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Abstract

Language models learn rare syntactic phenom-001
ena, but it has been argued that they rely on002
rote memorization, as opposed to grammati-003
cal generalization. Training on a corpus of004
human-scale in size (100M words), we itera-005
tively trained transformer language models on006
systematically manipulated corpora and then007
evaluated their learning of a particular rare008
grammatical phenomenon: the English Arti-009
cle+Adjective+Numeral+Noun (AANN) con-010
struction (“a beautiful five days”). We com-011
pared how well this construction was learned012
on the default corpus relative to a counterfac-013
tual corpus in which the AANN sentences were014
removed. AANNs were still learned better015
than systematically perturbed variants of the016
construction. Using additional counterfactual017
corpora, we suggest that this learning occurs018
through generalization from related construc-019
tions (e.g., “a few days”). An additional exper-020
iment showed that this learning is enhanced021
when there is more variability in the input.022
Taken together, our results provide an existence023
proof that models can learn rare grammatical024
phenomena by generalization from less rare025
phenomena. Code will be available at (url).026

1 Introduction027

1.1 Motivation and Prior Work028

Humans come to learn and use rare grammatical029

structures, even if they have encountered those030

structures only rarely or even not at all (Pullum031

and Scholz, 2002; Pearl, 2022). For instance, hu-032

mans accept the grammaticality of the PiPP con-033

struction (“surprising though it may be...”) even034

where the preposed element crosses a finite close035

boundary (“surprising though I know it may be036

that...”) (Pullum, 2017) and even though they may037

plausibly have never encountered such a sentence038

in their linguistic experience (see Potts, 2023, for039
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Figure 1: Some of our key experimental manipulations
and resulting performance changes. We train LMs on
varied input corpora and measure the learning of the rare
AANN (“a beautiful five days”) or related constructions.
E.g., we train on the default BabyLM corpus, a corpus
in which we remove all AANNs, a corpus in which we
replace all AANNs with a corrupted version (“beautiful
a five days”) and measure learning of the corrupted
version, and a corpus in which we remove AANNs and
also remove related constructions like “a few weeks is”.

corpus estimate). How people come to know an ut- 040

terance is grammatical has occupied a central place 041

in linguistics. Specifically, mastery of never-before- 042

encountered grammatical structures has been taken 043

to mean that people are endowed with innate lin- 044

guistic knowledge (Chomsky, 1986, 1957, 1965). 045

Recent evidence, though, suggests that Large 046

Language Models (LLMs) can learn complex gram- 047

mar (Wilcox et al., 2018; Futrell et al., 2019; 048

Linzen et al., 2016; Mahowald et al.) even from 049

human-scale amounts of input (Warstadt et al., 050

2023; Eldan and Li, 2023; Huebner et al., 2021). 051

This raises the possibility that input data, along 052
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with an appropriately sophisticated or weakly bi-053

ased statistical learning mechanism, is sufficient for054

learning rare constructions by allowing for models055

to emergently learn appropriate grammatical ab-056

straction (Baroni, 2022; Piantadosi, 2023; Misra057

and Kim, 2023).058

But modern LLMs often have access to much059

more training input than people do and thus might060

memorize in a way that humans can’t (Warstadt and061

Bowman, 2022; Warstadt et al., 2023). The possi-062

bility that LLMs are “stochastic parrots” (Bender063

et al., 2021), heavily reliant on memorization, is a064

common criticism of using LLMs to study human065

language (e.g., Chomsky et al., 2023).066

There are different levels of memorization,067

though, requiring different levels of abstraction.068

Consider the AANN construction: “a beautiful five069

days in Florida” (Solt, 2007; Keenan, 2013; Dal-070

rymple and King, 2019), which is rarer than the071

default “five beautiful days in Florida”. A model072

that strictly memorizes this phrase might come to073

know that “a beautiful five days in Florida” is gram-074

matical but have no idea that “a beautiful four days075

in Florida” is grammatical if it never appeared in its076

training. A model that generalizes just a bit more077

might know that “a beautiful five days in New York”078

is also grammatical by generalizing that any U.S.079

state can fill the slot. Knowing that “an astonishing080

200 pages” is acceptable requires generalization081

beyond mere lexical items. And knowing that “a082

blue five pencils” is not acceptable (because colors083

are “stubbornly distributive”, Schwarzschild 2011)084

requires yet more knowledge. Even for an ideal-085

ized learner, it is difficult to precisely formulate086

how these kinds of generlizations emerge.087

There is increasing evidence that LLMs can gen-088

erate novel linguistic utterances (McCoy et al.,089

2023), and also make subtle judgments on rela-090

tively rare constructions like these (Weissweiler091

et al., 2022; Potts, 2023), including the AANN (Ma-092

howald, 2023). If they do so by memorizing exam-093

ples verbatim from an unrealistically large training094

corpus, that would not be particularly informative095

for human processing. But, if they do learn rare096

grammatical phenomena from smaller amounts of097

data and can generalize beyond just those verbatim098

instances, that would raise the question of how they099

do it and if it can inform theorizing about humans.100

For instance, in the context of the PiPP construc-101

tion, Potts (2023) speculates that the comparative102

construction (e.g., “They are happier than we are.”)103

“may be the key to all of this [i.e., learning the104

PiPP]” because such constructions are “incredibly 105

common” yet share abstract structure with the PiPP. 106

If LLMs learn rare grammatical structures in part 107

by learning and generalizing structures from much 108

more common constructions, that would be power- 109

ful evidence for abstraction in LLMs and raise the 110

possibility that even quite general learners could 111

learn very rare phenomena without strong innate 112

priors, drawing in part on the long-posited linguis- 113

tic hypothesis that apparently distinct grammatical 114

phenomena often share underlying structure. 115

To that end, our goal in this paper is to study a 116

relatively rare grammatical phenomenon in LMs 117

trained on controlled input corpora that are (a) of 118

human realistic scale, and (b) systematically ma- 119

nipulated with respect to the target constructions 120

as well as key related constructions. Our hypoth- 121

esis is that generalization abilities of LMs on 122

such rare phenomena come from abstractions 123

and structures learned from more frequent phe- 124

nomena—and that knowledge of more frequent 125

phenomena are the “keys to all of this.” 126

As a case study, we focus on the aforemen- 127

tioned AANN construction, although we highlight 128

how the methods used here could serve as a 129

blueprint for work on other rare grammatical phe- 130

nomena. Our method is to train different instan- 131

tiations of a standard transformer model on the 132

100M-word BabyLM corpus, which we systemati- 133

cally manipulate—via removal and replacement— 134

to shed light on the extent to which frequent and 135

related phenomena encountered during training can 136

give rise to abstractions that allow for generaliza- 137

tions in LMs. To test for generalization, we sub- 138

jected our different LMs to a series of acceptability 139

tests on sentences which do not appear in the train- 140

ing corpus and which specifically target the special 141

properties of the AANN. This approach of training 142

on a systematically manipulated corpus has been 143

fruitfully used to debias models (Lu et al., 2020; 144

Maudslay et al., 2019), study whether LMs rely on 145

lexical knowledge in learning syntactic rules (Wei 146

et al., 2021), explore the effect of permuting words 147

on pretrained models (Sinha et al., 2021), and test 148

whether LMs can learn languages judged to be hard 149

for humans (Kallini et al., 2024), among others. 150

1.2 Summary of findings 151

First, we find BabyLM-trained LMs to successfully 152

generalize to novel instances of the AANN construc- 153

tion. Performance unsurprisingly drops for LMs 154

that were trained without being exposed to even a 155
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single AANN during training, but perhaps surpris-156

ingly, not by all that much—they are substantially157

above chance. This suggests that certain items158

present in the training data might give rise to LMs’159

non-trivial performance in judging acceptability of160

AANNs. This finding is further strengthened by the161

fact that LMs trained on counterfactual variants of162

the AANN—e.g., ANAN and NAAN, obtained by163

shuffling word order and are far less likely to share164

structure with training data items—are unable to165

generalize to those constructions as well as they do166

to AANNs.167

Next, we investigated what might enable LMs’168

learning of the AANN, by further systematically169

manipulating their training data to hold out utter-170

ances conforming to specific linguistic and sta-171

tistical phenomena. Through our manipulations,172

we find LMs become worse at predicting novel in-173

stances of the AANN as more frequent, non-AANN-174

but-AANN-related phenomena are held out. For175

example, phenomena such as the treatment of mea-176

sure noun phrases as singular (e.g., a few days is177

all we need)—similar to how AANNs treat a plu-178

ral NP as singular—end up making unseen AANNs179

less likely by 31% on average. Importantly, these180

results could not be explained simply by loss of181

data—LMs that were trained with these phenom-182

ena left in but without an equivalently large chunk183

of the training data removed were almost as good as184

LMs that never saw AANNs. This further strength-185

ens the conclusion that the hypothesized linguistic186

phenomena did indeed affect generalization of the187

targeted construction. Notably, LMs are largely188

affected by these manipulations when they do not189

see any AANNs during training, highlighting the190

expected non-trivial role of encountering some in-191

stances of AANNs to show stronger generalization.192

Finally, we characterized the aforementioned in-193

terplay between the properties of the encountered194

AANNs and the LMs generalizations on novel in-195

stances. Here we found LMs that observed AANNs196

with more variability on the adjective, numeral,197

and noun slots to show better generalization than198

did LMs that saw more restricted-but-repeating in-199

stances of AANNs. This importantly mimicked anal-200

ogous findings of inductive inference in humans201

across linguistics (Goldberg, 1995, 2005; Suttle202

and Goldberg, 2011; Baayen, 2009; O’Donnell,203

2015) and cognitive psychology studies (Osherson204

et al., 1990; Xu and Tenenbaum, 2007).205

Taken together, these results provide an exis-206

tence proof that a weakly biased but sophisticated207

general-purpose statistical learner can learn rare 208

and complex linguistic phenomena, in part because 209

of key related phenomena seen during training. 210

While our analyses suggest potential links between 211

“constructions” (Goldberg, 1995), our findings are 212

also compatible with theories that think of rare phe- 213

nomena as derivationally related (Chomsky, 1965) 214

to more frequent and well-attested structures (much 215

as Potts (2023) posits shared syntactic structure as 216

the key to the PiPP). 217

2 General Methods 218

Here we describe methods that we use to character- 219

ize learning of the targeted rare construction, the 220

AANN. As mentioned in §1, we take these methods 221

as a general blueprint for studying other grammati- 222

cal phenomena. 223

2.1 Data and Model 224

Corpus Throughout the paper, we use the 225

BabyLM-strict corpus (Warstadt et al., 2023) as 226

our base training set, often with systematic abla- 227

tions. We use BabyLM-strict because of its human- 228

realistic scale and tractable size (100M tokens), 229

which allows us to (1) detect and control the in- 230

stances of the target construction as well as related 231

linguistic phenomena; and (2) train a large number 232

of LMs in a reasonable timeframe. 233

Construction Detection We use regexes over a 234

POS-tagged version of the BabyLM training data 235

to detect AANN instances.1 We detect 2,301 AANNs 236

in the BabyLM corpus, occurring in about 0.02% 237

of all utterances. 238

Model Our LMs are instances of OPT LM 239

(Zhang et al., 2022), an autoregressive transformer 240

architecture. Our LMs have 12 layers and atten- 241

tion heads, use a vocabulary size of 16,384, and 242

are trained for a maximum of 20 epochs using the 243

transformers library (Wolf et al., 2020). The re- 244

sults we report for a given LM are averaged over 245

three different runs (with different random seeds). 246

We list other hyper-parameters and architectural 247

details in Appendix B. 248

2.2 Acceptability data 249

To test our LMs on their knowledge of the AANN, 250

we use data from Mahowald (2023), which consists 251

of 12,960 templatically generated sentences that 252

1We use spaCy for getting POS-tags, see Appendix C for
the exact details of the detection pipeline.
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contain AANNs. Out of these, 3,420 contain accept-253

ability ratings provided by 190 human participants,254

ranging from 1 (unacceptable) to 10 (acceptable).255

We use 7 as the threshold for clear acceptability,256

in that we only keep instances where human par-257

ticipants rated the acceptability of the construction258

in context to be greater than 7. We additionally259

discarded instances where the AANNs appear in the260

BabyLM training set (n = 4), as testing on these261

would not shed light on the LMs’ generalization262

behavior. This leaves us with 2,027 items.263

For each AANN instance in the dataset, Ma-264

howald (2023) has also made available its corre-265

sponding corrupted versions, which focus on (1)266

adjective-numeral order; (2) presence of the arti-267

cle; (3) presence of the adjective; and (4) presence268

of the numeral. A hypothetical example of these269

corruptions is shown in Table 1 under the “AANN”270

column. A model that has knowledge of the AANN271

should find the well-formed instance to be more272

likely than each of its corrupted versions. Below273

we describe methods to measure likelihood and274

assess accuracy on these tests.275

2.3 Scoring and Accuracy276

We use the Syntactic Log-odds Ratio (SLOR) pro-277

posed by Pauls and Klein (2012); Lau et al. (2017),278

to score sentences in our tests. Given a sentence279

containing a prefix followed by our target construc-280

tion C and an optional suffix, SLOR is computed as281

the log of the ratio between the probability of the282

construction given the prefix as estimated by the283

LM, and that estimated by a unigram model, nor-284

malized by the length of the construction. Given a285

language model m and a unigram estimator u:286

SLORprefix(C) =
1

| C |
log

pm(C | prefix)
pu(C)

(1)287

Importantly, we train the unigram estimator for288

a given corpus using the same tokenizer used to289

train our autoregressive LMs on that corpus. We290

use SLOR in lieu of the usual normalized log-291

probability measure, ensuring that the comparison292

between two models cannot be explained simply293

by the difference in unigram frequencies due to our294

manipulations. Log-probabilities were computed295

using minicons (Misra, 2022).296

An instance within our test set is considered to297

be correct iff the SLOR values of the well-formed298

construction is greater than that for all four cor-299

rupted instances. The accuracy, then, is the propor-300

tion of correct instances within the test set. Since301

this involves four pairwise comparisons, chance 302

performance is 6.25%. 303

2.4 Ablations 304

Common to subsequent experiments (§4 and §5) 305

is the fact that we hold out certain parts of the 306

BabyLM corpus—parts that conform to a certain 307

linguistic or statistical hypothesis. This creates 308

a gap between the experience of LMs trained on 309

these ablated versions of the corpus, and that of 310

the LM trained on the full BabyLM data. To cir- 311

cumvent this issue, we up-sample non-hypothesis- 312

conforming utterances in BabyLM after performing 313

our ablations, in a manner such that the LM still 314

encounters the exact same number of tokens. 315

3 Experiment 1: LMs learn about AANNs 316

without having seen a single instance 317

LMs learn about AANNs... To investigate the ex- 318

tent to which LMs trained on BabyLM learn the 319

AANN construction, we measure their accuracy on 320

our tests described in §2.2. From Figure 2, we 321

observe that the BabyLM-trained LMs obtain ac- 322

curacies around 70%, which is substantially above 323

chance. This suggests that LMs can reasonably 324

acquire generalizations to AANNs from exposure 325

to positive evidence that makes up only 0.02% 326

of their training experience. 327

For comparison to larger, state-of-the-art LMs, 328

we test Llama-2-7B (Touvron et al., 2023) and GPT- 329

2 XL (Radford et al., 2019) on the AANNs, and 330

find them to achieve 83% and 78%, respectively.2 331

Similarly, as a comparison to shallower LMs, we 332

tested on 2-and 4-gram LMs trained on BabyLM 333

and found both of them to achieve 0% accuracy, 334

eliminating the possibility that the observed results 335

are due to surface-level statistics. 336

...without having seen a single instance... Given 337

that BabyLM-trained LMs learn the AANN con- 338

struction, how well would an LM generalize to 339

AANNs without having seen a single positive in- 340

stance? To this end, we compare accuracies 341

in the previous experiment to that obtained by 342

LMs trained on BabyLM with our 2,301 detected 343

AANNs removed (i.e., NO AANN). 344

From Figure 2, we find LMs trained with the 345

NO AANN condition to achieve an average accu- 346

2Qualitatively, performance is on these models is worse
than data reported in Mahowald (2023), which used GPT-3.
Because log-probabilities are not available from GPT-3, a
direct comparison is not possible.
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Context AANN ANAN NAAN

WELL-FORMED a whopping ninety LMs a ninety whopping LMs ninety whopping a LMs

Corruptions

ORDER-SWAP a ninety whopping LMs a whopping ninety LMs whopping ninety a LMs
NO ARTICLE whopping ninety LMs ninety whopping LMs ninety whopping LMs
NO MODIFIER a ninety LMs a ninety LMs ninety a LMs
NO NUMERAL a whopping LMs a whopping LMs whopping a LMs

Table 1: Well-formed and corrupted examples of the AANN construction and its counterfactual versions (ANAN and
NAAN). Corruption types are taken from Mahowald (2023).

Llama-2-7B

GPT-2 XL

2 & 4-gramChance

AANN ANAN NAAN

AANN No AANN ANAN NAAN AANN No AANN ANAN NAAN AANN No AANN ANAN NAAN
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Figure 2: Accuracies on tests for AANN and its counterfactuals (ANAN and NAAN), achieved by LMs trained on
BabyLM with various AANN-manipulations (AANN as is, NO AANN, ANAN, NAAN). The dashed line represents
chance performance (6.25%), the dot-dashed line represents accuracies for SLORs computed using 2- and 4-gram
LMs trained on BabyLM. Accuracies for GPT-2-XL (Radford et al., 2019) and Llama-2-7B (Touvron et al., 2023)
are computed using log-probabilities, since unigram frequencies were unavailable for these LMs’ corpora.

racy of 54%, which is a noticeable drop compared347

to the 70% obtained by the LMs trained on the348

complete BabyLM corpus, but importantly 47.75349

points above chance performance (and, as we show350

below, well above comparable baselines with other351

constructions). This is a non-trivial result, since it352

suggests that LMs can learn the acceptability of a353

construction’s instances, without having seen a sin-354

gle positive occurrence, which indicates that there355

exist some systematic patterns in the corpus that356

are driving this generalization behavior.357

...more strongly than they learn counterfac-358

tual AANN variants To further contextualize the359

above results, we consider two counterfactual cases,360

where we replaced AANNs in BabyLMs with in-361

stances involving the same lexical items, but in362

a word order that violates English grammar: (1)363

ANAN (e.g., a 90 whopping LMs); and (2) NAAN364

(e.g., 90 whopping a pages). This allows us to test365

if the results before are genuinely because LMs366

recognize the nuances of the AANN construction. If367

LMs are able to learn these counterfactual construc-368

tions just as well as the the LMs in the previous369

experiments learned AANNs, then the generaliza-370

tion claims from the previous experiments would371

be weakened.372

To test for such possibilities, we create coun- 373

terfactual versions of the Mahowald (2023) stim- 374

uli, where we apply analogous corruptions to the 375

counterfactual variants of AANN, such that they are 376

violated in a similar manner as in the AANN tests. 377

Examples for the three types of instances in our 378

tests can be found in Table 1. We then evaluate 379

the previous two LMs (trained on BabyLM with 380

and without seeing any AANNs) with LMs trained 381

on BabyLM with these counterfactual variants on 382

judging the acceptability of AANNs, ANANs, and 383

NAANs. Figure 2 shows these results. 384

From Figure 2, we make two high-level observa- 385

tions. First, and most importantly, LMs that see 386

ANANs and NAANs do not learn those construc- 387

tions as well as they learn AANNs—especially 388

the LM that saw no AANNs (54% AANN accu- 389

racy compared to 36% NAAN accuracy obtained 390

by the NAAN-trained LM). Second, these LMs 391

end up learning AANNs more strongly relative to 392

how well they learn constructions that they ob- 393

serve in lieu of the AANN—e.g., NAAN trained 394

LM achieves around 54% accuracy on AANNs even 395

though NAANs appeared frequently in the data 396

and no AANNs did. This, combined with the re- 397

sults of the previous two sub-experiments suggests 398

strongly that LMs pick up on cues from other— 399
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Phenomenon/Manipulation Example/Desc. Freq.

AANN a fine eighteen months 2,301

DT ANN the usual forty dollars fine 14,347

A few/couple/dozen/etc. NNS a few plums 55,226

Measure NNS with SG verbs
and/or indef. articles

6 months is a long time 62,597

A/An + ADJ/NUM balancing enforce freq. balance 571,874

Random removal (control) randomized ablation 571,874

Table 2: Manipulated Phenomena, their examples/de-
scriptions, and their frequency in the BabyLM corpus.

likely related—constructions encountered during400

training in order to assign non-trivial probability to401

unseen instances of AANNs.402

4 Experiment 2: Keys to Learning AANNs403

Our previous experiments reveal that, keeping ev-404

erything else the same, LMs learn the AANN con-405

struction far more accurately than they do its coun-406

terfactual variants. Furthermore, we also see strong407

AANN acceptability judgments in LMs that have408

never encountered a single instance. This suggests409

that there are instances in the training data that410

contribute to the learning of the construction.411

What might these be? Below we enumerate four412

hypotheses, each of which tackles subtly different413

aspects of the AANN construction, then measure414

the effect of these phenomena, by separately hold-415

ing them out during training and computing the416

average SLOR of the well-formed instances of the417

AANN tests. The effect of a particular phenomenon418

on the acceptability of AANNs can therefore be419

measured by comparing SLORs before and after420

holding out instances of that phenomenon. Meth-421

ods for detecting the hypothesized phenomena can422

be found in Appendix C. As control, we addition-423

ally also hold out a random set of utterances, which424

do not conform to the target phenomena of interest.425

Note again that for all these cases, we ensure the426

LMs see the same number of tokens during train-427

ing, by up-sampling other, non-AANN containing428

sentences. Table 2 lists the hypotheses we con-429

sider, along with an example of their utterance and430

frequency of occurrence, in the BabyLM corpus.431

The presence of “the ANN” Phrases like “the432

beautiful five days” are common in corpora, which433

are not as unusual because “the” regularly takes434

plural nouns. We hypothesize that the acceptabil-435

ity of these structures affects the acceptability of436

AANNs, since an LM might analogize from the gen-437

eral observation that ‘a’ or ‘an’ can substitute ‘the’438

(e.g., a ball vs. the ball). Therefore, we consider all 439

cases wheere a determiner precedes the contiguous 440

sequence of article, numeral, plural noun. 441

A few/couple/dozen/etc. NNS Another related 442

phenomenon that is more common relative to the 443

AANN construction involves phrases such as “a few 444

days” or “a couple bottles”. To an LM learner, they 445

might provide evidence that measure noun phrases 446

with plural nouns can be attached to an indefinite 447

article (a/an; Solt, 2007), as is the case in AANNs. 448

Measure NNS treated as singular We consider 449

yet another phenomenon involving phrases that 450

treat measure nouns as singular, this time in terms 451

of agreement, e.g., “Five miles is a long way to go”, 452

and “1,000 pages is a lot for a dissertation.” These 453

cases might provide further evidence to the model 454

that measure noun phrases with plural nouns can 455

be treated as a singular unit (Solt, 2007), thereby 456

affecting the acceptability of the AANN. These are 457

less prevalent compared to the cases involving a 458

few/couple/dozen NNS, but still far more frequent 459

than the AANN, therefore, we combine the two as a 460

general case of treating measure NPs as singular. 461

Balancing the frequencies of A/An + ADJ/NUM 462

A more surface-level reason why “a beautiful five 463

days” might be more natural to LMs than is “a five 464

beautiful days”, could be that adjectives are more 465

likely to follow indefinite articles than are numer- 466

als. For instance, adjectives are ≈14.6 times more 467

likely to follow indefinite articles in the BabyLM 468

corpus than are numerals. To measure this effect, 469

we hold out instances such that adjectives and nu- 470

merals are equally likely to follow an indefinite 471

article. This ends up being the largest portion of 472

the data that we hold out. 473

Control: Random removal A potential con- 474

found in the above ablations could be that the SLOR 475

values of the AANNs go down merely due to loss of 476

content—this could be despite the fact that we add 477

back additional tokens from BabyLM (such that 478

all LMs see the exact same amount of tokens). To 479

account for this, we additionally consider a control 480

condition where we remove as many tokens as in 481

the largest ablation (i.e., the A/An + ADJ/NUM 482

case) such that none of the above phenomena are 483

taken out. Insofar as the LMs rely on the aforemen- 484

tioned phenomena, results on LMs trained with this 485

ablation should be closer to the original BabyLM- 486

trained LM’s results. 487
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Our LMs

1.2 1.4 1.6 1.8 2.0 2.2

Random
Removal

A/An Adj-Num
Freq Balanced

No Measure
NNS as Singular

No A few/couple/
dozen/etc. NNS

No DT-ANNs

No AANNs

Unablated

SLOR (95% CI, 3 LM Runs)

4-gram baselines

5.4 5.6 5.8 6.0 6.2 6.4

SLOR (95% CI)

Condition AANNs removed from training AANNs seen during training

Figure 3: SLORs on AANNs from Mahowald (2023) for our LMs (left) and a 4-gram baseline (right) trained on
BabyLM and its ablated versions. SLOR for unablated BabyLM-trained LM shown with dotted line.

4.1 Analysis and Results488

In our experiments, we individually ablate out each489

of the aforementioned phenomena under two set-490

tings: (1) AANNs are removed during training in491

addition to the phenomena; and when possible, (2)492

AANNs are seen during training. (1) is a stricter set-493

ting, since here the LMs see neither the target phe-494

nomenon nor a single instance of the AANN. Com-495

paring average SLORs obtained in this condition496

to that obtained for the NO AANN can shed light497

on the the extent to which the target phenomenon498

is critical in allowing LMs to assign non-trivial499

probabilities on unseen AANNs, zero-shot. On the500

other hand, (2) still allows for the LMs to perform501

lexical generalization (Kim et al., 2022) from seen502

AANN instances—where they may arrive at strong503

acceptability measures on the test AANNs by per-504

forming slot filling, without necessarily relying on505

the hypothesized phenomena.506

Figure 3 shows the average SLORs obtained507

across various ablations under the two settings. As508

a baseline, we compare our results to 4-gram LMs3509

trained on corresponding ablations of the BabyLM510

corpus. We observe that holding out all our hypoth-511

esized phenomena has non-trivial effects on our512

LMs’ ratings of unseen well-formed AANNs, and513

that these effects are different for when AANNs are514

seen during training, or are held out. When AANNs515

are held out along with the phenomena, we see sub-516

stantial drops in the average SLOR values assigned517

by LMs on unseen AANNs relative to that assigned518

by LMs in the NO AANN condition. Specifically,519

balancing the frequency of adjectives and numerals520

following an article has the greatest effect, followed521

3Trained using KenLM (Heafield, 2011)

by the two cases where measure nouns are treated 522

as singular, followed by the removal of all cases 523

that involve any determiner + adjective + numeral 524

+ noun sequence. This suggests that, in the absence 525

of even a single AANN during training, these phe- 526

nomena are critical for LMs to assign probability 527

to AANNs. Simply ablating large amounts of data 528

cannot explain these results, since LMs trained on 529

our controlled condition show higher SLOR values 530

than in all hypothesis-informed ablations. These 531

patterns are absent in 4-gram LMs, suggesting 532

that they do not arise as a result of shallow, sur- 533

face statistics—with the exception of differences 534

observed for the article+adjective/numeral abla- 535

tion. Overall, this finding indicates that LMs can 536

demonstrate a completely novel phenomenon 537

(AANN) by relying on other related—and more 538

frequent—phenomena. 539

When AANNs are seen during training, however, 540

we observe LMs’ results on unseen AANNs to show 541

more similar SLOR values with respect to the the 542

LMs trained on the unablated BabyLM corpus, al- 543

though they are still significantly reduced in some 544

cases (e.g., singular measure nouns). We conclude 545

that when LMs see evidence of the AANN construc- 546

tion, they do learn from it. But key related phenom- 547

ena where measure nouns are treated as singular 548

do seem to show some notable effects even when 549

AANNs are present, suggesting that these enable 550

additional learning even when AANNs are present. 551

5 Experiment 3: The Role of Variability 552

Results from the previous experiment highlight 553

the importance of seen AANNs in order for LMs 554

to generalize to unseen instances. What proper- 555

ties of these seen instances make LMs generalize? 556
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More broadly, there is a longstanding question as557

to how the nature of the instances of a construction558

provided during learning affect its (partial) pro-559

ductivity (Goldberg, 2005, 2019). In the context560

of AANNs, we consider the role of variability on561

the open slots of the construction as a factor that562

might play a role in LMs’ productivity on unseen563

instances. The idea that slot-variability could af-564

fect learnability is motivated by theoretical claims565

in usage-based linguistics (Bybee, 1995), as well566

as existing research on novel constructions (Suttle567

and Goldberg, 2011), morphological productivity568

(Baayen, 2009; O’Donnell, 2015), and inductive569

inferences in cognitive psychology (Osherson et al.,570

1990; Xu and Tenenbaum, 2007). The idea is that571

encountering a slot with a wide variety of lexical572

items serves as a cue that the slot is flexible.573

We hypothesize that instances of AANNs that574

provide natural evidence of greater open-slot575

variability—i.e. evidence that many different adjec-576

tives, numerals, and nouns can go in their respec-577

tive positions in the AANN construction—would578

lead LMs to assign greater likelihood to unseen579

AANNs. On the other hand, LMs that only en-580

counter a restricted set of instances might overfit,581

and be more conservative in extending the coverage582

of possible AANNs to novel combinations of the583

slot-fillers. To test this, we divided our set of 2,301584

AANN-containing utterances in the BabyLM corpus585

into two roughly equal subsets—one that contained586

AANNs which were individually highly frequent but587

restricted in the types of adjective/numeral/nouns,588

and the other where the AANNs were individually589

less frequent, but showed more variability in those590

slots. We obtain these subsets by performing a591

median split based on the number of unique oc-592

currences of each adjective/numeral/noun triple,593

resulting in a set of 1149 low variability, and 1152594

high variability instances. Details about the slot595

fillers and examples from each set are provided in596

Appendix E. We then trained LMs on the BabyLM597

corpus containing utterances involving either of598

these two cases. Figure 4 shows the resulting av-599

erage SLORs obtained from this experiment, along600

with those obtained by LMs trained on unablated601

BabyLM and the NO AANN conditions.602

From Figure 4, we see that LMs that only saw603

AANNs that were highly variable in their open-604

slots demonstrated SLORs that were comparable605

and sometimes greater than those obtained by LMs606

that saw all AANNs. By contrast, LMs that only607

saw AANNs with low variability were as good as608

No AANNs

Low Variability
AANNs

High Variability
AANNs

Unablated

1.8 1.9 2.0 2.1 2.2 2.3

SLOR (95% CI, 3 LM Runs)

Figure 4: SLORs on AANNs from Mahowald (2023) for
LMs trained on BabyLM with low and high variability
in the observed instances of AANN. SLOR for unablated
BabyLM-trained LM shown with dotted line.

LMs that never saw any AANNs. Therefore, LMs 609

were sensitive to the nature of range of fillers that 610

went into the construction’s open slots, showing 611

relatively greater productivity when they observed 612

evidence that the slots were highly variable. This is 613

compatible with our hypothesis that slot-variability 614

might affect the extent to which LMs “permit” pro- 615

ductive uses of a construction. 616

6 Conclusion 617

There is increasing interest in computational lin- 618

guistics in how language models can handle what 619

has been variously called the “long tail” of lan- 620

guage (Prange et al., 2021), “extremely rare con- 621

structions” (Potts, 2023), “exceptions to syntactic 622

rules” (Leong and Linzen, 2023), “rare linguistic 623

phenomena” (Weissweiler et al., 2024), inter alia. 624

Studies of such phenomena are important first be- 625

cause LLMs (and LMs and statistical models in 626

general) are known to be extremely sensitive to 627

frequency and to perform far better in data-rich 628

environments and, second, because the human abil- 629

ity to generalize to rare phenomena is central to 630

knowledge of language. 631

We found that LMs trained on a human-scale of 632

data can learn a rare construction like the AANN. 633

We found that this learning occurs even without 634

veridical instances of the AANN construction in the 635

training data, and that it is mediated by occurrences 636

of other related constructions in training. As such, 637

these results join a growing body of work showing 638

the ability of LLMs to learn constructions (Tay- 639

yar Madabushi et al., 2020; Tseng et al., 2022; Li 640

et al., 2022; Veenboer and Bloem, 2023). 641

7 Limitations 642

In future work, it would be valuable to extend this 643

method to a wider range of constructions. But scal- 644

8



ing this approach up is not straightforward since645

it requires identifying and extracting idiosyncratic646

constructions, and—more onerously—developing647

testable hypotheses about what makes them learn-648

able from limited amounts of data. While this is649

a limitation, it also calls for more synergistic col-650

laborations between theoretical and computational651

linguists.652

Another limitation is that our method requires653

repeated training of LMs from scratch which can654

be computationally expensive. Alternate methods655

could be to ablate knowledge of particular hypothe-656

ses using representational editing methods such as657

AlterRep (Ravfogel et al., 2021), etc.658

Unlike Weissweiler et al. (2022), we do not test659

the ability to interpret these constructions for down-660

stream tasks. Instead, our ablations target linguistic661

form alone. Extending these results to semantic662

tasks would be quite informative.663

Finally, this work only studies a rare construc-664

tion in English, and on LMs that are trained on665

English text data. While this is a limitation of the666

paper, the paradigm introduced can be readily used667

in future work to study hypotheses and perform668

indirect evidence elicitation in multi-lingual LMs.669
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A Dataset Access and Licensing991

The AANN acceptability dataset by Mahowald992

(2023) is released using the MIT License and was993

accessed from the author’s public github repo.4 The994

BabyLM dataset5 does not have a single license of995

its own but instead inherits the licenses of its con-996

stituents: CHILDES (MacWhinney, 2000), BNC997

Dialogue portion,6 Children’s Book Test (Hill et al.,998

2015), Children’s Stories Text Corpus,7 Standard-999

ized Project Gutenberg Corpus (Gerlach and Font-1000

Clos, 2020), OpenSubtitles (Lison and Tiedemann,1001

2016), QCRI Educational Domain Corpus (Abde-1002

lali et al., 2014), Wikipedia,8 Simple Wikipedia,91003

Switchboard Dialog Act Corpus (Stolcke et al.,1004

2000). Since this dataset was specifically released1005

to train LMs, we work under the assumption that1006

our LMs do not violate its license policies. We1007

will follow the inherited licenses’ policies while1008

making the trained LMs and ablated BabyLM data1009

public, and refrain from releasing them if we find1010

them to be in violation of the policies.1011

4https://github.com/mahowak/aann-public
5accessed from https://babylm.github.io/
6http://www.natcorp.ox.ac.uk
7https://www.kaggle.com/datasets/edenbd/

children-stories-text-corpus
8https://dumps.wikimedia.org/enwiki/20221220/
9https://dumps.wikimedia.org/simplewiki/

20221201/

B LM training details 1012

As mentioned in the main text (see §2), we use 1013

the OPT architecture (Zhang et al., 2022) to train 1014

our LMs on all versions of the BabyLM corpus. 1015

This was the best performing autoregressive LM in 1016

the BabyLM Competition (Warstadt et al., 2023). 1017

For each instance of the BabyLM (ablated or oth- 1018

erwise), we tune the learning rate10 based on the 1019

validation set, and use the best learning rate as a 1020

result of the tuning to train an additional two lan- 1021

guage models using different seeds. As a result, 1022

for each ablation of the BabyLM corpus, we run 1023

6 LM training experiments, which amounts to a 1024

whopping 90 LMs for all our experiments. Table 3 1025

contains further details of the training. 1026

(Hyper)parameter Value

Architecture OPT (Zhang et al., 2022)
Embed size 768
FFN dimension 3,072
Num. layers 12
Attention heads 12
Vocab size 16,384
Max. seq. length 256
Batch size 32
Warmup steps 32,000
Epochs 20
Total parameters 97M
Training size 100M tokens
Compute 1x NVIDIA A40
Training time 21 hours

Table 3: LM Training details

C Detecting AANNs and related 1027

phenomena 1028

In this section, we briefly describe our methods 1029

to extract constructions and phenomena relevant 1030

to this paper from the BabyLM corpus (Warstadt 1031

et al., 2023). Our methods primarily rely on: 1) 1032

the surface form of the sentences in the corpus; 1033

2) their corresponding part-of-speech (POS) tag 1034

sequences; and in a few cases, 3) their depedency 1035

parses. For the latter two, we used spacy (Honnibal 1036

et al., 2020), specifically, its en_web_trf model, 1037

which is based on the RoBERTa-base LM (Liu 1038

et al., 2019). Next we describe how we used these 1039

artifacts to detect our target constructions: 1040

10We searched the following set: {1e-4, 3e-4, 1e-3,
3e-3}
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C.1 AANNs1041

To detect AANNs we primarily rely on POS-tagged1042

sequences, and construct a regex pattern over1043

them11 which is able to robustly detect AANNs:1044

pattern = r'\b(DT)(?:(?:\s(RB))*\s(JJ|JJR|JJS)1045
(?:\s(CC))*)+(\s(CD|JJ|JJR|JJS|NN|CD\sCD)1046
(?:\s(TO|CC)\s(CD))*)(\s(NNS|NNPS|(NN\sNNS)1047
|((NN|NNS)␣IN␣NNS)))+'1048

where we restrict the determiner (DT) to be either1049

‘a’, ‘an’, or ‘another’. This regex permits mul-1050

tiple adjectives (an exhilarating and marvelous1051

three months) optional adverbs (an excruciatingly1052

painful two semesters), multi-word noun phrases1053

with plural head-nouns (a refreshing two glasses1054

of aperol spritz), numeral-expressions involving1055

subordinate clauses (a measly three to five days),1056

among other potential edge cases. We additionally1057

use the following adjectives as proxies for numer-1058

als, as per the guidelines of Kayne (2007) and Solt1059

(2007):1060

numeral_proxies = ['few', 'dozen', 'couple', '1061
several', 'many', 'more']1062

For instance, the following examples would all1063

count as instances of the AANN:1064

(1) a. a beautiful few days.1065

b. an amazing dozen eggs.1066

c. a pictorial several pages.1067

d. a great many days.1068

e. an awful last couple of days.1069

f. a few more inches.1070

Once detected, we map the found constructions to1071

their respective positions within the AANN format,1072

which allows us to measure metrics such as slot1073

variability, etc.1074

C.2 DT ANNs1075

We follow the exact same procedure as the one1076

for AANNs, but no longer restrict the determiner1077

position to only be an indefinite determiner.1078

C.3 A few/couple/dozen NOUNs1079

An important phenomenon that we consider to be1080

related to the AANN involves cases such as: “that1081

only lasted a few days” and “could you bring me1082

a couple liters?”, etc., where the plural nouns are1083

attached to an indefinite article. To detect such1084

cases, we consider the following two dependency1085

11In reality this was constructed over several iterations,
taking into account many different possible realizations of the
construction in free text.

configurations, where we have an indefinite deter- 1086

miner (a, an, another) with either a det relation 1087

with the plural noun (NNS or NNPS) or a quantmod 1088

relation with a noun which has a nummod with the 1089

plural noun. In the former case, we usually have an 1090

amod relation between the noun and the adjective. 1091

. . . DT JJ NNS . . .

. . . a few days . . .

det

amod

1092

. . . DT NN NNS . . .

. . . a couple days . . .

quantmod nummod

1093

C.4 Measure NNS with Singular Verbs 1094

Similar to the previous case, another phenomenon 1095

which might be related to the AANN constructions 1096

is when measure noun-phrases with plural nouns 1097

are treated as singular via their agreement with a 1098

verb—e.g., “five dollars is plenty!” To detect such 1099

cases, we again rely on the following dependency 1100

configuration, where we have a plural noun (NNS 1101

or NNPS) attached to a cardinal number (CD) via 1102

the nummod dependency relation, and at the same 1103

time also attached to singular verbs via the nsubj 1104

dependency relation (i.e., are subjects of singular 1105

verbs). 1106

. . . CD NNS VB . . .

. . . five dollars is . . .

nummod nsubj

1107

D A/An + ADJ/NUM frequency balancing 1108

A corpus analysis of BabyLM, along with its 1109

POS-tagged version suggests that the sequence 1110

“a/an/another (JJ|JJR|JJS)” occurs 613,985 1111

times while “a/an/another CD” occurs only 1112

42,111 times – this suggests that adjectives are 1113

approximately 14.6 more likely to follow an indefi- 1114

nite article than are numerals. We therefore balance 1115

these values by removing 571,874 instances where 1116

adjectives follow an indefinite article. This consti- 1117

tutes the largest-sized ablation in this work. 1118

E Variability Analysis 1119

In §5 we compared AANN-generalization of LMs 1120

trained on BabyLM versions which differed in the 1121

amount of variability that was present in the AANNs 1122

13



that the models were exposed to. In particular,1123

we operationalized variability in terms of the slot-1124

fillers of the adjective/numeral/noun slots. Figure 51125

shows statistics of the two roughly equal subsets of1126

the AANN-containing utterances in BabyLM. From1127

figure 5, we see that low-variability AANNs were1128

individually more frequent than the high-variability1129

ones.1130

Variability Sentences Freq.

High

A colossal 5 stories 1
A cold few days 1
A leisurely six weeks 1
A long 8 years 1
A paltry hundred thousand pounds 1

Low

A few more minutes 98
A few more days 70
A good six months 5
A good 4 years 4
A rough couple days 4

Table 4: Example AANN instances from BabyLM in
high and low-variability subsets, as well as their individ-
ual frequencies.
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Figure 5: Frequency statistics of instances of the AANN that appear in BabyLM, divided between High- and
Low-variability instances, with variability quantified using the number of slot-fillers on the adjective/numeral/noun
positions.
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