized log-
probability measure, ensuring that the comparison
between two models cannot be explained simply
by the difference in unigram frequencies due to our
manipulations. Log-probabilities were computed
using minicons (Misra, 2022).

An instance within our test set is considered to
be correct iff the SLOR values of the well-formed
construction is greater than that for all four cor-
rupted instances. The accuracy, then, is the propor-
tion of correct instances within the test set. Since

(1

SLORprefix (C)

this involves four pairwise comparisons, chance
performance is 6.25%.

2.4 Ablations

Common to subsequent experiments (§4 and §5)
is the fact that we hold out certain parts of the
BabyLM corpus—parts that conform to a certain
linguistic or statistical hypothesis. This creates
a gap between the experience of LMs trained on
these ablated versions of the corpus, and that of
the LM trained on the full BabyLM data. To cir-
cumvent this issue, we up-sample non-hypothesis-
conforming utterances in BabyLM after performing
our ablations, in a manner such that the LM still
encounters the exact same number of tokens.

3 Experiment 1: LMs learn about AANNs
without having seen a single instance

LMs learn about AANNs... To investigate the ex-
tent to which LMs trained on BabyLLM learn the
AANN construction, we measure their accuracy on
our tests described in §2.2. From Figure 2, we
observe that the BabyLLM-trained LMs obtain ac-
curacies around 70%, which is substantially above
chance. This suggests that LMs can reasonably
acquire generalizations to AANNs from exposure
to positive evidence that makes up only 0.02%
of their training experience.

For comparison to larger, state-of-the-art LMs,
we test Llama-2-7B (Touvron et al., 2023) and GPT-
2 XL (Radford et al., 2019) on the AANNs, and
find them to achieve 83% and 78%, respectively.?
Similarly, as a comparison to shallower LMs, we
tested on 2-and 4-gram LMs trained on BabyLM
and found both of them to achieve 0% accuracy,
eliminating the possibility that the observed results
are due to surface-level statistics.

...without having seen a single instance... Given
that BabyLM-trained LMs learn the AANN con-
struction, how well would an LM generalize to
AANNSs without having seen a single positive in-
stance? To this end, we compare accuracies
in the previous experiment to that obtained by
LMs trained on BabyLLM with our 2,301 detected
AANNSs removed (i.e., NO AANN).

From Figure 2, we find LMs trained with the
NO AANN condition to achieve an average accu-

2Qualitatively, performance is on these models is worse
than data reported in Mahowald (2023), which used GPT-3.
Because log-probabilities are not available from GPT-3, a
direct comparison is not possible.



Table 1: Well-formed and corrupted examples of the AANN construction and its counterfactual versions (ANAN and

Context AANN ANAN NAAN
WELL-FORMED  a whopping LMs a whopping LMs whopping a LMs
Corruptions
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NO ARTICLE
NO MODIFIER a

No NU
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NAAN). Corruption types are taken from Mahowald (2023).
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Figure 2: Accuracies on tests for AANN and its counterfactuals (ANAN and NAAN), achieved by LMs trained on
BabyLM with various AANN-manipulations (AANN as is, NO AANN, ANAN, NAAN). The dashed line represents
chance performance (6.25%), the dot-dashed line represents accuracies for SLORs computed using 2- and 4-gram
LMs trained on BabyLM. Accuracies for GPT-2-XL (Radford et al., 2019) and Llama-2-7B (Touvron et al., 2023)
are computed using log-probabilities, since unigram frequencies were unavailable for these LMs’ corpora.

racy of 54%, which is a noticeable drop compared
to the 70% obtained by the LMs trained on the
complete BabyLLM corpus, but importantly 47.75
points above chance performance (and, as we show
below, well above comparable baselines with other
constructions). This is a non-trivial result, since it
suggests that LMs can learn the acceptability of a
construction’s instances, without having seen a sin-
gle positive occurrence, which indicates that there
exist some systematic patterns in the corpus that
are driving this generalization behavior.

..more strongly than they learn counterfac-
tual AANN variants To further contextualize the
above results, we consider two counterfactual cases,
where we replaced AANNs in BabyLMs with in-
stances involving the same lexical items, but in
a word order that violates English grammar: (1)
ANAN (e.g., a 90 whopping LMs); and (2) NAAN
(e.g., 90 whopping a pages). This allows us to test
if the results before are genuinely because LMs
recognize the nuances of the AANN construction. If
LMs are able to learn these counterfactual construc-
tions just as well as the the LMs in the previous
experiments learned AANNs, then the generaliza-
tion claims from the previous experiments would
be weakened.

To test for such possibilities, we create coun-
terfactual versions of the Mahowald (2023) stim-
uli, where we apply analogous corruptions to the
counterfactual variants of AANN, such that they are
violated in a similar manner as in the AANN tests.
Examples for the three types of instances in our
tests can be found in Table 1. We then evaluate
the previous two LMs (trained on BabyLM with
and without seeing any AANNs) with LMs trained
on BabyLLM with these counterfactual variants on
judging the acceptability of AANNs, ANANS, and
NAANS. Figure 2 shows these results.

From Figure 2, we make two high-level observa-
tions. First, and most importantly, LMs that see
ANANs and NAANs do not learn those construc-
tions as well as they learn AANNs—especially
the LM that saw no AANNs (54% AANN accu-
racy compared to 36% NAAN accuracy obtained
by the NAAN-trained LM). Second, these LMs
end up learning AANNs more strongly relative to
how well they learn constructions that they ob-
serve in lieu of the AANN—e.g., NAAN trained
LM achieves around 54% accuracy on AANNS even
though NAANs appeared frequently in the data
and no AANNs did. This, combined with the re-
sults of the previous two sub-experiments suggests
strongly that LMs pick up on cues from other—



Phenomenon/Manipulation = Example/Desc. Freq.
AANN a fine eighteen months 2,301
DT ANN the usual forty dollars fine 14,347
A few/couple/dozen/etc. NNS  a few plums 55,226
I;flzz/l(s);lriii?sa:/ﬁt{;ssc} verbs 6 months is a long time 62,597
A/An + ADJ/NUM balancing enforce freq. balance 571,874
Random removal (control) randomized ablation 571,874

Table 2: Manipulated Phenomena, their examples/de-
scriptions, and their frequency in the BabyLM corpus.

likely related—constructions encountered during
training in order to assign non-trivial probability to
unseen instances of AANNS.

4 Experiment 2: Keys to Learning AANNs

Our previous experiments reveal that, keeping ev-
erything else the same, LMs learn the AANN con-
struction far more accurately than they do its coun-
terfactual variants. Furthermore, we also see strong
AANN acceptability judgments in LMs that have
never encountered a single instance. This suggests
that there are instances in the training data that
contribute to the learning of the construction.
What might these be? Below we enumerate four
hypotheses, each of which tackles subtly different
aspects of the AANN construction, then measure
the effect of these phenomena, by separately hold-
ing them out during training and computing the
average SLOR of the well-formed instances of the
AANN tests. The effect of a particular phenomenon
on the acceptability of AANNs can therefore be
measured by comparing SLORs before and after
holding out instances of that phenomenon. Meth-
ods for detecting the hypothesized phenomena can
be found in Appendix C. As control, we addition-
ally also hold out a random set of utterances, which
do not conform to the target phenomena of interest.
Note again that for all these cases, we ensure the
LMs see the same number of tokens during train-
ing, by up-sampling other, non-AANN containing
sentences. Table 2 lists the hypotheses we con-
sider, along with an example of their utterance and
frequency of occurrence, in the BabyLM corpus.

The presence of “the ANN” Phrases like “the
beautiful five days” are common in corpora, which
are not as unusual because “the” regularly takes
plural nouns. We hypothesize that the acceptabil-
ity of these structures affects the acceptability of
AANNS, since an LM might analogize from the gen-
eral observation that ‘a’ or ‘an’ can substitute ‘the’

(e.g., a ball vs. the ball). Therefore, we consider all
cases wheere a determiner precedes the contiguous
sequence of article, numeral, plural noun.

A few/couple/dozen/etc. NNS Another related
phenomenon that is more common relative to the
AANN construction involves phrases such as “a few
days” or “a couple bottles”. To an LM learner, they
might provide evidence that measure noun phrases
with plural nouns can be attached to an indefinite
article (a/an; Solt, 2007), as is the case in AANNS.

Measure NNS treated as singular We consider
yet another phenomenon involving phrases that
treat measure nouns as singular, this time in terms
of agreement, e.g., “Five miles is a long way to go”,
and “1,000 pages is a lot for a dissertation.” These
cases might provide further evidence to the model
that measure noun phrases with plural nouns can
be treated as a singular unit (Solt, 2007), thereby
affecting the acceptability of the AANN. These are
less prevalent compared to the cases involving a
few/couple/dozen NNS, but still far more frequent
than the AANN, therefore, we combine the two as a
general case of treating measure NPs as singular.

Balancing the frequencies of A/An + ADJ/NUM
A more surface-level reason why “a beautiful five
days” might be more natural to LMs than is “a five
beautiful days”, could be that adjectives are more
likely to follow indefinite articles than are numer-
als. For instance, adjectives are ~14.6 times more
likely to follow indefinite articles in the BabyLM
corpus than are numerals. To measure this effect,
we hold out instances such that adjectives and nu-
merals are equally likely to follow an indefinite
article. This ends up being the largest portion of
the data that we hold out.

Control: Random removal A potential con-
found in the above ablations could be that the SLOR
values of the AANNs go down merely due to loss of
content—this could be despite the fact that we add
back additional tokens from BabyLLM (such that
all LMs see the exact same amount of tokens). To
account for this, we additionally consider a control
condition where we remove as many tokens as in
the largest ablation (i.e., the A/An + ADJ/NUM
case) such that none of the above phenomena are
taken out. Insofar as the LMs rely on the aforemen-
tioned phenomena, results on LMs trained with this
ablation should be closer to the original BabyLM-
trained LM’s results.
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Figure 3: SLORs on AANNs from Mahowald (2023) for our LMs (left) and a 4-gram baseline (right) trained on
BabyLM and its ablated versions. SLOR for unablated BabyLM-trained LM shown with dotted line.

4.1 Analysis and Results

In our experiments, we individually ablate out each
of the aforementioned phenomena under two set-
tings: (1) AANNs are removed during training in
addition to the phenomena; and when possible, (2)
AANNS are seen during training. (1) is a stricter set-
ting, since here the LMs see neither the target phe-
nomenon nor a single instance of the AANN. Com-
paring average SLORs obtained in this condition
to that obtained for the NO AANN can shed light
on the the extent to which the target phenomenon
is critical in allowing LMs to assign non-trivial
probabilities on unseen AANNS, zero-shot. On the
other hand, (2) still allows for the LMs to perform
lexical generalization (Kim et al., 2022) from seen
AANN instances—where they may arrive at strong
acceptability measures on the test AANNSs by per-
forming slot filling, without necessarily relying on
the hypothesized phenomena.

Figure 3 shows the average SLORs obtained
across various ablations under the two settings. As
a baseline, we compare our results to 4-gram LMs?
trained on corresponding ablations of the BabyLM
corpus. We observe that holding out all our hypoth-
esized phenomena has non-trivial effects on our
LMs’ ratings of unseen well-formed AANNs, and
that these effects are different for when AANNSs are
seen during training, or are held out. When AANNs
are held out along with the phenomena, we see sub-
stantial drops in the average SLOR values assigned
by LMs on unseen AANNS relative to that assigned
by LMs in the NO AANN condition. Specifically,
balancing the frequency of adjectives and numerals
following an article has the greatest effect, followed

3Trained using KenLM (Heafield, 2011)

by the two cases where measure nouns are treated
as singular, followed by the removal of all cases
that involve any determiner + adjective + numeral
+ noun sequence. This suggests that, in the absence
of even a single AANN during training, these phe-
nomena are critical for LMs to assign probability
to AANNs. Simply ablating large amounts of data
cannot explain these results, since LMs trained on
our controlled condition show higher SLOR values
than in all hypothesis-informed ablations. These
patterns are absent in 4-gram LMs, suggesting
that they do not arise as a result of shallow, sur-
face statistics—with the exception of differences
observed for the article+adjective/numeral abla-
tion. Overall, this finding indicates that LMs can
demonstrate a completely novel phenomenon
(AANN) by relying on other related—and more
frequent—phenomena.

When AANNS are seen during training, however,
we observe LMs’ results on unseen AANNSs to show
more similar SLOR values with respect to the the
LMs trained on the unablated BabyLM corpus, al-
though they are still significantly reduced in some
cases (e.g., singular measure nouns). We conclude
that when LMs see evidence of the AANN construc-
tion, they do learn from it. But key related phenom-
ena where measure nouns are treated as singular
do seem to show some notable effects even when
AANNSs are present, suggesting that these enable
additional learning even when AANNS are present.

S Experiment 3: The Role of Variability

Results from the previous experiment highlight
the importance of seen AANNs in order for LMs
to generalize to unseen instances. What proper-
ties of these seen instances make LMs generalize?



More broadly, there is a longstanding question as
to how the nature of the instances of a construction
provided during learning affect its (partial) pro-
ductivity (Goldberg, 2005, 2019). In the context
of AANNS, we consider the role of variability on
the open slots of the construction as a factor that
might play a role in LMs’ productivity on unseen
instances. The idea that slot-variability could af-
fect learnability is motivated by theoretical claims
in usage-based linguistics (Bybee, 1995), as well
as existing research on novel constructions (Suttle
and Goldberg, 2011), morphological productivity
(Baayen, 2009; O’Donnell, 2015), and inductive
inferences in cognitive psychology (Osherson et al.,
1990; Xu and Tenenbaum, 2007). The idea is that
encountering a slot with a wide variety of lexical
items serves as a cue that the slot is flexible.

We hypothesize that instances of AANNs that
provide natural evidence of greater open-slot
variability—i.e. evidence that many different adjec-
tives, numerals, and nouns can go in their respec-
tive positions in the AANN construction—would
lead LMs to assign greater likelihood to unseen
AANNS. On the other hand, LMs that only en-
counter a restricted set of instances might overfit,
and be more conservative in extending the coverage
of possible AANNs to novel combinations of the
slot-fillers. To test this, we divided our set of 2,301
AANN-containing utterances in the BabyLM corpus
into two roughly equal subsets—one that contained
AANNs which were individually highly frequent but
restricted in the types of adjective/numeral/nouns,
and the other where the AANNs were individually
less frequent, but showed more variability in those
slots. We obtain these subsets by performing a
median split based on the number of unique oc-
currences of each adjective/numeral/noun triple,
resulting in a set of 1149 low variability, and 1152
high variability instances. Details about the slot
fillers and examples from each set are provided in
Appendix E. We then trained LMs on the BabyLM
corpus containing utterances involving either of
these two cases. Figure 4 shows the resulting av-
erage SLORs obtained from this experiment, along
with those obtained by LMs trained on unablated
BabyLM and the NO AANN conditions.

From Figure 4, we see that LMs that only saw
AANNs that were highly variable in their open-
slots demonstrated SLORs that were comparable
and sometimes greater than those obtained by LMs
that saw all AANNs. By contrast, LMs that only
saw AANNSs with low variability were as good as

Unablated - ——

High Variability | :

AANNS e
Low Variability |

AANNS e

No AANNS + ——
T T T T : T T
18 19 20 2.1 22 23

SLOR (95% CI, 3 LM Runs)

Figure 4: SLORs on AANNs from Mahowald (2023) for
LMs trained on BabyLM with low and high variability
in the observed instances of AANN. SLOR for unablated
BabyLM-trained LM shown with dotted line.

LMs that never saw any AANNs. Therefore, LMs
were sensitive to the nature of range of fillers that
went into the construction’s open slots, showing
relatively greater productivity when they observed
evidence that the slots were highly variable. This is
compatible with our hypothesis that slot-variability
might affect the extent to which LMs “permit” pro-
ductive uses of a construction.

6 Conclusion

There is increasing interest in computational lin-
guistics in how language models can handle what
has been variously called the “long tail” of lan-
guage (Prange et al., 2021), “extremely rare con-
structions” (Potts, 2023), “exceptions to syntactic
rules” (Leong and Linzen, 2023), “rare linguistic
phenomena” (Weissweiler et al., 2024), inter alia.
Studies of such phenomena are important first be-
cause LLMs (and LMs and statistical models in
general) are known to be extremely sensitive to
frequency and to perform far better in data-rich
environments and, second, because the human abil-
ity to generalize to rare phenomena is central to
knowledge of language.

We found that LMs trained on a human-scale of
data can learn a rare construction like the AANN.
We found that this learning occurs even without
veridical instances of the AANN construction in the
training data, and that it is mediated by occurrences
of other related constructions in training. As such,
these results join a growing body of work showing
the ability of LLMs to learn constructions (Tay-
yar Madabushi et al., 2020; Tseng et al., 2022; Li
et al., 2022; Veenboer and Bloem, 2023).

7 Limitations

In future work, it would be valuable to extend this
method to a wider range of constructions. But scal-



ing this approach up is not straightforward since
it requires identifying and extracting idiosyncratic
constructions, and—more onerously—developing
testable hypotheses about what makes them learn-
able from limited amounts of data. While this is
a limitation, it also calls for more synergistic col-
laborations between theoretical and computational
linguists.

Another limitation is that our method requires
repeated training of LMs from scratch which can
be computationally expensive. Alternate methods
could be to ablate knowledge of particular hypothe-
ses using representational editing methods such as
AlterRep (Ravfogel et al., 2021), etc.

Unlike Weissweiler et al. (2022), we do not test
the ability to interpret these constructions for down-
stream tasks. Instead, our ablations target linguistic
form alone. Extending these results to semantic
tasks would be quite informative.

Finally, this work only studies a rare construc-
tion in English, and on LMs that are trained on
English text data. While this is a limitation of the
paper, the paradigm introduced can be readily used
in future work to study hypotheses and perform
indirect evidence elicitation in multi-lingual LMs.
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A Dataset Access and Licensing

The AANN acceptability dataset by Mahowald
(2023) is released using the MIT License and was
accessed from the author’s public github repo.* The
BabyLM dataset® does not have a single license of
its own but instead inherits the licenses of its con-
stituents: CHILDES (MacWhinney, 2000), BNC
Dialogue portion,® Children’s Book Test (Hill et al.,
2015), Children’s Stories Text Corpus,’ Standard-
ized Project Gutenberg Corpus (Gerlach and Font-
Clos, 2020), OpenSubtitles (Lison and Tiedemann,
2016), QCRI Educational Domain Corpus (Abde-
lali et al., 2014), Wikipedia,® Simple Wikipedia,’
Switchboard Dialog Act Corpus (Stolcke et al.,
2000). Since this dataset was specifically released
to train LMs, we work under the assumption that
our LMs do not violate its license policies. We
will follow the inherited licenses’ policies while
making the trained LMs and ablated BabyLM data
public, and refrain from releasing them if we find
them to be in violation of the policies.

4https://github.com/mahowak/aann—public

5accessedfromhttps://babylm.github.io/

6http://www.natcorp.ox.ac.uk

7https://www.kaggle.com/datasets/edenbd/
children-stories-text-corpus

8https://dumps.wikimedia.org/enwiki/20221220/

9https://dumps.wikimedia.org/simplewiki/
20221201/

B LM training details

As mentioned in the main text (see §2), we use
the OPT architecture (Zhang et al., 2022) to train
our LMs on all versions of the BabyLM corpus.
This was the best performing autoregressive LM in
the BabyLM Competition (Warstadt et al., 2023).
For each instance of the BabyLM (ablated or oth-
erwise), we tune the learning rate!” based on the
validation set, and use the best learning rate as a
result of the tuning to train an additional two lan-
guage models using different seeds. As a result,
for each ablation of the BabyLM corpus, we run
6 LM training experiments, which amounts to a
whopping 90 LMs for all our experiments. Table 3
contains further details of the training.

(Hyper)parameter Value
Architecture OPT (Zhang et al., 2022)
Embed size 768
FFN dimension 3,072
Num. layers 12
Attention heads 12
Vocab size 16,384
Max. seq. length 256
Batch size 32
Warmup steps 32,000
Epochs 20
Total parameters 9™
Training size 100M tokens
Compute I1x NVIDIA A40
Training time 21 hours

Table 3: LM Training details

C Detecting AANNs and related
phenomena

In this section, we briefly describe our methods
to extract constructions and phenomena relevant
to this paper from the BabyLLM corpus (Warstadt
et al., 2023). Our methods primarily rely on: 1)
the surface form of the sentences in the corpus;
2) their corresponding part-of-speech (POS) tag
sequences; and in a few cases, 3) their depedency
parses. For the latter two, we used spacy (Honnibal
et al., 2020), specifically, its en_web_trf model,
which is based on the RoBERTa-base LM (Liu
et al., 2019). Next we describe how we used these
artifacts to detect our target constructions:

0We searched the following set: {1e-4, 3e-4, 1le-3,
3e-3}
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https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://github.com/mahowak/aann-public
https://babylm.github.io/
http://www.natcorp.ox.ac.uk
https://www.kaggle.com/datasets/edenbd/children-stories-text-corpus
https://www.kaggle.com/datasets/edenbd/children-stories-text-corpus
https://dumps.wikimedia.org/enwiki/20221220/
https://dumps.wikimedia.org/simplewiki/20221201/
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C.1 AANNs

To detect AANNs we primarily rely on POS-tagged
sequences, and construct a regex pattern over
them!! which is able to robustly detect AANNS:
pattern = r'\b(DT) (?:(?:\s(RB))*\s(JJ|JIR|JIS)
(2:\s(CC))*)+(\s(CD|JT| JIR| JTS|NN|CD\sCD)

(2:\s(TO|CC)\s(CD))*) (\s(NNS|NNPS| (NN\SNNS)
| ((NNJNNS)_IN_NNS)))+'

where we restrict the determiner (DT) to be either
‘a’, ‘an’, or ‘another’. This regex permits mul-
tiple adjectives (an exhilarating and marvelous
three months) optional adverbs (an excruciatingly
painful two semesters), multi-word noun phrases
with plural head-nouns (a refreshing two glasses
of aperol spritz), numeral-expressions involving
subordinate clauses (a measly three to five days),
among other potential edge cases. We additionally
use the following adjectives as proxies for numer-
als, as per the guidelines of Kayne (2007) and Solt
(2007):

numeral_proxies = ['few', 'dozen',

several', 'many', 'more']

'couple’,

For instance, the following examples would all
count as instances of the AANN:

a beautiful few days.

an amazing dozen eggs.

a pictorial several pages.

a great many days.

an awful last couple of days.
a few more inches.

Once detected, we map the found constructions to
their respective positions within the AANN format,
which allows us to measure metrics such as slot
variability, etc.

C.2 DT ANNs

We follow the exact same procedure as the one
for AANNs, but no longer restrict the determiner
position to only be an indefinite determiner.

C.3 A few/couple/dozen NOUNs

An important phenomenon that we consider to be
related to the AANN involves cases such as: “that
only lasted a few days” and “could you bring me
a couple liters?”, etc., where the plural nouns are
attached to an indefinite article. To detect such
cases, we consider the following two dependency

"In reality this was constructed over several iterations,
taking into account many different possible realizations of the
construction in free text.
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configurations, where we have an indefinite deter-
miner (a, an, another) with either a det relation
with the plural noun (NNS or NNPS) or a quantmod
relation with a noun which has a nummod with the
plural noun. In the former case, we usually have an
relation between the noun and the adjective.

(amod)
DT JJ NNS
a few days
[quantmod] /{nunnm»d]\\
/ \
DT NN NNS
a couple days

C.4 Measure NNS with Singular Verbs

Similar to the previous case, another phenomenon
which might be related to the AANN constructions
is when measure noun-phrases with plural nouns
are treated as singular via their agreement with a
verb—e.g., “five dollars is plenty!” To detect such
cases, we again rely on the following dependency
configuration, where we have a plural noun (NNS
or NNPS) attached to a cardinal number (CD) via
the nummod dependency relation, and at the same
time also attached to singular verbs via the nsubj
dependency relation (i.e., are subjects of singular

verbs).

NNS VB
dollars is

CD
five

D A/An + ADJ/NUM frequency balancing

A corpus analysis of BabyLM, along with its
POS-tagged version suggests that the sequence
“a/an/another (JJ|JJR|JJS)” occurs 613,985
times while “a/an/another CD” occurs only
42,111 times — this suggests that adjectives are
approximately 14.6 more likely to follow an indefi-
nite article than are numerals. We therefore balance
these values by removing 571,874 instances where
adjectives follow an indefinite article. This consti-
tutes the largest-sized ablation in this work.

E Variability Analysis

In §5 we compared AANN-generalization of LMs
trained on BabyLLM versions which differed in the
amount of variability that was present in the AANNSs



that the models were exposed to. In particular,
we operationalized variability in terms of the slot-
fillers of the adjective/numeral/noun slots. Figure 5
shows statistics of the two roughly equal subsets of
the AANN-containing utterances in BabyLM. From
figure 5, we see that low-variability AANNs were
individually more frequent than the high-variability
ones.

Variability Sentences Freq.
A colossal 5 stories 1

A cold few days 1

High A leisurely six weeks 1
A long 8 years 1

A paltry hundred thousand pounds 1

A few more minutes 98

A few more days 70

Low A good six months 5
A good 4 years 4

A rough couple days 4

Table 4: Example AANN instances from BabyLM in
high and low-variability subsets, as well as their individ-
ual frequencies.
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Figure 5: Frequency statistics of instances of the AANN that appear in BabyLM, divided between High- and
Low-variability instances, with variability quantified using the number of slot-fillers on the adjective/numeral/noun
positions.
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